Vanishing and Eulerianity of Fourier coefficients of automorphic forms.

Dmitry Gourevitch
Weizmann Institute of Science, Israel
http://www.wisdom.weizmann.ac.il/~dimagur
Representation theory seminar, BGU, June 2020
j.w. R. Gomez, H. P. A. Gustafsson, A. Kleinschmidt, D. Persson, and S. Sahi

Definitions

- \mathbb{K}: number field, $\mathbb{A} := \mathbb{A}_\mathbb{K}$, \mathbf{G}: reductive group over \mathbb{K}, $\Gamma := \mathbf{G}(\mathbb{K})$, $G := \mathbf{G}(\mathbb{A})$, $\mathfrak{g} := \text{Lie}(\Gamma)$.
Definitions

- \mathbb{K}: number field, $\mathbb{A} := \mathbb{A}_\mathbb{K}$, \mathbf{G}: reductive group over \mathbb{K}, $\Gamma := \mathbf{G}(\mathbb{K})$, $G := \mathbf{G}(\mathbb{A})$, $\mathfrak{g} := \text{Lie}(\Gamma)$.

- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_i := \mathfrak{g}_i^H$ denote the eigenspaces of $ad(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.
Definitions

- \mathbb{K}: number field, $\mathbb{A} := \mathbb{A}_{\mathbb{K}}$, \mathbf{G}: reductive group over \mathbb{K}, $\Gamma := \mathbf{G}(\mathbb{K})$, $G := \mathbf{G}(\mathbb{A})$, $\mathfrak{g} := \text{Lie}(\Gamma)$.

- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_i := \mathfrak{g}^H_i$ denote the eigenspaces of $ad(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.

- Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.
• \mathbb{K}: number field, $\mathbb{A} := \mathbb{A}_\mathbb{K}$, \mathbf{G}: reductive group over \mathbb{K}, $\Gamma := \mathbf{G}(\mathbb{K})$, $G := \mathbf{G}(\mathbb{A})$, $\mathfrak{g} := \text{Lie}(\Gamma)$.

• Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_i := \mathfrak{g}_i^H$ denote the eigenspaces of $\text{ad}(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.

• Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.

• Define $\mathfrak{n} := \mathfrak{n}_{H,f} := (\mathfrak{g}_1 \cap \mathfrak{g}_f^f) \oplus \bigoplus_{i > 1} \mathfrak{g}_i$, $\mathcal{N} := \text{Exp}(\mathfrak{n})(\mathbb{A})$.

Dmitry Gourevitch
Fourier coefficients
June 2020
Definitions

- \mathbb{K}: number field, $\mathcal{A} := \mathcal{A}_\mathbb{K}$, \mathbf{G}: reductive group over \mathbb{K}, $\Gamma := \mathbf{G}(\mathbb{K})$, $G := \mathbf{G}(\mathcal{A})$, $\mathfrak{g} := \text{Lie}(\Gamma)$.

- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_i := \mathfrak{g}_i^H$ denote the eigenspaces of $ad(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.

- Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.

- Define $\mathfrak{n} := \mathfrak{n}_{H,f} := (\mathfrak{g}_1 \cap \mathfrak{g}^f) \oplus \bigoplus_{i > 1} \mathfrak{g}_i$, $N := \text{Exp}(\mathfrak{n})(\mathcal{A})$.

- Fix a non-trivial unitary additive character $\psi : \mathbb{K} \backslash \mathcal{A} \to \mathbb{C}$ and define $\chi_f : N \to \mathbb{C}$ by $\chi_f(\text{Exp} X) := \psi(\langle f, X \rangle)$.

Dmitry Gourevitch

Fourier coefficients

June 2020 2 / 22
Definitions

- K: number field, $A := A_K$, G: reductive group over K, $\Gamma := G(K)$, $G := G(A)$, $\mathfrak{g} := \text{Lie}(\Gamma)$.
- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_i := \mathfrak{g}_i^H$ denote the eigenspaces of $\text{ad}(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.
- Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.
- Define $n := n_{H,f} := (\mathfrak{g}_1 \cap \mathfrak{g}^f) \oplus \bigoplus_{i > 1} \mathfrak{g}_i$, $N := \text{Exp}(n)(A)$.
- Fix a non-trivial unitary additive character $\psi : K \setminus A \to \mathbb{C}$ and define $\chi_f : N \to \mathbb{C}$ by $\chi_f(\text{Exp} X) := \psi(\langle f, X \rangle)$.
- Let $[N] := (\Gamma \cap N) \setminus N$. For automorphic form η on G, define Fourier coefficient
 \[
 \mathcal{F}_{H,f}[\eta](g) := \int_{[N]} \eta(ng)\chi_f(n)^{-1}dn.
 \]
Two central cases of Fourier coefficients

\[[H, f] = -2f, \ n = (g_1 \cap g^f) \oplus \bigoplus_{i>1} g_i, \ N = \text{Exp}(n)(A), \]

\[\mathcal{F}_{H,f}[\eta](g) := \int_{[N]} \eta(ng)\chi_f(n)^{-1}dn. \]
Two central cases of Fourier coefficients

\[[H, f] = -2f, \ n = (g_1 \cap g^f) \oplus \bigoplus_{i > 1} g_i, \ N = \text{Exp}(n)(\mathbb{A}),\]

\[\mathcal{F}_{H,f}[\eta](g) := \int_{[N]} \eta(ng)\chi_f(n)^{-1}dn.\]

- Neutral Fourier coefficient, coming from \(\mathfrak{sl}_2\)-triple \((e,H,f)\), e.g.:

\[H = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{pmatrix}
\quad f = \begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad n = \begin{pmatrix}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & * \\
0 & 0 & 0 & 0
\end{pmatrix} \]
Two central cases of Fourier coefficients

\[[H, f] = -2f, \ n = (g_1 \cap g^f) \oplus \bigoplus_{i>1} g_i, \ N = \text{Exp}(n)(A), \]

\[\mathcal{F}_{H,f}[\eta](g) := \int_{[N]} \eta(ng)\chi_f(n)^{-1}dn. \]

- Neutral Fourier coefficient, coming from \(sl_2 \)-triple \((e,H,f) \), e.g.:

 \[
 H = \begin{pmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & -1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & -1 & 0 \\
 \end{pmatrix},
 \begin{pmatrix}
 0 & 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 \end{pmatrix},
 \begin{pmatrix}
 0 & * & 0 & * \\
 0 & 0 & 0 & 0 \\
 0 & * & 0 & * \\
 0 & 0 & 0 & 0 \\
 \end{pmatrix}
 \]

- Whittaker coefficient \(\mathcal{W}_f \), with \(N \) maximal unipotent, e.g.:

 \[
 H = \begin{pmatrix}
 3 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & -1 & 0 & 0 \\
 0 & 0 & 0 & -3 & 0 \\
 \end{pmatrix},
 \begin{pmatrix}
 0 & 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 \end{pmatrix},
 \begin{pmatrix}
 0 & * & * & * \\
 0 & 0 & * & * \\
 0 & 0 & 0 & * \\
 0 & 0 & 0 & 0 \\
 \end{pmatrix}
 \]
Two central cases of Fourier coefficients

\[[H, f] = -2f, \quad n = (g_1 \cap g^f) \oplus \bigoplus_{i > 1} g_i, \quad N = \text{Exp}(n)(A), \]

\[\mathcal{F}_{H,f}[\eta](g) := \int_{[N]} \eta(ng)\chi_f(n)^{-1}dn. \]

- Neutral Fourier coefficient, coming from \(sl_2 \)-triple \((e, H, f)\), e.g.:

\[
H = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -3
\end{pmatrix}
, \quad
f = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
, \quad
n = \begin{pmatrix}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}

- Whittaker coefficient \(\mathcal{W}_f \), with \(N \) maximal unipotent, e.g.:

\[
H = \begin{pmatrix}
3 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & -3
\end{pmatrix}
, \quad
f = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
, \quad
n = \begin{pmatrix}
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}

