
Vanishing and Eulerianity of Fourier coefficients of
automorphic forms.

Dmitry Gourevitch
Weizmann Institute of Science, Israel

http://www.wisdom.weizmann.ac.il/~dimagur

Representation theory seminar, BGU, June 2020
j.w. R. Gomez, H. P. A. Gustafsson, A. Kleinschmidt, D. Persson, and

S. Sahi

Following Piatetski-Shapiro–Shalika, Jian-Shu Li,
Ginzburg–Rallis–Soudry, Moeglin-Waldspurger, Jiang–Liu–Savin,

Gomez, Ahlen, Hundley–Sayag, Green-Miller-Vanhove,
Kazhdan–Polishchuk, Bossard–Pioline

June 2020
Dmitry Gourevitch Fourier coefficients June 2020 1 / 22

http://www.wisdom.weizmann.ac.il/~dimagur


Definitions

K: number field, A := AK, G: reductive group over K, Γ := G(K),
G := G(A), g := Lie(Γ).

Fix a semisimple H ∈ g, and let gi := gHi denote the eigenspaces of
ad(H). Assume that all the eigenvalues i lie in Q.

Let f ∈ g−2. Call (H, f ) ∈ g× g a Whittaker pair.

Define n := nH,f := (g1 ∩ gf )⊕⊕i>1 gi , N := Exp(n)(A).

Fix a non-trivial unitary additive character ψ : K\A→ C and define
χf : N → C by χf (ExpX ) := ψ(〈f ,X 〉).
Let [N ] := (Γ ∩N)\N. For automorphic form η on G , define Fourier
coefficient

FH,f [η](g) :=
∫
[N ]

η(ng)χf (n)
−1dn.
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Two central cases of Fourier coefficients

[H, f ] = −2f , n = (g1 ∩ gf )⊕⊕i>1 gi , N = Exp(n)(A),

FH,f [η](g) :=
∫
[N ]

η(ng)χf (n)
−1dn.

Neutral Fourier coefficient, coming from sl2-triple (e,H,f), e.g.:

H =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 f =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 n =


0 ∗ 0 ∗
0 0 0 0
0 ∗ 0 ∗
0 0 0 0


Whittaker coefficient Wf , with N maximal unipotent, e.g.:

H =


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 f =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 n =


0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0



Coefficients that are both neutral and Whittaker are Eulerian by local
uniqueness of Whittaker models.
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Examples of Fourier coefficients

[H, f ] = −2f , n = (g1 ∩ gf )⊕⊕i>1 gi , N = Exp(n)(A)

FH,f [η](g) :=
∫
[N ]

η(ng)χf (n)
−1dn.

Comparison for G = GL3(A):

Neutral Fourier coefficient:

H =

 1 0 0
0 0 0
0 0 −1

 , f =

 0 0 0
0 0 0
1 0 0

 , n =

 0 0 ∗
0 0 0
0 0 0



Whittaker coefficient:

H =

 1 0 0
0 −3 0
0 0 −1

 , f =

 0 0 0
0 0 0
1 0 0

 , n =

 0 ∗ ∗
0 0 0
0 ∗ 0


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Fourier-Jacobi coefficients

u := g1/(g1 ∩ gf ). ωf (X ,Y ) := 〈f , [X ,Y ]〉- symplectic form.

∀ isotropic subspace i ⊂ u, let I := Exp(i)(A)

F I
H,f [η](g) :=

∫
[I ]
FH,f [η](ug) du

Lemma (Root exchange, cf. Ginzburg-Rallis-Soudry)

(i) FH,f [η](g) = ∑γ∈(U/I⊥)(K) F I
H,f [η](γg)

(ii) For any isotropic subspace j ⊂ u with dim j = dim i and j∩ i⊥ = {0},

F J
H,f [η](g) =

∫
J(A)
F I

H,f [η](ug) du

For H =

 1 0 0
0 0 0
0 0 −1

 , f =

 0 0 0
0 0 0
1 0 0

 :

 0 i n
0 0 j
0 0 0


Cf. θ, Stone-von-Neumann thm, Poisson summation formula.
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Relating different coefficients

WO(η) := {O ∈ N (g) | ∀ neutral (h, f ) with f ∈ O, Fh,f (η) 6≡ 0}.

