## Wave-front sets of distinguished representations

Dmitry Gourevitch<br>Weizmann Institute of Science, Israel<br>http://www.wisdom.weizmann.ac.il/~dimagur<br>CIRM workshop Relative Aspects of the Langlands Program,<br>L-Functions and Beyond Endoscopy<br>j.w. Eitan Sayag<br>following Harris-Weich, Prasad, Sakellaridis, Vogan arXiv:2001.11746, arXiv:2001.11750

May 2021

- $F$ : local field, $\mathbf{G}$ : reductive group over $F, \mathbf{H} \subset \mathbf{G}$ algebraic subgroup, $G:=\mathbf{G}(F), H:=\mathbf{H}(F), \mathfrak{g}:=\operatorname{Lie}(\mathbf{G}), \mathfrak{g}_{0}:=\operatorname{Lie}(G)$,
$\mathcal{N}\left(\mathfrak{g}^{*}\right):=$ nilpotent cone, $\mathfrak{h}:=\operatorname{Lie}(\mathbf{H}), \mathfrak{h}_{0}:=\operatorname{Lie}(H)$.
- $\pi \in \operatorname{Irr}(G)$ is called $H$-distinguished if $\left(\pi^{*}\right)^{H} \neq 0$.
- $\operatorname{lrr}_{H}(G):=$ all smooth admissible $H$-distinguished irreps of $G$.
- $W F^{\circ}(\pi) \subset \mathcal{N}\left(\mathfrak{g}_{0}^{*}\right):=$ union of top $G$-orbits in the wave-front set of $\pi$.


## Conjecture

For any $\pi \in \operatorname{Irr}_{H}(G),\left.W F^{o}(\pi)\right|_{\mathfrak{h}_{0}} \ni 0$.

## Theorem (G.-Sayag 2020)

(1) If $F$ is Archimedean and $\mathbf{H} \subset \mathbf{G}$ is spherical then

$$
\left.\mathbf{G}\left(W F^{0}(\pi)\right)\right|_{\mathfrak{h}} \ni 0
$$

(1) If $F$ is $p$-adic then $W^{\circ}(\pi) \subset \overline{G \mathfrak{h}_{0}^{\perp}} \subset \mathfrak{g}_{0}^{*}$
$\mathbf{H}$ is called spherical if it has an open orbit on the flag variety $\mathbf{G} / \mathbf{B}$.

## Uniform applications

- $\operatorname{Irr}_{H}(G):=$ all smooth admissible $H$-distinguished irreps.
- $W F^{o}(\pi) \subset \mathcal{N}\left(\mathfrak{g}_{0}^{*}\right):=$ union of top G-orbits in the wave-front set of $\pi$.


## Theorem (G.-Sayag 2020)

(1) If $F$ is Archimedean and $\mathbf{H} \subset \mathbf{G}$ is spherical then

$$
\left.\mathbf{G}\left(W F^{\circ}(\pi)\right)\right|_{\mathfrak{h}} \ni 0
$$

(1) If $F$ is $p$-adic then $W^{\circ}(\pi) \subset \overline{G \mathfrak{h}_{0}^{\perp}}$

Assume char $F=0$.

## Corollary (following Prasad - Sakellaridis)

$\forall$ unimodular spherical $H \subset G$,

$$
\max _{\pi \in \operatorname{lr} r_{H}(G)} \operatorname{dim} \mathrm{WF}^{\circ}(\pi)=\operatorname{dim} \mathcal{N}\left(\mathfrak{g}_{0}^{*}\right) \cap G \mathfrak{h}_{0}^{\perp} \quad \text { and }
$$

(1) $\exists$ inf. $\operatorname{dim} . \pi \in \operatorname{Irr}_{H}(G) \Longleftrightarrow \exists$ unipotent $u \in G-H$.
(1) for quasisplit $G: \exists$ generic $\pi \in \operatorname{Irr}_{H}(G) \Longleftrightarrow H \cap U=\{1\}$ for some maximal unipotent subgroup $U \subset G$.