Coefficients that are both neutral and Whittaker are Eulerian by local uniqueness of Whittaker models.
Two central cases of Fourier coefficients

\[[H, f] = -2f, \quad n = (g_1 \cap g^f) \oplus \bigoplus_{i>1} g_i, \quad N = \text{Exp}(n)(A), \]

\[\mathcal{F}_{H,f}[\eta](g) := \int_{[N]} \eta(ng) \chi_f(n^{-1}) \, dn. \]

- Neutral Fourier coefficient, coming from \(\mathfrak{sl}_2 \)-triple \((e,H,f)\), e.g.:

\[
H = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix},
\]

\[
f = \begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix},
\]

\[
n = \begin{pmatrix}
0 & \ast & 0 & \ast \\
0 & 0 & 0 & 0 \\
0 & \ast & 0 & \ast \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

- Whittaker coefficient \(\mathcal{W}_f \), with \(N \) maximal unipotent, e.g.:

\[
H = \begin{pmatrix}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{pmatrix},
\]

\[
f = \begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix},
\]

\[
n = \begin{pmatrix}
0 & \ast & \ast & \ast \\
0 & 0 & \ast & \ast \\
0 & 0 & 0 & \ast \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

Coefficients that are both neutral and Whittaker are Eulerian by local uniqueness of Whittaker models.
Examples of Fourier coefficients

\[[H, f] = -2f, \ n = (g_1 \cap g^f) \oplus \bigoplus_{i > 1} g_i, \ N = \text{Exp}(n)(\mathcal{A}) \]

\[\mathcal{F}_{H, f}[\eta](g) := \int_{[N]} \eta(ng)\chi_f(n)^{-1} dn. \]

Comparison for \(G = \text{GL}_3(\mathcal{A}) \):

- Neutral Fourier coefficient:

\[
H = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix},
\]

\[
f = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix},
\]

\[
n = \begin{pmatrix}
0 & 0 & \ast \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
Examples of Fourier coefficients

\[[H, f] = -2f, \ n = (g_1 \cap g^f) \oplus \bigoplus_{i>1} g_i, \ N = \text{Exp}(n)(A) \]

\[\mathcal{F}_{H,f}[\eta](g) := \int_{[N]} \eta(ng) \chi_f(n)^{-1} dn. \]

Comparison for \(G = \text{GL}_3(A) \):
- Neutral Fourier coefficient:
 \[H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ n = \begin{pmatrix} 0 & 0 & \ast \\ 0 & 0 & 0 \end{pmatrix} \]

- Whittaker coefficient:
 \[H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ n = \begin{pmatrix} 0 & \ast & \ast \\ 0 & 0 & 0 \end{pmatrix} \]
Fourier-Jacobi coefficients

- $u := g_1 / (g_1 \cap g^f)$. $\omega_f(X, Y) := \langle f, [X, Y] \rangle$ - symplectic form.
Fourier-Jacobi coefficients

- $u := g_1 / (g_1 \cap g^f)$. $\omega_f(X, Y) := \langle f, [X, Y] \rangle$ - symplectic form.
- \forall isotropic subspace $i \subset u$, let $I := \text{Exp}(i)(A)$

$$\mathcal{F}_{H, f}[\eta](g) := \int_{[I]} \mathcal{F}_{H, f}[\eta](ug) \, du$$

Cf. θ, Stone-von-Neumann thm, Poisson summation formula.
Fourier-Jacobi coefficients

- $u := g_1 / (g_1 \cap g^f)$. $\omega_f(X, Y) := \langle f, [X, Y] \rangle$ - symplectic form.
- \forall isotropic subspace $i \subset u$, let $I := \text{Exp}(i)(A)$

$$\mathcal{F}_{H, f}^I [\eta](g) := \int_{[I]} \mathcal{F}_{H, f} [\eta](ug) \, du$$

Cf. θ, Stone-von-Neumann thm, Poisson summation formula.
Fourier-Jacobi coefficients

- \(u := g_1 / (g_1 \cap g^f) \). \(\omega_f (X, Y) := \langle f, [X, Y] \rangle \) - symplectic form.

- \(\forall \) isotropic subspace \(i \subset u \), let \(l := \text{Exp}(i)(A) \)

\[
\mathcal{F}_{H, f}^l [\eta] (g) := \int_{[l]} \mathcal{F}_{H, f} [\eta] (ug) \, du
\]

Lemma (Root exchange, cf. Ginzburg-Rallis-Soudry)

- \(\mathcal{F}_{H, f} [\eta] (g) = \sum_{\gamma \in (U/I^\perp)(\mathbb{K})} \mathcal{F}_{H, f}^l [\eta] (\gamma g) \)

- For any isotropic subspace \(j \subset u \) with \(\dim j = \dim i \) and \(j \cap i^\perp = \{0\} \),

\[
\mathcal{F}_{H, f}^j [\eta] (g) = \int_{J(A)} \mathcal{F}_{H, f}^l [\eta] (ug) \, du
\]

Cf. \(\theta \), Stone-von-Neumann thm, Poisson summation formula.
Fourier-Jacobi coefficients

- \(u := g_1 / (g_1 \cap g^f) \). \(\omega_f(X, Y) := \langle f, [X, Y] \rangle \) - symplectic form.
- \(\forall \) isotropic subspace \(i \subset u \), let \(l := \text{Exp}(i)(A) \)

\[
\mathcal{F}_{H,f}[\eta](g) := \int_{[l]} \mathcal{F}_{H,f}[\eta](ug) \, du
\]

Lemma (Root exchange, cf. Ginzburg-Rallis-Soudry)

- \(\mathcal{F}_{H,f}[\eta](g) = \sum_{\gamma \in (u/l^\perp)(K)} \mathcal{F}_{H,f}[\eta](\gamma g) \)
- For any isotropic subspace \(j \subset u \) with \(\dim j = \dim i \) and \(j \cap i^\perp = \{0\} \),

\[
\mathcal{F}_{H,f}[\eta](g) = \int_{J(A)} \mathcal{F}_{H,f}[\eta](ug) \, du
\]

For \(H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \), \(f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \) : \(\begin{pmatrix} 0 & i & \eta \\ \text{0} & \text{0} & j \\ 0 & 0 & 0 \end{pmatrix} \)

Cf. \(\theta \), Stone-von-Neumann thm, Poisson summation formula.
Relating different coefficients

- \(\text{WO}(\eta) := \{ O \in \mathcal{N}(g) \mid \forall \text{ neutral } (h, f) \text{ with } f \in O, \mathcal{F}_{h,f}(\eta) \neq 0 \} \).
Relating different coefficients

- $\text{WO}(\eta) := \{ \mathcal{O} \in \mathcal{N}(g) | \forall \text{ neutral } (h, f) \text{ with } f \in \mathcal{O}, \mathcal{F}_{h,f}(\eta) \neq 0 \}$.
- Say $(H, f) \succ (S, f)$ if $[H, S] = 0$ and $g^f \cap g^H_{\geq 1} \subseteq g^{S-H}_{\geq 0}$.

Integrals:

$$
\int_{V(A)} F_{S,f}(\eta)(v) \, dv
$$
Relating different coefficients

- $\text{WO}(\eta) := \{ O \in \mathcal{N}(g) \mid \forall \text{ neutral } (h, f) \text{ with } f \in O, \mathcal{F}_{h,f}(\eta) \neq 0 \}$.

- Say $(H, f) \succ (S, f)$ if $[H, S] = 0$ and $g^f \cap g_H^{\geq 1} \subseteq g_{\geq 0}^{S-H}$.

- f is \mathbb{K}-distinguished if \forall Levi $l \ni f$ defined over \mathbb{K}, $l = g$.

