EXERCISE 2 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

- (1) (P) Show that a finite-dimensional representation π of a group G is completely reducible if and only if for any subrepresentation $\tau \subset \pi$ there exists another subrepresentation $\tau' \subset \pi$ such that $\pi = \tau \oplus \tau'$.
- (2) (P) Let G be an infinite group and H < G a subgroup of finite index. Let (π, G, V) be a complex representation of G and $L \subset V$ a G-invariant subspace. Suppose we know that the subspace L has an H-invariant complement. Show that then it has a G-invariant complement.

Definition 1. If X is a finite G-set we denote by π_X the natural representation of the group G on the space F(X) of functions on X.

- (3) (P) Show that if X, Y are finite G-sets then the intertwining number $\langle \pi_X, \pi_Y \rangle$ equals to the number of G-orbits in the set $X \times Y$ (with respect to the diagonal action g(x, y) = (gx, gy)).
- (4) Let $\pi \in Rep(G)$ and $\tau \in Rep(H)$. Let π^G denote the space of *G*-invariant vectors, $\pi^G = \{ v \in \pi : \pi(g)v = v \forall g \in G \}$. Show that $(\pi \otimes \tau)^{G \times H} = \pi^G \otimes \tau^H$.
- (5) Show that every complex matrix A with $A^n = Id$ is diagonalizable.
- (6) (*) Let G, H be finite groups. Show that any irrep of $G \times H$ is of the form $\sigma \otimes \rho$, where $\sigma \in Irr(G), \rho \in Irr(H)$.
- (7) (*) We showed that $\langle \pi, \tau \rangle = \langle \tau, \pi \rangle$. Is that still true over (a) $F = \mathbb{R}$?

(b)
$$F = \mathbb{F}_p$$
?

URL: http://www.wisdom.weizmann.ac.il/~dimagur/CompRepTheo.html

Date: October 30, 2013.