## Archimedean setting \& applications to symmetric pairs

From now on $F:=\mathbb{R}$.
Theorem (Rossmann 1995, using Borho-Brylinski + Joseph )
$\forall \pi \in \operatorname{Irr}(G), \mathrm{WF}^{\circ}(\pi)$ lies in a unique $\mathbf{G}$-orbit $\mathcal{O}(\pi) \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$.
Let $\mathbf{H} \subset \mathbf{G}$ be symmetric sbgrp, and $G_{H}^{\mathbb{R}}$ the corresponding real form of $\mathbf{G}$. Kostant-Sekiguchi: H-orbits on $\mathfrak{h}^{\perp} \cong(\mathfrak{g} / \mathfrak{h})^{*} \leftrightarrow$ real $G_{H}^{\mathbb{R}}$-orbits on $\mathfrak{g}^{*}$. Prasad philosophy: $G_{H}^{\mathbb{R}}$ describes $H$-distinguished rep ${ }^{\text {ns }}$ of $G$.

## Corollary (of our thm)

$\forall \pi \in \operatorname{lrr}_{H}(G), \mathcal{O}(\pi)$ includes a real $G_{H}^{\mathbb{R}}$-orbit.
Real orbits are classified by Ohta and Djokovic.

## Conjecture (Prasad)

For split $G, H: \exists$ tempered $\pi \in \operatorname{Irr}_{H}(G) \Rightarrow \exists$ generic $\pi \in \operatorname{Irr}_{H}(G)$.
Our theorem + result of Harris $\Rightarrow$ conjecture holds for most pairs.

## Applications to strongly spherical pairs

## Corollary

Assume that $\mathbf{H}$ is reductive and $\mathbf{\Delta H} \subset \mathbf{G} \times \mathbf{H}$ spherical. Let $\pi \in \operatorname{Irr}(G), \tau \in \operatorname{Irr}(H)$ with $\operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \tau\right) \neq 0$. Then

$$
\left.\mathcal{O}(\tau) \subset \mathcal{O}(\pi)\right|_{\mathfrak{h}}
$$

For classical $G, \mathcal{O}(\pi)$ is described by its Jordan partition $\lambda(\pi)$.

## Corollary

Let $\mathbf{G}$ be $\mathrm{GL}_{n+1}, O_{n+1}$ or $U_{n+1}$ and $\mathbf{H}$ be $\mathrm{GL}_{n}, O_{n}$ or $U_{n}$ respectively. Let $\pi \in \operatorname{Irr}(G), \tau \in \operatorname{Irr}(H)$ with $\operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \tau\right) \neq 0$. Then for any index $i$ :

$$
\left|\lambda(\pi)_{i}^{t}-\lambda(\tau)_{i}^{t}\right| \leq 1
$$

## Applications to Jacquet quotients

## Corollary

Let $P=L U \subset G$ be parabolic subgroup, $\pi \in \operatorname{Irr}(G)$, and $\tau \in \operatorname{Irr}(L)$ be a quotient of the Jacquet module $r_{U}(\pi)$. Then $\left.\mathcal{O}(\tau) \subset \mathcal{O}(\pi)\right|_{\mathfrak{p}^{*}}$.

$$
\mathfrak{l}=\mathfrak{p} / \mathfrak{u}, \quad \mathcal{O}(\tau) \subset \mathfrak{l}^{*} \subset \mathfrak{p}^{*} \leftarrow \mathfrak{g}^{*} \supset \mathcal{O}(\pi)
$$

## Proof.

Let $H:=\{(p, p U) \in G \times L\} \subset G \times L$. Then $\operatorname{Hom}_{H}(\pi \hat{\otimes} \tilde{\tau}, \mathbb{C}) \neq 0$.
For a maximal parabolic of $\mathrm{GL}_{n}$ :

$$
\text { if }\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right) \in \mathcal{O}(\tau) \text { then }\left(\begin{array}{ll}
A & C \\
0 & B
\end{array}\right) \in \mathcal{O}(\pi) \text { for some } C \text {. }
$$

## Proposition (Zhuohui Zhang 2020)

$\exists C$ s. t. $\left(\begin{array}{ll}A & C \\ 0 & B\end{array}\right)$ has given Jordan partition $\mu \Longleftrightarrow c_{\lambda(A), \lambda(B)}^{\mu} \neq 0$ (Littlewood-Richardson coefficient)