 Equivalently: the semi-simple part of the centralizer G_f is anisotropic
Relating different coefficients

- $\text{WO}(\eta) := \{ O \in \mathcal{N}(g) \mid \forall \text{ neutral } (h, f) \text{ with } f \in O, \mathcal{F}_{h,f}(\eta) \neq 0 \}$.
- Say $(H, f) \succ (S, f)$ if $[H, S] = 0$ and $g^f \cap g^H \subseteq g^S_{-H}$.
- f is \mathbb{IK}-distinguished if \forall Levi $l \ni f$ defined over \mathbb{IK}, $l = g$.
 Equivalently: the semi-simple part of the centralizer G_f is anisotropic.
- (S, f) is called Levi-distinguished if \exists parabolic $p = lu$ s.t. f is \mathbb{IK}-distinguished in l, and $n_{S,f} = l_{S,f} \oplus u$.

Whittaker coefficients are Levi-distinguished. For Whittaker pairs with the same f and commuting H-s, neutral \succ any \succ Levi-distinguished.

Theorem

Let $(H, f) \succ (S, f)$. Then

(i) $F_{H,f}[\eta]$ linearly determines $F_{S,f}[\eta]$.

(ii) If $\Gamma f \in \text{WO}_{\text{max}}(\eta)$ and $g^H_1 = g^S_1 = 0$, let $v^1 : g^H > 1 \cap g^S < 1$. Then $F_{H,f}[\eta](g) = \int V(A) F_{S,f}[\eta](vg) dv$.

Relating different coefficients

- $\text{WO}(\eta) := \{ \mathcal{O} \in \mathcal{N}(g) \mid \forall \text{ neutral } (h, f) \text{ with } f \in \mathcal{O}, \mathcal{F}_{h,f}(\eta) \neq 0 \}$.
- Say $(H, f) \succ (S, f)$ if $[H, S] = 0$ and $g^f \cap g^H \subseteq g_{\geq 1}^S \subseteq g_{\geq 0}^{S-H}$.
- f is \mathbb{K}-distinguished if \forall Levi $l \ni f$ defined over \mathbb{K}, $l = g$.

Equivalently: the semi-simple part of the centralizer G_f is anisotropic.
- (S, f) is called Levi-distinguished if \exists parabolic $p = lu$ s.t. f is \mathbb{K}-distinguished in l, and $n_{S,f} = l_{S,f} \oplus u$.
- Whittaker coefficients are Levi-distinguished.
Relating different coefficients

- \(\text{WO}(\eta) := \{ O \in \mathcal{N}(g) \mid \forall \text{ neutral (h, f) with } f \in O, F_{h,f}(\eta) \neq 0 \} \).
- Say \((H, f) \succ (S, f)\) if \([H, S] = 0\) and \(g^f \cap g^H \subseteq g^{S-H} \).
- \(f\) is \(\mathbb{I}K\)-distinguished if \(\forall \text{ Levi } l \ni f \text{ defined over } \mathbb{I}K, l = g\).
 Equivalently: the semi-simple part of the centralizer \(G_f\) is anisotropic.
- \((S, f)\) is called Levi-distinguished if \(\exists \text{ parabolic } p = lu\)
 s.t. \(f\) is \(\mathbb{I}K\)-distinguished in \(l\), and \(n_{S,f} = l_{S,f} \oplus u\).
- Whittaker coefficients are Levi-distinguished.
- For Whittaker pairs with the same \(f\) and commuting \(H\)-s, neutral \(\succ\) any \(\succ\) Levi-distinguished.
Relating different coefficients

- \(\text{WO}(\eta) := \{ O \in \mathcal{N}(g) \mid \forall \text{ neutral } (h, f) \text{ with } f \in O, \mathcal{F}_{h,f}(\eta) \neq 0 \} \).
- Say \((H, f) \succ (S, f)\) if \([H, S] = 0\) and \(g^f \cap g^H_{\geq 1} \subseteq g^S_{\geq 0} \).
- \(f\) is \(\mathbb{IK}\)-distinguished if \(\forall \text{ Levi } \mathfrak{l} \ni f \text{ defined over } \mathbb{IK}, \mathfrak{l} = g\).
 Equivalently: the semi-simple part of the centralizer \(G_f\) is anisotropic
- \((S, f)\) is called Levi-distinguished if \(\exists \text{ parabolic } \mathfrak{p} = \mathfrak{l}u\)
 s.t. \(f\) is \(\mathbb{IK}\)-distinguished in \(\mathfrak{l}\), and \(\mathfrak{n}_{S,f} = \mathfrak{l}_{S,f} \oplus u\).
- Whittaker coefficients are Levi-distinguished.
- For Whittaker pairs with the same \(f\) and commuting \(H\)-s, neutral \(\succ\) any \(\succ\) Levi-distinguished.
Relating different coefficients

- \(\text{WO}(\eta) := \{ \mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall \text{ neutral } (h, f) \text{ with } f \in \mathcal{O}, \mathcal{F}_{h,f}(\eta) \neq 0 \} \).
- Say \((H, f) \succ (S, f)\) if \([H, S] = 0\) and \(\mathfrak{g}^f \cap \mathfrak{g}^H_{\geq 1} \subseteq \mathfrak{g}^S_{\geq 0-H}\).
- \(f\) is \(\mathbb{K}\)-distinguished if \(\forall \text{ Levi } l \ni f\) defined over \(\mathbb{K}\), \(l = \mathfrak{g}\).
 Equivalently: the semi-simple part of the centralizer \(G_f\) is anisotropic.
- \((S, f)\) is called Levi-distinguished if \(\exists\) parabolic \(p = lu\) s.t. \(f\) is \(\mathbb{K}\)-distinguished in \(l\), and \(\mathfrak{n}_{S,f} = l_{S,f} \oplus u\).
- Whittaker coefficients are Levi-distinguished.
- For Whittaker pairs with the same \(f\) and commuting \(H\)-s, neutral \(\succ\) any \(\succ\) Levi-distinguished.

Theorem

Let \((H, f) \succ (S, f)\). Then

1. \(\mathcal{F}_{H,f}[\eta]\) linearly determines \(\mathcal{F}_{S,f}[\eta]\).
2. If \(\Gamma f \in \text{WO}^{\max}(\eta)\) and \(\mathfrak{g}^H_1 = \mathfrak{g}^S_1 = 0\) let \(v := \mathfrak{g}^H_{>1} \cap \mathfrak{g}^S_{<1}\). Then

\[
\mathcal{F}_{H,f}[\eta](g) = \int_{V(A)} \mathcal{F}_{S,f}[\eta](vg) \, dv
\]
Theorem

Let $(H, f) \succ (S, f)$. Then

(i) $F_{H, f}[\eta]$ linearly determines $F_{S, f}[\eta]$.

(ii) If $\Gamma f \in WO^{\text{max}}(\eta)$ and $g^H_1 = g^S_1 = 0$ let $v := g^H_{>1} \cap g^S_{<1}$. Then

$$F_{H, f}[\eta](g) = \int_{V(A)} F_{S, f}[\eta](vg) \, dv$$
Theorem

Let \((H, f) \succ (S, f)\). Then

(i) \(F_{H,f}[\eta]\) linearly determines \(F_{S,f}[\eta]\).

(ii) If \(\Gamma f \in WO^{\text{max}}(\eta)\) and \(g_1^H = g_1^S = 0\) let \(v := g_{>1}^H \cap g_{<1}^S\). Then

\[
F_{H,f}[\eta](g) = \int_{V(A)} F_{S,f}[\eta](vg) \, dv
\]

Corollary

If \(\eta\) is cuspidal then any \(O \in WO^{\text{max}}(\eta)\) is \(\mathbb{K}\)-distinguished. In particular, \(O\) is totally even for \(G = \text{Sp}_{2n}\), totally odd for \(G = \text{SO}(V)\), not minimal for \(\text{rk} G > 1\), and not next-to-minimal for \(\text{rk} G > 2\), \(G \neq F_4\).