Say (H, f ) � (S , f ) if [H,S ] = 0 and gf ∩ gH≥1 ⊆ gS−H≥0 .
f is K-distinguished if ∀ Levi l 3 f defined over K, l = g.
Equivalently: the semi-simple part of the centralizer Gf is anisotropic
(S , f ) is called Levi-distinguished if ∃ parabolic p = lu
s.t. f is K-distinguished in l, and nS ,f = lS ,f ⊕ u.
Whittaker coefficients are Levi-distinguished.
For Whittaker pairs with the same f and commuting H-s,
neutral � any � Levi-distinguished.

Theorem

Let (H, f ) � (S , f ). Then

(i) FH,f [η] linearly determines FS ,f [η].

(ii) If Γf ∈ WOmax(η) and gH1 = gS1 = 0 let v := gH>1 ∩ gS<1. Then

FH,f [η](g) =
∫
V (A)

FS ,f [η](vg) dv
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Corollary

(i) If η is cuspidal then any O ∈ WOmax(η) is K-distinguished.
In particular, O is totally even for G = Sp2n, totally odd for
G = SO(V ), not minimal for rkG > 1,
and not next-to-minimal for rkG > 2, G 6= F4.

(ii) Lower bounds for partitions of O ∈ WOmax(η) with cuspidal η:
2n for Sp2n, 3n1n for SO(2n, 2n), 53n−11n for SO(2n+ 1, 2n+ 1),
3n1n+1 for SO(2n+ 1, 2n), and (3n+1, 1n) for SO(2n+ 2, 2n+ 1).

(iii) If f /∈ WO(η) then FH,f (η) = 0 for any H.
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Proof of (i).

Let l ⊂ g be Levi subalgebra intersecting O. Let (e, h, f ) ∈ l be an
sl2-triple with f ∈ O. Let Z ∈ g be a (rational) semi-simple element s.t.
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Dmitry Gourevitch Fourier coefficients June 2020 8 / 22



Example for the proof of the Theorem

G := GL(4, A), f := E21 + E43, H := diag(3, 1,−1,−3),
h = diag(1,−1, 1,−1), Z = H − h = diag(2, 2,−2,−2),Ht := h+ tZ .

Then n0 ⊂ n1/4 ⊕ i ∼ n1/4 ⊕ j ⊂ n3/4 = n1 :
0 ∗ 0 ∗
0 0 0 0
0 ∗ 0 ∗
0 0 0 0

 ⊂


0 ∗ a ∗
0 0 0 a
0 − 0 ∗
0 0 0 0

 ∼


0 ∗ − ∗
0 0 0 −
0 0 0 ∗
0 0 0 0



⊂


0 ∗ ∗ ∗
0 0 − ∗
0 0 0 ∗
0 0 0 0

 =


0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0


Both ∗ and − denote arbitrary elements. ∗ denotes the entries in gHt

>1 and

− those in gHt
1 . a denotes equal elements in gHt

1 ∩ gf .
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Corollary (Hidden symmetry)

Let η be an automorphic form on G, and let (H, f ) be a Whittaker pair
with Γf ∈ WOmax(η). Then any unipotent element u of the centralizer of
the pair (H, f ) in G acts trivially on the Fourier coefficient FH,f [η] using
the left regular action.

Proof.

Want to show that FH,f [η − ηu ] = 0. By the theorem, enough to show
FH+Z ,f [η − ηu ] = 0 for some Z . Find Z such that u ∈ NH+Z ,f .

Example: G = GL4(A), f = E31 + E42,H = diag(1, 1,−1,−1), u =
Id + E12 + E34,Z = diag(1,−1, 1,−1).