## Twisted induction of spherical pairs

Let $P=L U \subset G$ parabolic subgroup, $\mathbf{S} \subset \mathbf{L}$ be a spherical subgroup. Let $H:=S U$. Fix algebraic character $\psi: U \rightarrow \mathbb{R}$, and let $\chi: H \rightarrow \mathbb{C}^{\times}$be a character s.t. $\chi(u):=\exp (i \psi(u)) \forall u \in U$. Consider $d \psi \in \mathfrak{u}^{*} \subset \mathfrak{h}^{*}$.

$$
\operatorname{lrr}_{H, \chi}(G):=\left\{\pi \in \operatorname{Irr}(G): \operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \chi\right) \neq 0\right\}
$$

## Theorem (G.-Sayag 2020)

For all $\pi \in \operatorname{Irr}(G)_{H, \chi},\left.\quad d \psi \in \mathcal{O}(\pi)\right|_{\mathfrak{h}}$
Shalika models: $\mathbf{G}=\mathrm{GL}_{2 n}, \mathbf{L}=\mathrm{GL}_{n} \times \mathrm{GL}_{n}, \mathbf{S}=\Delta \mathrm{GL}_{n}, \mathfrak{u}=M a t_{n \times n}$,

$$
H=\left\{\left(\begin{array}{ll}
g & A \\
0 & g
\end{array}\right)\right\}, \psi(A)=\operatorname{tr}(A)
$$

## Corollary

For all $\pi \in \operatorname{Irr}_{H, \chi}(G), \lambda(\pi)$ consists of even parts.
$P=L U \subset G$ parabolic, $\mathbf{S} \subset \mathbf{L}$ spherical, $H:=S U, \psi: U \rightarrow \mathbb{R}$, $\chi: H \rightarrow \mathbb{C}^{\times}$character s.t. $\chi(u):=\exp (i \psi(u)) \forall u \in U$.

## Theorem (G.-Sayag 2020)

For all $\pi \in \operatorname{Irr}(G)_{H, \chi},\left.\quad d \psi \in \mathcal{O}(\pi)\right|_{\mathfrak{h}}$

- Shalika models: $\mathbf{G}=\mathrm{GL}_{2 n}, \mathbf{L}=\mathrm{GL}_{n} \times \mathrm{GL}_{n}, \mathbf{S}=\Delta \mathrm{GL}_{n}, \mathfrak{u}=M a t_{n \times n}$,

$$
H=\left\{\left(\begin{array}{ll}
g & A \\
0 & g
\end{array}\right)\right\}, \psi(A)=\operatorname{tr}(A) .
$$

Cor. For all $\pi \in \operatorname{Irr}_{H, \chi}(G), \lambda(\pi)$ consists of even parts.

- Klyachko models: $\mathbf{G}=\mathrm{GL}_{n+k}, \mathbf{L}=\mathrm{GL}_{n} \times\left(\mathrm{GL}_{1}\right)^{k}, \mathbf{S}=\mathrm{Sp}_{n}$,
$H=\left\{\left(\begin{array}{ll}g & A \\ 0 & B\end{array}\right): g \in \mathrm{Sp}_{n}, B\right.$ upper-uni-triangular $\}, \psi(B)=\sum B_{i, i+1}$


## Corollary

$\forall \pi \in \operatorname{Irr}_{H, \chi}(G), \#\left\{i: \lambda(\pi)_{i}^{t}\right.$ is odd $\}=k$.
G.-Offen-Sahi-Sayag: for unitary $\pi$,

$$
\pi \in \operatorname{lrr}_{H, \chi}(G) \Longleftrightarrow \#\left\{i: \lambda(\pi)_{i}^{t} \text { is odd }\right\}=k
$$

## Twisted induction of strongly spherical pairs

$P=L U \subset G$ parabolic, $\mathbf{S} \subset \mathbf{L}$ with $\Delta \mathbf{S} \subset \mathbf{S} \times \mathbf{L}$ spherical, $H:=S U, \psi: U \rightarrow \mathbb{R}, \chi: H \rightarrow \mathbb{C}^{\times}$char s.t. $\chi(u):=\exp (i \psi(u)) \forall u \in U$.

