EXERCISE 6 IN REPRESENTATION THEORY

DMITRY GOUREVITCH

Fourier transform for finite groups.

Let C be a finite commutative group, n = |C|. We will denote by \widehat{C} the dual group of characters $C \to \mathbb{C}$. We define Fourier transform $\mathcal{F} : F(C) \to F(\widehat{C})$ by $\mathcal{F}(u)(\psi) = \sum u(g)\psi(g)$.

- (1) (P) Show that if we define an L^2 -structure on spaces of functions by $||u||^2 = 1/n \sum |u(g)|^2$ then the operator \mathcal{F} satisfies the Plancherel formula $||\mathcal{F}(u)||^2 = n||u||^2$.
- (2) (P) Using the Plancherel formula prove the following Theorem(Gauss). Fix a non-trivial multiplicative character χ and a nontrivial additive character ψ for the finite field \mathbb{F}_q and consider the Gauss sum $\Gamma = \sum \chi(g)\psi(g)$, where the sum is taken over $g \in F^{\times}$. Then $|\Gamma| = q^{1/2}$.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/CompRepTheo.html

Date: November 27, 2013.