EXERCISE 7 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

- (1) (a) For H < G and $\pi_1, \pi_2 \in Rep(H)$, $\operatorname{Ind}_H^G(\pi_1 \oplus \pi_2) = \operatorname{Ind}_H^G(\pi_1) \oplus \operatorname{Ind}_H^G(\pi_2)$. (b) For $H_1 < H_2 < G$ and $\pi \in Rep(H)$, $\operatorname{Ind}_{H_2}^G \operatorname{Ind}_{H_1}^{H_2} \pi = \operatorname{Ind}_{H_1}^G \pi$
- (2) (P) Let G be a finite group, D its subgroup and χ a character of D. Consider the induced representation π = Ind^G_D(χ). Show that π is irreducible iff the following condition holds:
 (*) For any g ∈ G there exists an element x ∈ D such that the element y = gxg⁻¹ belongs to D and χ(x) ≠ χ(y).
- (3) (P) Let G be a finite group, Z its central subgroup and χ a character of Z. Denote by $Irr(G)_{\chi}$ the set of equivalence classes of irreducible representations of G on which Z acts via the character with the central character χ .
 - (a) Compute $\sum_{\sigma \in Irr(G)_{\gamma}} \dim^2 \sigma$.
 - (b) Explain how to find the size of the set $Irr(G)_{\chi}$. In particular show that this size is maximal when χ is a trivial character.

Definition 1. A representation induced from a character of a subgroup is called monomial.

Definition 2. Let us call a group G c-solvable (which means cyclicly solvable) if there exists a sequence of normal subgroups $N_0 < N_1 < ... < N_k = G$ starting with the trivial subgroup N_0 such that each quotient group N_i/N_{i-1} is cyclic.

- (4) Show that any subgroup and quotient group of a c-solvable group is c-solvable. Show that any finite nilpotent group is c-solvable.
- (5) (P) Let G be a c-solvable finite group. Then any irreducible representation π of G is monomial.

Hint: Can assume that the group is not commutative and the representation π is faithful, i.e. no group element acts trivially. Let Z < G denote the center. Choose a normal cyclic subgroup C < G/Z and lift it to a normal commutative subgroup N < G. Show that $\pi|_N$ is not isotypic, and use Mackey theory to prove by induction on the (minimal) length of the chain.

(6) (P) Suppose we know that a group G has a commutative normal subgroup N such that the group G/N is c-solvable. Show that any irreducible representation σ of G is monomial.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/CompRepTheo.html

Date: December 11, 2013.