## Corollary (G.-Sayag 2020)

Let $\pi \in \operatorname{Irr}(G), \tau \in \operatorname{Irr}(S)$ with $\operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \tau \otimes \chi\right) \neq 0$. Then

$$
\mathcal{O}(\tau)+\left.d \psi \subset \mathcal{O}(\pi)\right|_{\mathfrak{h}}
$$

Rankin-Selberg models: $\mathbf{G}=\mathrm{GL}_{n+k}, \mathbf{L}=\mathrm{GL}_{n+1} \times\left(\mathrm{GL}_{1}\right)^{k-1}, \mathbf{S}=\mathrm{GL}_{n}$,

$$
H=\left\{\left(\begin{array}{ccccc}
g & 0 & * & \ldots & * \\
0 & 1 & \underline{*} & \ldots & * \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & * \\
0 & \ldots & \ldots & 0 & 1
\end{array}\right)\right\}, \quad \psi=\text { sum of underlined entries }
$$

## Corollary

If $\operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \tau \otimes \chi\right) \neq 0$ then $\left|\lambda(\pi)_{i}^{t}-\lambda(\tau)_{i}^{t}\right| \leq 1$ for any index $i$.
$P=L U \subset G$ parabolic, $\mathbf{S} \subset \mathbf{L}$ with $\Delta \mathbf{S} \subset \mathbf{S} \times \mathbf{L}$ spherical, $H:=S U, \psi: U \rightarrow \mathbb{R}, \chi: H \rightarrow \mathbb{C}^{\times}$char s.t. $\chi(u):=\exp (i \psi(u)) \forall u \in U$.

## Corollary (G.-Sayag 2020)

Let $\pi \in \operatorname{Irr}(G), \tau \in \operatorname{Irr}(S)$ with $\operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \tau \otimes \chi\right) \neq 0$. Then

$$
\mathcal{O}(\tau)+\left.d \psi \subset \mathcal{O}(\pi)\right|_{\mathfrak{h}}
$$

- Rankin-Selberg: $\mathbf{G}=\mathrm{GL}_{n+k}, \mathbf{L}=\mathrm{GL}_{n+1} \times\left(\mathrm{GL}_{1}\right)^{k-1}, \mathbf{S}=\mathrm{GL}_{n}$,

$$
H=\left\{\left(\right)\right\}, \psi=\text { sum of underlined entries }
$$

- Bessel models: analogues for $O(p, q), U(p, q), O_{n}(\mathbb{C})$.


## Corollary (holds for both kinds of models: Rankin-Selberg and Bessel)

If $\operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \tau \otimes \chi\right) \neq 0$ then $\left|\lambda(\pi)_{i}^{t}-\lambda(\tau)_{i}^{t}\right| \leq 1$ for any index $i$.
Related to the non-tempered Gan-Gross-Prasad conjecture.

## Proof ingredients

## Theorem (Wen-Wei Li 2019)

For any nilpotent orbit $\mathcal{O}, 2 \operatorname{dim} \mathcal{O} \cap \mathfrak{h}^{\perp} \leq \operatorname{dim} \mathcal{O}$.

- $\mathcal{U}_{n}(\mathfrak{g})$ - PBW filtration on universal enveloping algebra.
- $\operatorname{gr} \mathcal{U}(\mathfrak{g}) \cong S(\mathfrak{g}) \cong \operatorname{Pol}\left(\mathfrak{g}^{*}\right)$.
- For a $\mathfrak{g}$-module $M, \operatorname{Ann}(M) \subset \mathcal{U}(\mathfrak{g})$ - annihilator, and
$\operatorname{An\mathcal {V}}(M) \subset \mathfrak{g}^{*}-$ annihilator variety:= zero set of symbols of $\operatorname{Ann}(M)$


## Theorem (Rossmann 1995)

For all $\pi \in \operatorname{Irr}(G), \operatorname{An\mathcal {V}}(\pi)=\overline{\mathcal{O}(\pi)}$.
For finitely-generated $M$, define $\operatorname{As} \mathcal{V}(M)$ to be the set of common zeros of symbols of annihilators of the generators.

## Theorem (Gabber-Joseph)

$2 \operatorname{dim} \operatorname{As\mathcal {V}}(M) \geq \operatorname{dim} \operatorname{An\mathcal {V}}(M)$.

