EXERCISE 3 IN REPRESENTATION THEORY

DMITRY GOUREVITCH

- (1) Let V be a vector space. Define a symmetric bilinear form on End(V) by $\langle A, B \rangle := \text{Tr}(AB)$. Show that it is non-degenerate. Show that if V is a representation of G then this form is invariant with respect to the conjugation action of G on End(V).
- (2) Let $\rho \in Rep(G)$. Show that the natural map $\rho : \mathcal{A}(G) \to End_F(\rho)$ given by $f \mapsto \sum_{g \in G} f(g)\rho(g)$ is a morphism of algebras and of representations of $G \times G$.
- (3) Define a bilinear form on $\mathcal{A}(G)$ by

$$\langle f,h\rangle := \sum_{g\in G} f(g)h(g^{-1})$$

Show that this form is bilinear, symmetric and non-degenerate.

- (4) (P) Let (π, V) be an irreducible complex representation of a finite group G. Show that it has an invariant Hermitian form H and that any two such forms are proportional.
- (5) (P) Let G be a finite group and let (π, V) be a finite dimensional representation of G over the field of real numbers R.
 - (a) Show that (π, V) is isomorphic to the dual representation (π^*, V) .
 - (b) Give an example of irreducible representations (π, G, V) and (τ, H, L) over the field \mathbb{R} such that the tensor product representation $(\pi \otimes \tau, G \times H, V \otimes L)$ is reducible.
- (6) (P) Show that if X, Y are finite G-sets and χ is a character of G then the intertwining number $\langle \pi_X, \chi \pi_Y \rangle$ equals to the number of G-orbits O in the set $X \times Y$ such that for any point $z \in O$, the restriction $\chi|_{G_z}$ of χ to the stabilizer G_z of z is trivial.
- (7) (P) Let $G = S_n$ denote the group of all permutations of a set I with n elements (symmetric group in n symbols). Consider the natural action of G on the set Xof all subsets of I. It has orbits $X_0, X_1, ..., X_n$, where X_i consists of all subsets of size i (note that X_0 has one element). Consider the corresponding representations $\pi_i := (\pi_{X_i}, G, F(X_i))$ of the group G and decompose them into irreducible components. Describe these components for representations π_0, π_1, π_2 and compute their dimensions.
- (8) A representation is called **isotypic** if it is a direct sum of isomorphic irreducible representations. Show that the following are equivalent:
 - (a) π is isotypic
 - (b) All irreducible subrepresentations of π are isomorphic
 - (c) If $\pi \simeq \omega \oplus \tau$ with $\langle \omega, \tau \rangle = 0$ then either $\omega = 0$ or $\tau = 0$.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/CompRepTheo.html

Date: November 6, 2013.