0 b ∗ ∗
0 0 ∗ ∗
0 0 0 b
0 0 0 0

 ;


0 ∗ ∗ ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 0

↔


0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 0
0 0 0 0


∗: non-zero pairing with f . b: entries of u.
Corollary: if WOmax(η) = {2n} then FH,f [η] is Eulerian (Shalika model).
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Applications of hidden symmetry

Corollary (Hidden symmetry)

Let η be an automorphic form on G, and let (H, f ) be a Whittaker pair
with Γf ∈ WOmax(η). Then any unipotent element u of the centralizer of
the pair (H, f ) in G acts trivially on the Fourier coefficient FH,f [η] using
the left regular action.

Proof.

Want to show that FH,f [η − ηu ] = 0. By the theorem, enough to show
FH+Z ,f [η − ηu ] = 0 for some Z . Find Z such that u ∈ NH+Z ,f .

Corollary

If G = GLn(A) and WOmax(η) = {2n} or G ∈ {SO(n, n),SO(n+ 1, n)}
and WOmax(η) = {31 . . . 1} then FH,f [η] is Eulerian.

Follows from uniqueness of Shalika and Bessel models.
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Fourier-Jacobi periods and the Weil representation

For a symplectic space V over K, let H(V ) := V ⊕K be the Heisenberg

group and J̃(V ) := ˜Sp(V (A))nH(V (A)) be the double cover Jacobi
group. It has unique irreducible unitarizable representation vV with central
character χ. It has automorphic realization given by theta functions:

θf (g) = ∑
a∈E(K )

ωχ(g)f (a), where g ∈ J̃(V ), f ∈ S(E(A)), E ⊂ V Lagrangian

For a Whittaker pair (H, f ) let u := gH≥1 and V := u/nH,f , with
symplectic form ωf (A,B) := 〈f , [A,B ]〉. Then we have a natural map

` : U o G̃H,f → J̃(V ). Define FJ : π ⊗vV → C∞(Γ\G̃H,f ) by

f ⊗ η 7→
∫
U(K )\U(A)

f (ug̃)θη(`(u, g̃))du

M:=split semi-simple part of the centralizer GH,f .

Theorem

If Γ · f ∈ WOmax(π) then M̃ acts on the image of FJ by ±1.
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symplectic form ωϕ(A,B) := 〈f , [A,B ]〉. Then we have a natural map
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Theorem

If Γ · f ∈ WOmax(π) then M̃ acts on the image of FJ by ±1.

Since the Weil representation vV is genuine, obtain:

Corollary

If Γ · f ∈ WOmax(π) then the cover M̃ splits.

Corollary

If Γ · f ∈ WOmax(π) and G is classical then the orbit of f is special.
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Eulerianity

Lemma

Let (S , f ) and (H, f ′) be two Whittaker pairs such that
Γf = Γf ′ ∈ WOmax(η). Suppose that a Fourier–Jacobi coefficient F I

S,f [η]

is Eulerian. Then any Fourier–Jacobi coefficient F I ′
H,ψ[η] is also Eulerian.

Question

Is any Fourier-Jacobi coefficient F I
S,f [η] with Γf ∈ WOmax(η) Eulerian for

any spherical η that generates an irreducible representation?

Verified for:

1 Discrete spectrum of GLn(A).

2 Minimal representations of most split simply-laced groups

3 Next-to-minimal Eisenstein series of most split simply-laced groups
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Expressing forms through their Whittaker coefficients

Theorem

Any FH,f is linearly determined by all Levi-distinguished Fourier
coefficients FS ,F with ΓF ≥ Γf .

Corollary

(i) Any η is linearly determined by all its Levi-distinguished Fourier
coefficients.

(ii) If all O ∈ WO(η) admit Whittaker coefficients then η is linearly
determined by its Whittaker coefficients.

(iii) If G is split and simply-laced, and η is minimal or next-to-minimal
then all Fourier coefficients of η are linearly determined by Whittaker
coefficients.
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Explanation for GLn (PS-Shalika, Ahlen–Gustafsson-Liu-
Kleinschmidt-Persson)

Let η ∈ C∞(Γ\GLn(A)). Restrict to the last column and decompose to
Fourier series. All non-trivial characters are conjugate by GLn−1(K).