- For any nilpotent orbit $\mathcal{O}, 2 \operatorname{dim} \mathcal{O} \cap \mathfrak{h}^{\perp} \leq \operatorname{dim} \mathcal{O}$.
- $\operatorname{AnV}(\pi)=\overline{\mathcal{O}(\pi)}$
- For f.g. $M, 2 \operatorname{dim} \operatorname{As} \mathcal{V}(M) \geq \operatorname{dim} \operatorname{An\mathcal {V}}(M)$.
- If $M$ is generated by an $\mathfrak{h}$-finite vector then

$$
\operatorname{As} \mathcal{V}(M) \subset \operatorname{An\mathcal {V}}(M) \cap \mathfrak{h}^{\perp}
$$

## Theorem (G. - Sayag 2020)

For any $\pi \in \operatorname{Irr}(G)_{H}, \mathcal{O}(\pi) \cap \mathfrak{h}^{\perp} \neq \varnothing$.

## Proof.

Let $\eta \neq 0 \in\left(\pi^{*}\right)^{H}$ and $M:=\mathcal{U}(\mathfrak{g}) \eta \subset \pi^{*} . M$ is non-degenerately paired with $\pi$, thus $\operatorname{Ann}(M)=\operatorname{Ann}(\pi)$ and $\operatorname{An\mathcal {V}}(M)=\operatorname{An\mathcal {V}}(\pi)$. From

$$
\begin{gather*}
2 \operatorname{dim} \operatorname{As\mathcal {V}}(M) \geq \operatorname{dim} \operatorname{An\mathcal {V}}(M)=\operatorname{dim} \operatorname{An\mathcal {V}}(\pi)=\operatorname{dim} \mathcal{O}(\pi)  \tag{1}\\
\operatorname{As} \mathcal{V}(M) \subset \operatorname{An\mathcal {V}}(M) \cap \mathfrak{h}^{\perp}, \text { and } \tag{2}
\end{gather*}
$$

intersection with $\mathfrak{h}^{\perp}$ reduces dimension times 2,

Twisted version uses Kazhdan filtration + other ideas from $W$-algebras.

## Beyond spherical subgroups

The only place where we used sphericity in the proof is to have $2 \operatorname{dim} \mathcal{O} \cap \mathfrak{h}^{\perp} \leq \operatorname{dim} \mathcal{O}$ for any $\mathcal{O} \subset \overline{\mathcal{O}(\pi)}$. Thus, we can just assume this in the theorem, instead sphericity.
The smallest non-zero orbit is called "minimal". For $\mathrm{GL}_{n}$ and for $\mathrm{Sp}_{n}$, $\mathcal{O}_{\text {min }}$ consists of rank one matrices $v \otimes \varphi$ (with $\varphi=v^{t}$ for $\mathrm{Sp}_{n}$ ).

## Example

Let $\mathbf{G}:=\mathrm{GL}_{n} \times \mathrm{GL}_{n} \times \mathrm{GL}_{n}$ and $H:=\Delta \mathrm{GL}_{n}$. Let $\mathcal{O}_{1}, \mathcal{O}_{2} \subset \mathfrak{g l} l_{n}^{*}$ be arbitrary orbits, and $\mathcal{O}:=\mathcal{O}_{1} \times \mathcal{O}_{2} \times \mathcal{O}_{\text {min }}$. Then

$$
2 \operatorname{dim} \mathcal{O} \cap \mathfrak{h}^{\perp}=\operatorname{dim} \mathcal{O}
$$

Application: restrictions on annihilator varieties of quotients of $\pi \otimes \tau$ if $\mathcal{O}(\tau)$ is minimal.

## Applications to local theta correspondence in type II

- $\iota: \mathrm{GL}(U) \times \mathrm{GL}(W) \hookrightarrow \mathrm{Sp}\left(\widetilde{V \oplus V^{*}}\right)$
- $\omega$ - Weil representation
- $\pi$ in $\operatorname{Irr}(\mathrm{GL}(V)),\left.\omega\right|_{\mathrm{GL}(V)} \rightarrow \pi \otimes \Theta(\pi)$
- $\theta(\pi) \in \operatorname{lrr}(\mathrm{GL}(W))$ - unique irr. quotient of $\Theta(\Pi)$.

Let $G:=\mathrm{GL}(U) \times \mathrm{GL}(W) \times \operatorname{Sp}\left(V \oplus V^{*}\right)$ and $H=\operatorname{Graph}(\iota) \subset G$. Then $\pi \boxtimes \theta(\pi) \boxtimes \omega \in \operatorname{lrr}(G)$ is $H$-distinguished.