Lower bounds for partitions of \(O \in WO^{\text{max}}(\eta)\) with cuspidal \(\eta\): 2\(^n\) for \(\text{Sp}_{2n}\), 3\(^n1^n\) for \(\text{SO}(2n, 2n)\), 53\(^{n-1}1^n\) for \(\text{SO}(2n + 1, 2n + 1)\), 3\(^n1^{n+1}\) for \(\text{SO}(2n + 1, 2n)\), and \((3^{n+1}, 1^n)\) for \(\text{SO}(2n + 2, 2n + 1)\).

If \(f \notin WO(\eta)\) then \(F_{H,f}(\eta) = 0\) for any \(H\).
Corollary

(i) If \(\eta \) is cuspidal then any \(O \in WO^{\text{max}}(\eta) \) is \(\mathbb{K} \)-distinguished. In particular, \(O \) is totally even for \(G = \text{Sp}_{2n} \), totally odd for \(G = \text{SO}(V) \), not minimal for \(\text{rk} G > 1 \), and not next-to-minimal for \(\text{rk} G > 2 \), \(G \neq F_4 \).

(ii) Lower bounds for partitions of \(O \in WO^{\text{max}}(\eta) \) with cuspidal \(\eta \):
- \(2^n \) for \(\text{Sp}_{2n} \),
- \(3^n1^n \) for \(\text{SO}(2n, 2n) \),
- \(53^{n-1}1^n \) for \(\text{SO}(2n + 1, 2n + 1) \),
- \(3^n1^{n+1} \) for \(\text{SO}(2n + 1, 2n) \), and
- \((3^{n+1}, 1^n) \) for \(\text{SO}(2n + 2, 2n + 1) \).

(iii) If \(f \notin WO(\eta) \) then \(\mathcal{F}_{H,f}(\eta) = 0 \) for any \(H \).

Proof of (i).

Let \(\mathfrak{l} \subset \mathfrak{g} \) be Levi subalgebra intersecting \(O \). Let \((e, h, f) \in \mathfrak{l}\) be an \(\mathfrak{sl}_2 \)-triple with \(f \in \mathcal{O} \). Let \(Z \in \mathfrak{g} \) be a (rational) semi-simple element s.t. \(\mathfrak{l} = \mathfrak{g}^Z \). Let \(T >> 0 \in \mathbb{Z} \) and let \(H := h + TZ \).

Then \(\mathcal{F}_{H,f}(\eta) = \mathcal{F}_{H,f}(c_L(\eta)) \), where \(c_L(\eta) \) denotes the constant term. Since \(\mathcal{F}_{H,f}(\eta) \neq 0 \) by the theorem and \(\eta \) is cuspidal, \(L = G \).
Example for the proof of the Theorem

\[G := GL(4, \mathbb{A}), \ f := E_{21} + E_{43}, \ H := \text{diag}(3, 1, -1, -3), \\
\ h = \text{diag}(1, -1, 1, -1), \ Z = H - h = \text{diag}(2, 2, -2, -2), \ H_t := h + tZ. \]
Example for the proof of the Theorem

$G := \text{GL}(4, \mathbb{A})$, $f := E_{21} + E_{43}$, $H := \text{diag}(3, 1, -1, -3)$, $h = \text{diag}(1, -1, 1, -1)$, $Z = H - h = \text{diag}(2, 2, -2, -2)$, $H_t := h + tZ$.

Then $n_0 \subset n_{1/4} \oplus i \sim n_{1/4} \oplus j \subset n_{3/4} = n_1$:

\[
\begin{pmatrix}
 0 & * & 0 & * \\
 0 & 0 & 0 & 0 \\
 0 & * & 0 & * \\
 0 & 0 & 0 & 0
\end{pmatrix}
\subset
\begin{pmatrix}
 0 & * & a & * \\
 0 & 0 & 0 & a \\
 0 & - & 0 & * \\
 0 & 0 & 0 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
 0 & * & - & * \\
 0 & 0 & 0 & - \\
 0 & 0 & 0 & * \\
 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
 0 & * & * & * \\
 0 & 0 & - & * \\
 0 & 0 & 0 & * \\
 0 & 0 & 0 & 0
\end{pmatrix}
\subset
\begin{pmatrix}
 0 & * & * & * \\
 0 & 0 & * & * \\
 0 & 0 & 0 & * \\
 0 & 0 & 0 & 0
\end{pmatrix}
\]

Both $*$ and $-$ denote arbitrary elements. $*$ denotes the entries in $g^{H_t}_{1}$ and $-$ those in $g^{H_t}_{1}$. a denotes equal elements in $g^{H_t}_{1} \cap g^{f}$.
Corollary (Hidden symmetry)

Let η be an automorphic form on G, and let (H, f) be a Whittaker pair with $\Gamma f \in WO^{\text{max}}(\eta)$. Then any unipotent element u of the centralizer of the pair (H, f) in G acts trivially on the Fourier coefficient $F_{H, f}[\eta]$ using the left regular action.
Corollary (Hidden symmetry)

Let η be an automorphic form on G, and let (H, f) be a Whittaker pair with $\Gamma f \in \text{WO}^{\text{max}}(\eta)$. Then any unipotent element u of the centralizer of the pair (H, f) in G acts trivially on the Fourier coefficient $\mathcal{F}_{H, f}[\eta]$ using the left regular action.

Proof.

Want to show that $\mathcal{F}_{H, f}[\eta - \eta^u] = 0$. By the theorem, enough to show $\mathcal{F}_{H+Z, f}[\eta - \eta^u] = 0$ for some Z. Find Z such that $u \in N_{H+Z, f}$. \qed
Corollary (Hidden symmetry)

Let η be an automorphic form on G, and let (H, f) be a Whittaker pair with $\Gamma f \in \text{WO}_{\max}(\eta)$. Then any unipotent element u of the centralizer of the pair (H, f) in G acts trivially on the Fourier coefficient $F_{H, f}[\eta]$ using the left regular action.

Proof.

Want to show that $F_{H, f}[\eta - \eta^u] = 0$. By the theorem, enough to show $F_{H+Z, f}[\eta - \eta^u] = 0$ for some Z. Find Z such that $u \in N_{H+Z, f}$.

Example: $G = GL_4(\mathbb{A}), f = E_{31} + E_{42}, H = \text{diag}(1, 1, -1, -1), u = \text{Id} + E_{12} + E_{34}, Z = \text{diag}(1, -1, 1, -1)$.

\[
\begin{pmatrix}
0 & b & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{pmatrix} , \begin{pmatrix}
0 & * & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \leftrightarrow \begin{pmatrix}
0 & 0 & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

*: non-zero pairing with f. b: entries of u.

Corollary (Hidden symmetry)

Let \(\eta \) be an automorphic form on \(G \), and let \((H, f)\) be a Whittaker pair with \(\Gamma f \in \text{WO}^\text{max}(\eta) \). Then any unipotent element \(u \) of the centralizer of the pair \((H, f)\) in \(G \) acts trivially on the Fourier coefficient \(\mathcal{F}_{H, f}[\eta] \) using the left regular action.

Proof.

Want to show that \(\mathcal{F}_{H, f}[\eta - \eta^u] = 0 \). By the theorem, enough to show \(\mathcal{F}_{H+Z, f}[\eta - \eta^u] = 0 \) for some \(Z \). Find \(Z \) such that \(u \in N_{H+Z, f} \).

Example: \(G = GL_4(\mathbb{A}), f = E_{31} + E_{42}, H = \text{diag}(1, 1, -1, -1), u = Id + E_{12} + E_{34}, Z = \text{diag}(1, -1, 1, -1) \).

\[
\begin{pmatrix}
0 & b & \ast & \ast \\
0 & 0 & \ast & \ast \\
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{pmatrix}
,\quad
\begin{pmatrix}
0 & \ast & \ast & \ast \\
0 & 0 & 0 & \ast \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\leftrightarrow
\begin{pmatrix}
0 & 0 & \ast & \ast \\
0 & 0 & \ast & \ast \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

\(\ast \): non-zero pairing with \(f \). \(b \): entries of \(u \).