0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 0

+


0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 0


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Example: Sp(4)

sp4 =

{(
A B = Bt

C = C t −At

)}
.

Let n be the Borel nilradical, and u ⊂ n be the Siegel nilradical, spanned
by B. Characters given by ū ∼= Sym2(K2). Restricting η to B and
decomposing into Fourier series we obtain η = ∑f ∈u Fu,f [η] .

1 Constant term Fu,0[η]: Restrict to the Siegel Levi L ∼= GL2(A), and
decompose to Fourier series on the abelian group N ∩ L:

Fu,0[η] = ∑
a∈K

Wa,0[η] .

2 Any f of rank one is conjugate under L to f1 :=
(

1 0
0 0

)
.

Decomposing Fu,f1 [η] on N ∩ L:

Fu,f1 [η] = ∑
a∈K

Wa,1[η] .
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Fu,f1 [η] = ∑
a∈K

Wa,1[η] .

3 Split non-degenerate forms are conjugate to f2 :=
(

0 1
1 0

)
.

Using Weyl group conjugation (24) and root exchange, we express
Fu,f2 through Fu′,e21

, where u′ = Span(e12 − e43, e13, e24) ⊂ n.
Fourier expansion by the remaining coordinate of e14 + e23 ∈ n:

Fu,f [η](g) =
∫

x∈A

W1,a[η]((Id + xe24)wg).
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X :=set of anisotropic 2× 2 forms. For f ∈ X , we cannot simplify Fu,f [η].
Summarizing, for any η on G = Sp4(A) we have

η(g) = ∑
f ∈X
Fu,ϕ[η](g) + ∑

a∈K

(
∑

γ∈L/O(1,1)

∫
x∈A

W1,a[η](vxwγg)+

∑
γ∈L/(N∩L)

Wa,1[η](γg) +Wa,0[η](g)
)

If η is cuspidal then W0,a[η] =Wa,0[η] = 0. If η is non-generic η, then
W1,a[η] =Wa,1[η] = 0, unless a = 0. Thus

1 If η is cuspidal then η(g) = ∑f ∈X Fu,f [η](g)+

∑
a∈K×

(
∑

γ∈L/O(1,1)

∫
x∈A

W1,a[η](vxwγg) + ∑
γ∈L/(N∩L)

Wa,1[η](γg)
)

2 If η is non-generic then η(g) = ∑f ∈X Fu,f [η](g)+

∑
γ∈L/O(1,1)

∫
x∈A

W1,0[η](vxwγg)+ ∑
γ∈L/(N∩L)

W0,1[η](γg)+ ∑
a∈K

Wa,0[η](g) .

3 If η is cuspidal and non-generic then η = ∑f ∈X Fu,f [η].
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Local picture

F := a p-adic local field, G := G(F ), g := Lie(G ),

(H, f ) ∈ g× g Whittaker pair u := gH≥1, nH,f := (gH1 ∩ gf )⊕ gH>1.

u/nH,f is a symplectic space, and its Heisenberg group H is a
quotient of U.

vH,f := oscillator representation of H lifted to u. WH,f := indG
U vH,f

∀ smooth representation π, define its (H, f )-Whittaker quotient by

πH,f :=WH,f ⊗G π ' πI ,χ.

All the theorems above have local analogues with similar proofs.
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Wave front set and wave-front cycle

Let π be smooth, admissible and finitely generated.

Theorem (Howe, Harish-Chandra 70s)

Near e ∈ G, the character distribution equals to a linear combination of
Fourier transforms of Haar measures of nilpotent coadjoint orbits.

exp∗(χπ) = ∑ cOF (µO)

Let N ⊂ g denote the nilpotent cone.

WF(π) := ∪{O | cO 6= 0} ⊂ N .

WFmax(π) := union of maximal orbits in WF(π).

Theorem (Moeglin-Waldspurger, 87’)

If πH,f 6= 0 then f ∈ WF(π).

If f ∈ WFmax(π) then dim πH,f = cf .
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