EXERCISE 9 IN COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY

DMITRY GOUREVITCH

- (1) (P) Let X be a variety, and let $Y \subset X$ be a closed subset. For every element in an open affine cover U_i of X, let $V_i := U_i \cap Y$ and let \tilde{U}_i be the blow-up of U_i at V_i . Show that the spaces \tilde{U}_i can be glued together to give a variety \tilde{X} . This variety is then called the blow-up of X at Y.
- (2) (P) A quadric in \mathbb{P}^n is a projective variety in \mathbb{P}^n that can be given as the zero locus of a quadratic polynomial. Show that every quadric in \mathbb{P}^n is birational to \mathbb{P}^{n-1} .
- (3) (P) Let $X \subset \mathbb{A}^n$ be an affine variety, and let $P \in X$ be a point. Show that the coordinate ring $\mathcal{O}(C_P X)$ of the tangent cone to X at P is equal to $\bigoplus_{l \geq 0} I(P)^l / (I(P)^{l+1})$, where I(P) is the ideal of P in $\mathcal{O}(X)$.
- (4) (P) Let $X \subset \mathbb{A}^n$ be an irreducible affine variety, and let $Y_1, Y_2 \subset X$ be irreducible, closed subsets, no-one contained in the other. Let \tilde{X} be the blow-up of X at the (possibly nonradical) ideal $I(Y_1) + I(Y_2)$. Then the strict transforms of Y_1 and Y_2 on \tilde{X} are disjoint.
- URL: http://www.wisdom.weizmann.ac.il/~dimagur/AlgGeo.html

Date: January 21, 2013.