Corollary: if \(\text{WO}^\text{max}(\eta) = \{2^n\} \) then \(\mathcal{F}_{H, f}[\eta] \) is Eulerian (Shalika model).
Corollary (Hidden symmetry)

Let η be an automorphic form on G, and let (H, f) be a Whittaker pair with $\Gamma f \in \text{WO}^\text{max}(\eta)$. Then any unipotent element u of the centralizer of the pair (H, f) in G acts trivially on the Fourier coefficient $\mathcal{F}_{H,f}[\eta]$ using the left regular action.

Proof.

Want to show that $\mathcal{F}_{H,f}[\eta - \eta^u] = 0$. By the theorem, enough to show $\mathcal{F}_{H+Z,f}[\eta - \eta^u] = 0$ for some Z. Find Z such that $u \in N_{H+Z,f}$.

Corollary

If $G = \text{GL}_n(\mathbb{A})$ and $\text{WO}^\text{max}(\eta) = \{2^n\}$ or $G \in \{\text{SO}(n, n), \text{SO}(n + 1, n)\}$ and $\text{WO}^\text{max}(\eta) = \{31 \ldots 1\}$ then $\mathcal{F}_{H,f}[\eta]$ is Eulerian.

Follows from uniqueness of Shalika and Bessel models.
Fourier-Jacobi periods and the Weil representation

For a symplectic space V over \mathbb{K}, let $\mathcal{H}(V) := V \oplus \mathbb{K}$ be the Heisenberg group and $\tilde{J}(V) := \text{Sp}(V(\mathbb{A})) \rtimes \mathcal{H}(V(\mathbb{A}))$ be the double cover Jacobi group. It has unique irreducible unitarizable representation ϖ_V with central character χ. It has automorphic realization given by theta functions:

$$\theta_f(g) = \sum_{a \in \mathcal{E}(\mathbb{K})} \omega_{\chi}(g)f(a), \text{ where } g \in \tilde{J}(V), f \in S(\mathcal{E}(\mathbb{A})), \mathcal{E} \subset V \text{ Lagrangian.}$$
Fourier-Jacobi periods and the Weil representation

For a symplectic space V over \mathbb{K}, let $\mathcal{H}(V) := V \oplus \mathbb{K}$ be the Heisenberg group and $\tilde{J}(V) := \text{Sp}(V(A)) \times \mathcal{H}(V(A))$ be the double cover Jacobi group. It has unique irreducible unitarizable representation ϖ_V with central character χ. It has automorphic realization given by theta functions:

$$\theta_f(g) = \sum_{a \in E(K)} \omega_\chi(g) f(a),$$

where $g \in \tilde{J}(V)$, $f \in S(\mathcal{E}(A))$, $\mathcal{E} \subset V$ Lagrangian.

For a Whittaker pair (H, f) let $u := g^H_{>1}$ and $V := u/n_{H,f}$, with symplectic form $\omega_f(A, B) := \langle f, [A, B] \rangle$. Then we have a natural map $\ell : U \times G_{H,f} \to \tilde{J}(V)$. Define $FJ : \pi \otimes \varpi_V \to C^\infty(\Gamma \backslash G_{H,f})$ by

$$f \otimes \eta \mapsto \int_{U(K) \backslash U(A)} f(u\tilde{g}) \theta_\eta(\ell(u, \tilde{g})) \, du$$

$M:=\text{split semi-simple part of the centralizer } G_{H,f}$.
Fourier-Jacobi periods and the Weil representation

For a symplectic space V over \mathbb{K}, let $\mathcal{H}(V) := V \oplus \mathbb{K}$ be the Heisenberg group and $\tilde{J}(V) := \text{Sp}(V(\mathbb{A})) \ltimes \mathcal{H}(V(\mathbb{A}))$ be the double cover Jacobi group. It has unique irreducible unitarizable representation ϖ_V with central character χ. It has automorphic realization given by theta functions:

$$\theta_f(g) = \sum_{a \in \mathcal{E}(K)} \omega_\chi(g)f(a), \text{ where } g \in \tilde{J}(V), f \in S(\mathcal{E}(\mathbb{A})), \mathcal{E} \subset V \text{ Lagrangian.}$$

For a Whittaker pair (H, f) let $u := g_{\geq 1}^H$ and $V := u/n_{H, f}$, with symplectic form $\omega_f(A, B) := \langle f, [A, B] \rangle$. Then we have a natural map $\ell : U \times \tilde{G}_{H, f} \to \tilde{J}(V)$. Define $FJ : \pi \otimes \varpi_V \to C^\infty(\Gamma \backslash \tilde{G}_{H, f})$ by

$$f \otimes \eta \mapsto \int_{U(K) \backslash U(\mathbb{A})} f(u\tilde{g})\theta_\eta(\ell(u, \tilde{g})) du$$

$M :=$ split semi-simple part of the centralizer $G_{H, f}$.

Theorem

If $\Gamma \cdot f \in WO^{\text{max}}(\pi)$ then \tilde{M} acts on the image of FJ by ± 1.
Fourier-Jacobi periods and the Weil representation

For a Whittaker pair \((H, f)\) let \(u := g_{\geq 1}^H\) and \(V := u/n_{H,f}\), with symplectic form \(\omega_\varphi(A, B) := \langle f, [A, B] \rangle\). Then we have a natural map \(\ell : U \rtimes \tilde{G}_\gamma \to J(V)\). Define \(FJ : \pi \otimes \varpi_V \to C^\infty(\Gamma \setminus \tilde{G}_{H,f})\) by

\[
f \otimes \eta \mapsto \int_{U(K) \setminus U(A)} f(u\tilde{g})\theta_\eta(\ell(u, \tilde{g})) du
\]

\(M :=\) split semi-simple part of the centralizer \(G_{H,f}\).

Theorem

If \(\Gamma \cdot f \in WO^{\max}(\pi)\) then \(\tilde{M}\) acts on the image of \(FJ\) by \(\pm 1\).

Since the Weil representation \(\varpi_V\) is genuine, obtain:

Corollary

If \(\Gamma \cdot f \in WO^{\max}(\pi)\) then the cover \(\tilde{M}\) splits.
Fourier-Jacobi periods and the Weil representation

For a Whittaker pair \((H, f)\) let \(u := g^H_{\geq 1}\) and \(V := u/n_{H,f}\), with symplectic form \(\omega_{\varphi}(A, B) := \langle f, [A, B] \rangle\). Then we have a natural map \(\ell : U \rtimes \tilde{G}_\gamma \to \tilde{J}(V)\). Define \(FJ : \pi \otimes \varpi_V \to C^\infty(\Gamma \backslash \tilde{G}_{H,f})\) by

\[
 f \otimes \eta \mapsto \int_{U(K) \backslash U(A)} f(u\tilde{g})\theta_\eta(\ell(u, \tilde{g})) \, du
\]

\(M := \text{split semi-simple part of the centralizer } G_{H,f}\).

Theorem

If \(\Gamma \cdot f \in WO^{\max}(\pi)\) then \(\tilde{M}\) acts on the image of \(FJ\) by \(\pm 1\).

Since the Weil representation \(\varpi_V\) is genuine, obtain:

Corollary

If \(\Gamma \cdot f \in WO^{\max}(\pi)\) then the cover \(\tilde{M}\) splits.

Corollary

If \(\Gamma \cdot f \in WO^{\max}(\pi)\) and \(G\) is classical then the orbit of \(f\) is special.
Eulerianity

Lemma

Let \((S, f)\) and \((H, f')\) be two Whittaker pairs such that
\(\Gamma f = \Gamma f' \in WO^{\text{max}}(\eta)\). Suppose that a Fourier–Jacobi coefficient \(F_{S,f}^I[\eta]\) is Eulerian. Then any Fourier–Jacobi coefficient \(F_{H,\psi}^{I'}[\eta]\) is also Eulerian.
Lemma

Let \((S, f)\) and \((H, f')\) be two Whittaker pairs such that \(\Gamma f = \Gamma f' \in \text{WO}^{\text{max}}(\eta)\). Suppose that a Fourier–Jacobi coefficient \(\mathcal{F}_{S,f}^I[\eta]\) is Eulerian. Then any Fourier–Jacobi coefficient \(\mathcal{F}_{H,\psi}^{I'}[\eta]\) is also Eulerian.