## Theorem (Ido Karshon)

Let $\mathcal{O}_{1} \subset \mathcal{N}\left(\mathfrak{g l}(U)^{*}\right)$ and $\mathcal{O}_{2} \subset \mathcal{N}\left(\mathfrak{g l}(W)^{*}\right)$ be nilpotent orbits. Then
(1) $2 \operatorname{dim} \mathcal{O}_{1} \times \mathcal{O}_{2} \times \mathcal{O}_{\text {min }} \cap \mathfrak{h}^{\perp} \leq \operatorname{dim} \mathcal{O}_{1}+\operatorname{dim} \mathcal{O}_{2}+\operatorname{dim} \mathcal{O}_{\text {min }}$
(1) $2 \operatorname{dim} \mathcal{O}_{1} \times \mathcal{O}_{2} \times \mathcal{O}_{\text {min }} \cap \mathfrak{h}^{\perp} \neq \varnothing$ if and only if $\mathcal{O}_{1} \times \mathcal{O}_{2}$ intersects the image of the moment map

$$
V=\operatorname{Hom}(U, W) \rightarrow \mathfrak{g l}(U) \times \mathfrak{g l}(W) \cong \mathfrak{g l}(U)^{*} \times \mathfrak{g l}(W)^{*}
$$

given by $A \mapsto\left(A^{*} A, A A^{*}\right)$

- $\iota: \mathrm{GL}(U) \times \mathrm{GL}(W) \hookrightarrow \mathrm{Sp}\left(V \oplus V^{*}\right)$
- $\omega$ - Weil representation
- $\pi$ in $\operatorname{lrr}(\mathrm{GL}(V)),\left.\omega\right|_{\mathrm{GL}(V)} \rightarrow \pi \otimes \Theta(\pi)$
- $\theta(\pi) \in \operatorname{lrr}(\mathrm{GL}(W))$ - unique irr. quotient of $\Theta(\Pi)$.

Let $G:=\mathrm{GL}(U) \times \mathrm{GL}(W) \times \operatorname{Sp}\left(V \oplus V^{*}\right)$ and $H=\operatorname{Graph}(\iota) \subset G$.
Then $\pi \boxtimes \theta(\pi) \boxtimes \omega \in \operatorname{lrr}(G)$ is $H$-distinguished.

## Theorem (Ido Karshon)

Let $\mathcal{O}_{1} \subset \mathcal{N}\left(\mathfrak{g l}(U)^{*}\right)$ and $\mathcal{O}_{2} \subset \mathcal{N}\left(\mathfrak{g l}(W)^{*}\right)$ be nilpotent orbits. Then
(1) $2 \operatorname{dim} \mathcal{O}_{1} \times \mathcal{O}_{2} \times \mathcal{O}_{\text {min }} \cap \mathfrak{h}^{\perp} \leq \operatorname{dim} \mathcal{O}_{1}+\operatorname{dim} \mathcal{O}_{2}+\operatorname{dim} \mathcal{O}_{\text {min }}$
(1) $2 \operatorname{dim} \mathcal{O}_{1} \times \mathcal{O}_{2} \times \mathcal{O}_{\text {min }} \cap \mathfrak{h}^{\perp} \neq \varnothing$ if and only if $\mathcal{O}_{1} \times \mathcal{O}_{2}$ intersects the image of the moment map

$$
V=\operatorname{Hom}(U, W) \rightarrow \mathfrak{g l}(U) \times \mathfrak{g l}(W) \cong \mathfrak{g l}(U)^{*} \times \mathfrak{g l}(W)^{*}
$$

given by $A \mapsto\left(A^{*} A, A A^{*}\right)$

## Corollary

$\mathcal{O}(\pi) \times \mathcal{O}(\theta(\pi))$ intersects the image of the moment map.

## Definition of the wave front set

Assume char $F=0$.

## Theorem (Howe, Harish-Chandra, Barbasch-Vogan, 70s)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$
\exp ^{*}\left(\chi_{\pi}\right) \approx \sum c_{\mathcal{O}} \mathcal{F}\left(\mu_{\mathcal{O}}\right)
$$

- Define $\operatorname{WF}(\pi)=\left\{\mathcal{O}: c_{\mathcal{O}} \neq 0\right\}$.
- Say $\mathcal{O}<\mathcal{O}^{\prime}$ if $\mathcal{O} \subset \overline{\mathcal{O}^{\prime}}$.
- $\mathrm{WF}^{\circ}(\pi):=$ union of maximal elements of $\mathrm{WF}(\pi)$.


