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Definitions

K: number field, A := AK, G: reductive group over K, Γ := G(K),
G := G(A), g := Lie(Γ).

Fix a semisimple H ∈ g, and let gi := gHi denote the eigenspaces of
ad(H). Assume that all the eigenvalues i lie in Q.

Let f ∈ g−2. Call (H, f ) ∈ g× g a Whittaker pair.

Define n := nH,f := (g1 ∩ gf )⊕⊕
i>1 gi , N := Exp(n)(A).

Fix a non-trivial unitary additive character ψ : K\A→ C and define
χf : N → C by χf (ExpX ) := ψ(〈f ,X 〉).
C∞(Γ\G ) := functions on Γ\G smooth on G∞ and finite under Kfin.

Let [N ] := (Γ ∩N)\N. For η ∈ C∞(Γ\G ), define Fourier coefficient

FH,f [η](g) :=
∫
[N ]

η(ng)χf (n)
−1dn.
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Two central cases of Fourier coefficients

[H, f ] = −2f , n = (g1 ∩ gf )⊕⊕
i>1 gi , N = Exp(n)(A), η ∈ C∞(Γ\G ),

FH,f [η](g) :=
∫
[N ]

η(ng)χf (n)
−1dn.

Neutral Fourier coefficient, coming from sl2-triple (e,H,f), e.g.:

H =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 f =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 n =


0 ∗ 0 ∗
0 0 0 0
0 ∗ 0 ∗
0 0 0 0


Whittaker coefficient Wf , with N maximal unipotent, e.g.:

H =


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 f =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 n =


0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0



Coefficients that are both neutral and Whittaker are Eulerian by local
uniqueness of Whittaker models.
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Examples of Fourier coefficients

[H, f ] = −2f , n = (g1 ∩ gf )⊕⊕
i>1 gi , N = Exp(n)(A), η ∈ C∞(Γ\G ),

FH,f [η](g) :=
∫
[N ]

η(ng)χf (n)
−1dn.

Comparison for G = GL3(K):

Neutral Fourier coefficient:

H =

 1 0 0
0 0 0
0 0 −1

 , f =

 0 0 0
0 0 0
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1 0 0
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 0 ∗ ∗
0 0 0
0 ∗ 0
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Root exchange

u := g1/(g1 ∩ gf ). ωf (X ,Y ) := 〈f , [X ,Y ]〉- symplectic form.

∀ isotropic subspace i ⊂ u, let I := Exp(i)(A) and

F I
H,f [η](g) :=

∫
[I ]
FH,f [η](ug) du

Lemma

(i) FH,f [η](g) = ∑γ∈(U/I⊥)(K) F I
H,f [η](γg)

(ii) For any isotropic subspace j ⊂ u with dim j = dim i and j∩ i⊥ = {0},

F J
H,f [η](g) =

∫
J(A)
F I

H,f [η](ug) du

For H =

 1 0 0
0 0 0
0 0 −1

 , f =

 0 0 0
0 0 0
1 0 0

 :

 0 i n
0 0 j
0 0 0
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Relating different coefficients

WO(η) := {O ∈ N (g) | ∀ neutral (h, f ) with f ∈ O, Fh,f (η) 6≡ 0}.

Say (H, f ) � (S , f ) if [H,S ] = 0 and gf ∩ gH≥1 ⊆ gS−H≥0 .
f is K-distinguished if ∀ Levi l 3 f defined over K, l = g.
(S , f ) is called Levi-distinguished if ∃ parabolic p = lu
s.t. f is K-distinguished in l, and nS ,f = lS ,f ⊕ u.
Whittaker coefficients are Levi-distinguished.
For Whittaker pairs with the same f and commuting H-s,
neutral � any � Levi-distinguished.

Theorem

Let (H, f ) � (S , f ). Then

(i) FH,f [η] linearly determines FS ,f [η].

(ii) If Γf ∈ WOmax(η) and gH1 = gS1 = 0 let v := gH>1 ∩ gS<1. Then

FH,f [η](g) =
∫
V (A)

FS,f [η](vg) dv
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Example

G := GL(4, A), f := E21 + E43, H := diag(3, 1,−1,−3),
h = diag(1,−1, 1,−1), Z = H − h = diag(2, 2,−2,−2),Ht := h+ tZ .

Then n0 ⊂ n1/4 ⊕ i ∼ n1/4 ⊕ j ⊂ n3/4 = n1 :
0 − 0 −
0 0 0 0
0 − 0 −
0 0 0 0

 ⊂


0 − a −
0 0 0 a
0 ∗ 0 −
0 0 0 0

 ∼


0 − ∗ −
0 0 0 ∗
0 0 0 −
0 0 0 0



⊂


0 − − −
0 0 ∗ −
0 0 0 −
0 0 0 0

 =


0 − − −
0 0 − −
0 0 0 −
0 0 0 0


Both ∗ and − denote arbitrary elements. − denotes the entries in gHt

>0 and

∗ those in gHt
1 . a denotes equal elements in gHt

1 ∩ gf .
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Expressing forms through their Whittaker coefficients

Theorem

Any FH,f is linearly determined by all Levi-distinguished Fourier
coefficients FS ,F with ΓF ≥ Γf .

Corollary

(i) Any η ∈ C∞(Γ\G ) is linearly determined by all its Levi-distinguished
Fourier coefficients.

(ii) If all O ∈ WO(η) admit Whittaker coefficients then η is linearly
determined by its Whittaker coefficients.

(iii) If G is split and simply-laced, and η is minimal or next-to-minimal
then all Fourier coefficients of η are linearly determined by Whittaker
coefficients of η.
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Parabolic minimal Fourier coeff. of next-to-minimal forms

g split simply laced, h ⊂ g Cartan, b = h⊕ u Borel

α simple root. qα = lα ⊕ nα = gSα
≥0 max. parabolic.

I (⊥α) = {β1, . . . , βk} Bourbaki enumeration of the simple roots
orthogonal to α.

∀i G ⊃ Li := Levi given by roots β1, . . . , βi

Li ⊃ Si := stabilizer of the root space g−βi
, Γi := (Li ∩ Γ)/(Si ∩ Γ).

For f ∈ g×−α and next-to-minimal ηntm ∈ C∞(Γ\G ) let

Af
i [ηntm](g) := ∑

γ∈Γi−1

∑
ϕ∈g×−βi

Wϕ+f [ηntm](γg)

Theorem

FSα,f [ηntm] =Wf [ηntm] +
k

∑
i=1

Af
i [ηntm]
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Explanation for GLn (PS-Shalika, Ahlen–Gustafsson-Liu-
Kleinschmidt-Persson)

Let η ∈ C∞(Γ\GLn(A)). Restrict to the last column and decompose to
Fourier series. All non-trivial characters are conjugate by GLn−1(K).

0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 0

+


0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 0
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5 n− 1 n
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