EXERCISE 1 IN COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY II

DMITRY GOUREVITCH

- (1) (P) Let X be an irreducible algebraic variety, $x \in X$.
 - (a) Show that $\mathcal{O}_{X,x}$ is Noetherian.
 - (b) If $X = \text{Spec}A, m_x \subset A$, show that $\mathcal{O}_{X,x} = A_{m_x} \equiv S^{-1}A$, where $S = A \setminus m_x$.
 - (c) Is it possible that $\mathcal{O}_{X,x_1} \subset \mathcal{O}_{X,x_2} \subset K(x)$ but $m_{x_1} \not\subset m_{x_2}$
- (2) (P) Show that:
 - (a) Integral closure commutes with localization.
 - (b) For any irreducible variety Y and any finite extension $L \supset K(Y) \exists!$ normal irreducible variety X and a finite surjective map $\nu : X \to Y$ s.t. $\nu^* : K(Y) \hookrightarrow K(X)$ is the imbedding $K(Y) \subset L$
- (3) (P) Let $A = K[x, y] / \langle x^2 y^3 \rangle$ and C = SpecA.
 - (a) Show that neither A nor its localization at (0,0) are integrally closed.(b) Show that the localization at any other point is integrally closed.
- (4) Let R be Discrete Valuation Ring and π ∈ R be irreducible, then any r ∈ R has a unique representation as u · πⁿ, u ∈ R* and n ≥ 0. n is called the valuation of r. Show that it satisfies:
 (a) val(ab) = val(a) + val(b)
 - (b) $val(a+b) \ge \min(val(a), val(b))$
- (5) Let X be algebraic variety, U be a constructable subset, $x \in X$. Show that $x \in \overline{U} \iff \exists$ a smooth curve C and $\nu : C \to X$ s.t. $x \in \nu(C)$ and $\#\nu(C) \cap U = \infty$.
- (6) (P) If C is a smooth curve, $k[C] \neq k$ then C is affine.
- URL: http://www.wisdom.weizmann.ac.il/~dimagur/AlgGeo.html

Date: April 14, 2013.