## Evidence for the $p$-adic case, for $\mathbf{G}=\mathrm{GL}_{n}$

- Klyachko models: Offen-Sayag
- Jacquet quotients of ladder representations: Lapid - Minguez
- Restriction from $\mathrm{GL}_{n+1}$ to $\mathrm{GL}_{n}$ for representations of Arthur type: Maxim Gurevich, Kei Yuen Chan
- Local theta correspondence: Gomez-Zhu, Gan


## p-adic theorem

$\forall$ nilpotent $\varphi \in \mathfrak{g}^{*}$, choose sl ${ }_{2}$-triple $f, h, e \in \mathfrak{g}$ using Killing form + Jacobson-Morozov; let $\mathfrak{v}_{\varphi}:=\mathfrak{g}_{\geq 2}^{h} \subset \mathfrak{g}, V_{\varphi}:=\operatorname{Exp}\left(\mathfrak{v}_{\varphi}\right) \subset G$.

## Definition

For any rep-n $\Pi$, let $\mathrm{WO}(\Pi):=\left\{\varphi \in \mathfrak{g}^{*}: \Pi_{\nu_{\varphi}, \varphi} \neq 0\right\}$.
Theorem (Moeglin-Waldspurger 1987)
If $F$ is $p$-adic then $\forall \pi \in \operatorname{Irr}(G), \overline{\mathrm{WO}(\pi)}=\overline{\mathrm{WF}^{\circ}(\pi)}$.

Theorem (G.-Sayag 2020)
$G \mathfrak{h}^{\perp} \cap \mathcal{N} \subset \mathrm{WO}(\mathcal{S}(G / H)) \subset \overline{G \mathfrak{h}^{\perp}} \cap \mathcal{N}$.

## Ingredients and sketch of proof

$\forall$ nilpotent $\varphi \in \mathfrak{g}^{*}$, choose sl ${ }_{2}$-triple $f, h, e \in \mathfrak{g}$ using Killing form + Jacobson-Morozov; let $\mathfrak{v}_{\varphi}:=\mathfrak{g}_{\geq 2}^{h} \subset \mathfrak{g}, V_{\varphi}:=\operatorname{Exp}\left(\mathfrak{v}_{\varphi}\right) \subset G$.

## Definition

For any rep-n $\Pi$, let $\mathrm{WO}(\Pi):=\left\{\varphi \in \mathfrak{g}^{*}: \Pi_{V_{\varphi}, \varphi} \neq 0\right\}$.

- Kazhdan action of $F^{\times}$on $\mathfrak{g}^{*}: t \cdot \psi:=t^{2} \exp (t h) \psi$. Fixes $\varphi$.
- $\mathcal{S}(G / H)_{V_{\varphi}, \varphi} \neq 0 \Longleftrightarrow \varphi\left(\mathfrak{v}_{\varphi} \cap g(\mathfrak{h})\right)=\{0\}$ for some $g \in G$.


## Theorem (G.-Sayag 2020)

$G \mathfrak{h}^{\perp} \cap \mathcal{N} \subset \mathrm{WO}(\mathcal{S}(G / H)) \subset \overline{G \mathfrak{h}^{\perp}} \cap \mathcal{N}$.

## Proof.

(i) $\varphi \in g\left(\mathfrak{h}^{\perp}\right) \Rightarrow \varphi\left(\mathfrak{v}_{\varphi} \cap g(\mathfrak{h})\right)=\{0\} \Rightarrow \mathcal{S}(G / H)_{\nu_{\varphi, \varphi}} \neq 0$.
(ii) $\mathcal{S}(G / H)_{V_{\varphi}, \varphi} \neq 0 \Rightarrow \varphi\left(\mathfrak{v}_{\varphi} \cap g(\mathfrak{h})\right)=\{0\} \Rightarrow \varphi \in\left(\mathfrak{g}^{*}\right)_{>-2}^{h}+g\left(\mathfrak{h}^{\perp}\right)$.

Kazhdan action preserves $\varphi$ and $G \mathfrak{h}^{\perp}$, contracts $\left(\mathfrak{g}^{*}\right)_{>-2}^{h}$ thus $\varphi \in \overline{G \mathfrak{h}^{\perp}}$