Question

Is any Fourier–Jacobi coefficient \(\mathcal{F}_{S,f}^I[\eta]\) with \(\Gamma f \in \text{WO}^{\text{max}}(\eta)\) Eulerian for any spherical \(\eta\) that generates an irreducible representation?
Lemma

Let \((S, f)\) and \((H, f')\) be two Whittaker pairs such that \(\Gamma f = \Gamma f' \in \text{WO}^{\text{max}}(\eta)\). Suppose that a Fourier–Jacobi coefficient \(F^l_{S, f}[\eta]\) is Eulerian. Then any Fourier–Jacobi coefficient \(F^l_{H, \psi}[\eta]\) is also Eulerian.

Question

Is any Fourier–Jacobi coefficient \(F^l_{S, f}[\eta]\) with \(\Gamma f \in \text{WO}^{\text{max}}(\eta)\) Eulerian for any spherical \(\eta\) that generates an irreducible representation?

Verified for:

1. Discrete spectrum of \(\text{GL}_n(\mathbb{A})\).
2. Minimal representations of most split simply-laced groups
3. Next-to-minimal Eisenstein series of most split simply-laced groups
Expressing forms through their Whittaker coefficients

Theorem

Any $\mathcal{F}_{H,f}$ is linearly determined by all Levi-distinguished Fourier coefficients $\mathcal{F}_{S,F}$ with $\Gamma F \geq \Gamma f$.

Corollary

(i) Any η is linearly determined by all its Levi-distinguished Fourier coefficients.

(ii) If all $O \in \mathcal{W}O(\eta)$ admit Whittaker coefficients then η is linearly determined by its Whittaker coefficients.

(iii) If G is split and simply-laced, and η is minimal or next-to-minimal then all Fourier coefficients of η are linearly determined by Whittaker coefficients.
Theorem

Any $F_{H,f}$ is linearly determined by all Levi-distinguished Fourier coefficients $F_{S,F}$ with $\Gamma F \geq \Gamma f$.

Corollary

(i) Any η is linearly determined by all its Levi-distinguished Fourier coefficients.

(ii) If all $O \in \mathcal{W}(\eta)$ admit Whittaker coefficients then η is linearly determined by its Whittaker coefficients.

(iii) If G is split and simply-laced, and η is minimal or next-to-minimal then all Fourier coefficients of η are linearly determined by Whittaker coefficients.
Expressing forms through their Whittaker coefficients

Theorem

Any $\mathcal{F}_{H,f}$ is linearly determined by all Levi-distinguished Fourier coefficients $\mathcal{F}_{S,F}$ with $\Gamma F \geq \Gamma f$.

Corollary

- Any η is linearly determined by all its Levi-distinguished Fourier coefficients.
- If all $\mathcal{O} \in \text{WO}(\eta)$ admit Whittaker coefficients then η is linearly determined by its Whittaker coefficients.
Theorem

Any \(\mathcal{F}_{H,f} \) is linearly determined by all Levi-distinguished Fourier coefficients \(\mathcal{F}_{S,F} \) with \(\Gamma F \geq \Gamma f \).

Corollary

1. Any \(\eta \) is linearly determined by all its Levi-distinguished Fourier coefficients.
2. If all \(O \in \text{WO}(\eta) \) admit Whittaker coefficients then \(\eta \) is linearly determined by its Whittaker coefficients.
3. If \(G \) is split and simply-laced, and \(\eta \) is minimal or next-to-minimal then all Fourier coefficients of \(\eta \) are linearly determined by Whittaker coefficients.
Let $\eta \in C^\infty(\Gamma \backslash \text{GL}_n(\mathbb{A}))$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\text{GL}_{n-1}(\mathbb{K})$.

$$
\begin{pmatrix}
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
$$
Explanation for GL_n

Let $\eta \in C^\infty(\Gamma \backslash \text{GL}_n(\mathbb{A}))$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\text{GL}_{n-1}(\mathbb{K})$.

Conjugate, restrict to the next column and continue

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 0 & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
+ \begin{pmatrix}
0 & 0 & 0 & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
= \cdots
\]
Explanation for GL_n

Let $\eta \in C^\infty(\Gamma \backslash \text{GL}_n(\mathbb{A}))$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\text{GL}_{n-1}(\mathbb{K})$. Conjugate, restrict to the next column and continue

$$
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
+
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
= \ldots
$$

$$
\begin{bmatrix}
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
+
\begin{bmatrix}
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
= \ldots
$$
Example: $\text{Sp}(4)$

\[
\text{sp}_4 = \left\{ \left(\begin{array}{cc} A & B = B^t \\ C = C^t & -A^t \end{array} \right) \right\}.
\]

Let \mathfrak{n} be the Borel nilradical, and $u \subset \mathfrak{n}$ be the Siegel nilradical, spanned by B. Characters given by $\bar{u} \cong \text{Sym}^2(\mathbb{K}^2)$. Restricting η to B and decomposing into Fourier series we obtain $\eta = \sum_{f \in \bar{u}} F_{u,f}[\eta]$.

1. **Constant term $F_{u,0}[\eta]$:** Restrict to the Siegel Levi $L \cong \text{GL}_2(\mathbb{A})$, and decompose to Fourier series on the abelian group $N \cap L$:

\[
F_{u,0}[\eta] = \sum_{a \in \mathbb{K}} W_{a,0}[\eta].
\]
Example: $\text{Sp}(4)$

\[
\text{sp}_4 = \left\{ \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix} \right.
\]

Let \mathfrak{n} be the Borel nilradical, and $\mathfrak{u} \subset \mathfrak{n}$ be the Siegel nilradical, spanned by B. Characters given by $\bar{\mathfrak{u}} \cong \text{Sym}^2(\mathbb{K}^2)$. Restricting η to B and decomposing into Fourier series we obtain $\eta = \sum_{f \in \bar{\mathfrak{u}}} F_{u,f}[\eta]$.

1. **Constant term $F_{u,0}[\eta]$:** Restrict to the Siegel Levi $L \cong \text{GL}_2(\mathcal{A})$, and decompose to Fourier series on the abelian group $N \cap L$:

\[
F_{u,0}[\eta] = \sum_{a \in \mathbb{K}} W_{a,0}[\eta].
\]

2. **Any f of rank one is conjugate under L to $f_1 := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.**

Decomposing $F_{u,f_1}[\eta]$ on $N \cap L$:

\[
F_{u,f_1}[\eta] = \sum_{a \in \mathbb{K}} W_{a,1}[\eta].
\]
\[\mathfrak{sp}_4 = \left\{ \begin{pmatrix} A & B = B^t \\ C = C^t & -A^t \end{pmatrix} \right\} ; \quad \eta = \sum_{f \in \mathfrak{u}} \mathcal{F}_{u,f} [\eta]. \]

1. **Constant term \(\mathcal{F}_{u,0}[\eta] \):** Decompose to Fourier series on \(N \cap L \):

\[\mathcal{F}_{u,0}[\eta] = \sum_{a \in \mathbb{K}} \mathcal{W}_{a,0}[\eta]. \]
\[\mathfrak{sp}_4 = \left\{ \begin{pmatrix} A & B = B^t \\ C = C^t & -A^t \end{pmatrix} \right\}; \quad \eta = \sum_{f \in \mathbb{U}} \mathcal{F}_{u,f}[\eta]. \]

1. **Constant term** \(\mathcal{F}_{u,0}[\eta] \): Decompose to Fourier series on \(N \cap L \):
\[
\mathcal{F}_{u,0}[\eta] = \sum_{a \in \mathbb{K}} \mathcal{W}_{a,0}[\eta].
\]

2. **Any** \(f \) **of rank one** is conjugate under \(L \) to \(f_1 := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \).

Decomposing \(\mathcal{F}_{u,f_1}[\eta] \) on \(N \cap L \):
\[
\mathcal{F}_{u,f_1}[\eta] = \sum_{a \in \mathbb{K}} \mathcal{W}_{a,1}[\eta].
\]
\(\mathfrak{sp}_4 = \left\{ \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix} \right\}; \quad \eta = \sum_{f \in \mathcal{U}} \mathcal{F}_{u,f}[\eta]. \)

1. **Constant term** \(\mathcal{F}_{u,0}[\eta] \): Decompose to Fourier series on \(N \cap L \):
 \[
 \mathcal{F}_{u,0}[\eta] = \sum_{a \in \mathbb{K}} \mathcal{W}_{a,0}[\eta].
 \]

2. **Any** \(f \) of rank one is conjugate under \(L \) to \(f_1 := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \).
 Decomposing \(\mathcal{F}_{u,f_1}[\eta] \) on \(N \cap L \):
 \[
 \mathcal{F}_{u,f_1}[\eta] = \sum_{a \in \mathbb{K}} \mathcal{W}_{a,1}[\eta].
 \]

3. **Split non-degenerate forms** are conjugate to \(f_2 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \).
 Using Weyl group conjugation (24) and root exchange, we express \(\mathcal{F}_{u,f_2} \) through \(\mathcal{F}_{u',e_{21}} \), where \(u' = \text{Span}(e_{12} - e_{43}, e_{13}, e_{24}) \subset \mathfrak{n} \).
 Fourier expansion by the remaining coordinate of \(e_{14} + e_{23} \in \mathfrak{n} \):
 \[
 \mathcal{F}_{u,f}[\eta](g) = \int_{\chi \in \mathcal{A}} \mathcal{W}_{1,a}[\eta](\chi) g \chi d\chi.
 \]
X is the set of anisotropic 2×2 forms. For $f \in X$, we cannot simplify $\mathcal{F}_{u,f}[\eta]$. Summarizing, for any η on $G = \text{Sp}_4(\mathbb{A})$ we have

$$
\eta(g) = \sum_{f \in X} \mathcal{F}_{u,f}[\eta](g) + \sum_{a \in K} \left(\sum_{\gamma \in L/O(1,1)} \int_{x \in \mathbb{A}} \mathcal{W}_{1,a}[\eta](v_x w \gamma g) + \sum_{\gamma \in L/(N \cap L)} \mathcal{W}_{a,1}[\eta](\gamma g) + \mathcal{W}_{a,0}[\eta](g) \right)
$$
X := set of anisotropic 2×2 forms. For $f \in X$, we cannot simplify $F_{u,f}[\eta]$. Summarizing, for any η on $G = \text{Sp}_4(\mathbb{A})$ we have

$$
\eta(g) = \sum_{f \in X} F_{u,\varphi}[\eta](g) + \sum_{a \in K} \left(\sum_{\gamma \in L/O(1,1)} \int_{x \in \mathbb{A}} \mathcal{W}_{1,a}[\eta](v_x w \gamma g) + \sum_{\gamma \in L/(N \cap L)} \mathcal{W}_{a,1}[\eta](\gamma g) + \mathcal{W}_{a,0}[\eta](g) \right)
$$

If η is cuspidal then $\mathcal{W}_{0,a}[\eta] = \mathcal{W}_{a,0}[\eta] = 0$. If η is non-generic η, then $\mathcal{W}_{1,a}[\eta] = \mathcal{W}_{a,1}[\eta] = 0$, unless $a = 0$. Thus

1. If η is cuspidal then $\eta(g) = \sum_{f \in X} F_{u,f}[\eta](g) + \sum_{a \in K^x} \left(\sum_{\gamma \in L/O(1,1)} \int_{x \in \mathbb{A}} \mathcal{W}_{1,a}[\eta](v_x w \gamma g) + \sum_{\gamma \in L/(N \cap L)} \mathcal{W}_{a,1}[\eta](\gamma g) \right)$

Dmitry Gourevitch
Fourier coefficients
June 2020 20 / 22
\(X:=\) set of anisotropic \(2 \times 2\) forms. For \(f \in X\), we cannot simplify \(F_{u,f}[\eta]\). Summarizing, for any \(\eta\) on \(G = \text{Sp}_4(\mathbb{A})\) we have

\[
\eta(g) = \sum_{f \in X} F_{u,\varphi}[\eta](g) + \sum_{a \in \mathbb{K}} \left(\sum_{\gamma \in L/O(1,1)} \int_{x \in \mathbb{A}} \mathcal{W}_{1,a}[\eta](v_x w \gamma g) + \sum_{\gamma \in L/(N \cap L)} \mathcal{W}_{a,1}[\eta](\gamma g) + \mathcal{W}_{a,0}[\eta](g) \right)
\]

If \(\eta\) is cuspidal then \(\mathcal{W}_{0,a}[\eta] = \mathcal{W}_{a,0}[\eta] = 0\). If \(\eta\) is non-generic \(\eta\), then \(\mathcal{W}_{1,a}[\eta] = \mathcal{W}_{a,1}[\eta] = 0\), unless \(a = 0\). Thus

1. If \(\eta\) is cuspidal then \(\eta(g) = \sum_{f \in X} F_{u,f}[\eta](g) + \sum_{a \in \mathbb{K}^\times} \left(\sum_{\gamma \in L/O(1,1)} \int_{x \in \mathbb{A}} \mathcal{W}_{1,a}[\eta](v_x w \gamma g) + \sum_{\gamma \in L/(N \cap L)} \mathcal{W}_{a,1}[\eta](\gamma g) \right)\)

2. If \(\eta\) is non-generic then \(\eta(g) = \sum_{f \in X} F_{u,f}[\eta](g) + \sum_{\gamma \in L/O(1,1)} \int_{x \in \mathbb{A}} \mathcal{W}_{1,0}[\eta](v_x w \gamma g) + \sum_{\gamma \in L/(N \cap L)} \mathcal{W}_{0,1}[\eta](\gamma g) + \sum_{a \in \mathbb{K}} \mathcal{W}_{a,0}[\eta](g)\).
\(X:=\text{set of anisotropic } 2 \times 2 \text{ forms. For } f \in X, \text{we cannot simplify } F_{u,f} \eta.\) Summarizing, for any \(\eta\) on \(G = \text{Sp}_4(A)\) we have

\[
\eta(g) = \sum_{f \in X} F_{u,\varphi}[\eta](g) + \sum_{a \in \mathbb{K}^\times} \left(\sum_{\gamma \in L/O(1,1)} \int_{x \in A} \mathcal{W}_{1,a}[\eta](v_x w \gamma g) + \sum_{\gamma \in L/(N \cap L)} \mathcal{W}_{a,1}[\eta](\gamma g) + \mathcal{W}_{a,0}[\eta](g) \right)
\]

If \(\eta\) is cuspidal then \(\mathcal{W}_{0,a}[\eta] = \mathcal{W}_{a,0}[\eta] = 0.\) If \(\eta\) is non-generic \(\eta\), then \(\mathcal{W}_{1,a}[\eta] = \mathcal{W}_{a,1}[\eta] = 0\), unless \(a = 0\). Thus

1. If \(\eta\) is cuspidal then \(\eta(g) = \sum_{f \in X} F_{u,f}[\eta](g) + \sum_{a \in \mathbb{K}^\times} \left(\sum_{\gamma \in L/O(1,1)} \int_{x \in A} \mathcal{W}_{1,a}[\eta](v_x w \gamma g) + \sum_{\gamma \in L/(N \cap L)} \mathcal{W}_{a,1}[\eta](\gamma g) \right)\)

2. If \(\eta\) is non-generic then \(\eta(g) = \sum_{f \in X} F_{u,f}[\eta](g) + \sum_{\gamma \in L/O(1,1)} \int_{x \in A} \mathcal{W}_{1,0}[\eta](v_x w \gamma g) + \sum_{\gamma \in L/(N \cap L)} \mathcal{W}_{0,1}[\eta](\gamma g) + \sum_{a \in \mathbb{K}} \mathcal{W}_{a,0}[\eta](g)\)

3. If \(\eta\) is cuspidal and non-generic then \(\eta = \sum_{f \in X} F_{u,f}[\eta]\).
$F := \text{a } p\text{-adic local field, } G := \mathbf{G}(F), \ g := \text{Lie}(G), \ \forall$ smooth representation π,
- $F := \text{a } p\text{-adic local field, } G := \mathbf{G}(F), \ g := \text{Lie}(G),$
- $(H, f) \in g \times g \text{ Whittaker pair } u := g_{\geq 1}^H, \ n_{H,f} := (g_1^H \cap g^f) \oplus g_{\geq 1}^H.$
- $F := \text{a } p\text{-adic local field}$, $G := \mathbf{G}(F)$, $\mathfrak{g} := \text{Lie}(G)$,

- $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ Whittaker pair $u := \mathfrak{g}^H_{\geq 1}$, $\mathfrak{n}_{H, f} := (\mathfrak{g}_1^H \cap \mathfrak{g}^f) \oplus \mathfrak{g}^H_{> 1}$.

- $u/\mathfrak{n}_{H, f}$ is a symplectic space, and its Heisenberg group \mathcal{H} is a quotient of U.
\begin{itemize}
 \item $F := \text{a } p\text{-adic local field, } G := \mathbf{G}(F), \ g := \text{Lie}(G),$
 \item $(H, f) \in g \times g \text{ Whittaker pair } u := g_{\geq 1}^H, \ n_{H,f} := (g_1^H \cap g^f) \oplus g_{>1}^H.$
 \item $u/n_{H,f}$ is a symplectic space, and its Heisenberg group \mathcal{H} is a quotient of $U.$
 \item $\varpi_{H,f} := \text{oscillator representation of } \mathcal{H} \text{ lifted to } u. \ \mathcal{W}_{H,f} := \text{ind}_U^G \varpi_{H,f}$
\end{itemize}
- $F :=$ a p-adic local field, $G := \mathbf{G}(F)$, $\mathfrak{g} := \text{Lie}(G)$,
- $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ Whittaker pair $u := \mathfrak{g}^H_{\geq 1}$, $\mathfrak{n}_{H,f} := (\mathfrak{g}^H_{1} \cap \mathfrak{g}^f) \oplus \mathfrak{g}^H_{>1}$.
- $u/\mathfrak{n}_{H,f}$ is a symplectic space, and its Heisenberg group \mathcal{H} is a quotient of U.
- $\omega_{H,f} :=$ oscillator representation of \mathcal{H} lifted to u. $\mathcal{W}_{H,f} := \text{ind}_U^G \omega_{H,f}$
- For all smooth representation π, define its (H, f)-Whittaker quotient by
 \[
 \pi_{H,f} := \mathcal{W}_{H,f} \otimes_{\mathcal{G}} \pi \simeq \pi_{I,\chi}.
 \]
- $F := \text{a p-adic local field, } G := G(F), \ g := \text{Lie}(G),$
- $(H, f) \in g \times g \text{ Whittaker pair } u := g^H_{\geq 1}, \ n_{H, f} := (g^H_1 \cap g^f) \oplus g^H_{> 1}.$
- $u/n_{H, f}$ is a symplectic space, and its Heisenberg group H is a quotient of $U.$
- $\varpi_{H, f} := \text{oscillator representation of } H \text{ lifted to } u. \ \mathcal{W}_{H, f} := \text{ind}_U^G \varpi_{H, f}$
- \forall smooth representation $\pi,$ define its (H, f)-Whittaker quotient by

$$\pi_{H, f} := \mathcal{W}_{H, f} \otimes_G \pi \simeq \pi_{I, \chi}.$$

- All the theorems above have local analogues with similar proofs.
Wave front set and wave-front cycle

Let π be smooth, admissible and finitely generated.

Theorem (Howe, Harish-Chandra 70s)

Near $e \in G$, the character distribution equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_\pi) = \sum c_\mathcal{O} F(\mu_\mathcal{O})$$
Let π be smooth, admissible and finitely generated.

Theorem (Howe, Harish-Chandra 70s)

Near $e \in G$, the character distribution equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_\pi) = \sum c_\mathcal{O} \mathcal{F}(\mu_\mathcal{O})$$

- Let $\mathcal{N} \subset g$ denote the nilpotent cone.
Wave front set and wave-front cycle

Let π be smooth, admissible and finitely generated.

Theorem (Howe, Harish-Chandra 70s)

Near $e \in G$, the character distribution equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

\[
\exp^*(\chi_\pi) = \sum c_\mathcal{O} F(\mu_\mathcal{O})
\]

- Let $\mathcal{N} \subset g$ denote the nilpotent cone.
- $\text{WF}(\pi) := \cup \{ \overline{\mathcal{O}} \mid c_\mathcal{O} \neq 0 \} \subset \mathcal{N}.$
Let π be smooth, admissible and finitely generated.

Theorem (Howe, Harish-Chandra 70s)

Near $e \in G$, the character distribution equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_\pi) = \sum c_\mathcal{O} F(\mu_\mathcal{O})$$

- Let $\mathcal{N} \subset g$ denote the nilpotent cone.
- $WF(\pi) := \bigcup \{ \overline{\mathcal{O}} \mid c_\mathcal{O} \neq 0 \} \subset \mathcal{N}$.
- $WF^{\text{max}}(\pi) := \text{union of maximal orbits in } WF(\pi)$.
Let π be smooth, admissible and finitely generated.

Theorem (Howe, Harish-Chandra 70s)

Near $e \in G$, the character distribution equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_\pi) = \sum c_\mathcal{O} \mathcal{F}(\mu_\mathcal{O})$$

- Let $\mathcal{N} \subset g$ denote the nilpotent cone.
- $WF(\pi) := \bigcup \{ \mathcal{O} \mid c_\mathcal{O} \neq 0 \} \subset \mathcal{N}$.
- $WF^{\text{max}}(\pi) := $ union of maximal orbits in $WF(\pi)$.
Wave front set and wave-front cycle

Let π be smooth, admissible and finitely generated.

Theorem (Howe, Harish-Chandra 70s)

Near $e \in G$, the character distribution equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_\pi) = \sum c_O \mathcal{F}(\mu_O)$$

- Let $N \subset g$ denote the nilpotent cone.
- $WF(\pi) := \cup \{O | c_O \neq 0 \} \subset N$.
- $WF^{\text{max}}(\pi) :=$ union of maximal orbits in $WF(\pi)$.

Theorem (Moeglin-Waldspurger, 87')

- If $\pi_{H,f} \neq 0$ then $f \in WF(\pi)$.
Wave front set and wave-front cycle

Let π be smooth, admissible and finitely generated.

Theorem (Howe, Harish-Chandra 70s)

Near $e \in G$, the character distribution equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_{\pi}) = \sum c_{\mathcal{O}} F(\mu_{\mathcal{O}})$$

- Let $\mathcal{N} \subset g$ denote the nilpotent cone.
- $WF(\pi) := \bigcup \{ \overline{\mathcal{O}} \mid c_{\mathcal{O}} \neq 0 \} \subset \mathcal{N}$.
- $WF^{\text{max}}(\pi) :=$ union of maximal orbits in $WF(\pi)$.

Theorem (Moeglin-Waldspurger, 87’)

- If $\pi_{H,f} \neq 0$ then $f \in WF(\pi)$.
- If $f \in WF^{\text{max}}(\pi)$ then $\dim \pi_{H,f} = c_f$.