Fourier coefficients of automorphic forms \& applications to minimal and next-to-minimal forms.

Dmitry Gourevitch
Weizmann Institute of Science, Israel http://www.wisdom.weizmann.ac.il/~dimagur

Automorphic Structures in String Theory, SCGP, Stony Brooke, NY j.w. H. P. A. Gustafsson, A. Kleinschmidt, D. Persson, and S. Sahi

Following Piatetski-Shapiro-Shalika, Ginzburg-Rallis-Soudry, Moeglin-Waldspurger, Jiang-Liu-Savin, Gomez, Ahlen, Hundley-Sayag, Green-Miller-Vanhove, Kazhdan-Polishchuk, Bossard-Pioline

Definitions

- \mathbb{K} : number field, $\mathbb{A}:=\mathbb{A}_{\mathbb{K}}, \mathbf{G}$: reductive group over $\mathbb{K}, \Gamma:=\mathbf{G}(\mathbb{K})$, $G:=\mathbf{G}(\mathbb{A}), \mathfrak{g}:=\operatorname{Lie}(\Gamma)$.

Definitions

- \mathbb{K} : number field, $\mathbb{A}:=\mathbb{A}_{\mathbb{K}}, \mathbf{G}$: reductive group over $\mathbb{K}, \Gamma:=\mathbf{G}(\mathbb{K})$, $G:=\mathbf{G}(\mathbb{A}), \mathfrak{g}:=\operatorname{Lie}(\Gamma)$.
- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_{i}:=\mathfrak{g}_{i}^{H}$ denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.

Definitions

- \mathbb{K} : number field, $\mathbb{A}:=\mathbb{A}_{\mathbb{K}}, \mathbf{G}$: reductive group over $\mathbb{K}, \Gamma:=\mathbf{G}(\mathbb{K})$, $G:=\mathbf{G}(\mathbb{A}), \mathfrak{g}:=\operatorname{Lie}(\Gamma)$.
- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_{i}:=\mathfrak{g}_{i}^{H}$ denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.
- Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.

Definitions

- \mathbb{K} : number field, $\mathbb{A}:=\mathbb{A}_{\mathbb{K}}, \mathbf{G}$: reductive group over $\mathbb{K}, \Gamma:=\mathbf{G}(\mathbb{K})$, $G:=\mathbf{G}(\mathbb{A}), \mathfrak{g}:=\operatorname{Lie}(\Gamma)$.
- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_{i}:=\mathfrak{g}_{i}^{H}$ denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.
- Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.
- Define $\mathfrak{n}:=\mathfrak{n}_{H, f}:=\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \bigoplus_{i>1} \mathfrak{g}_{i}, N:=\operatorname{Exp}(\mathfrak{n})(\mathbb{A})$.

Definitions

- \mathbb{K} : number field, $\mathbb{A}:=\mathbb{A}_{\mathbb{K}}, \mathbf{G}$: reductive group over $\mathbb{K}, \Gamma:=\mathbf{G}(\mathbb{K})$, $G:=\mathbf{G}(\mathbb{A}), \mathfrak{g}:=\operatorname{Lie}(\Gamma)$.
- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_{i}:=\mathfrak{g}_{i}^{H}$ denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.
- Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.
- Define $\mathfrak{n}:=\mathfrak{n}_{H, f}:=\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \bigoplus_{i>1} \mathfrak{g}_{i}, N:=\operatorname{Exp}(\mathfrak{n})(\mathbb{A})$.
- Fix a non-trivial unitary additive character $\psi: \mathbb{K} \backslash \mathbb{A} \rightarrow \mathbb{C}$ and define $\chi_{f}: N \rightarrow \mathbb{C}$ by $\chi_{f}(\operatorname{Exp} X):=\psi(\langle f, X\rangle)$.

Definitions

- \mathbb{K} : number field, $\mathbb{A}:=\mathbb{A}_{\mathbb{K}}, \mathbf{G}$: reductive group over $\mathbb{K}, \Gamma:=\mathbf{G}(\mathbb{K})$, $G:=\mathbf{G}(\mathbb{A}), \mathfrak{g}:=\operatorname{Lie}(\Gamma)$.
- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_{i}:=\mathfrak{g}_{i}^{H}$ denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.
- Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.
- Define $\mathfrak{n}:=\mathfrak{n}_{H, f}:=\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \bigoplus_{i>1} \mathfrak{g}_{i}, N:=\operatorname{Exp}(\mathfrak{n})(\mathbb{A})$.
- Fix a non-trivial unitary additive character $\psi: \mathbb{K} \backslash \mathbb{A} \rightarrow \mathbb{C}$ and define $\chi_{f}: N \rightarrow \mathbb{C}$ by $\chi_{f}(\operatorname{Exp} X):=\psi(\langle f, X\rangle)$.
- $C^{\infty}(\Gamma \backslash G):=$ functions on $\Gamma \backslash G$ smooth on G_{∞} and finite under $K_{\text {fin }}$.

Definitions

- \mathbb{K} : number field, $\mathbb{A}:=\mathbb{A}_{\mathbb{K}}, \mathbf{G}$: reductive group over $\mathbb{K}, \Gamma:=\mathbf{G}(\mathbb{K})$, $G:=\mathbf{G}(\mathbb{A}), \mathfrak{g}:=\operatorname{Lie}(\Gamma)$.
- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_{i}:=\mathfrak{g}_{i}^{H}$ denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.
- Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.
- Define $\mathfrak{n}:=\mathfrak{n}_{H, f}:=\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \bigoplus_{i>1} \mathfrak{g}_{i}, N:=\operatorname{Exp}(\mathfrak{n})(\mathbb{A})$.
- Fix a non-trivial unitary additive character $\psi: \mathbb{K} \backslash \mathbb{A} \rightarrow \mathbb{C}$ and define $\chi_{f}: N \rightarrow \mathbb{C}$ by $\chi_{f}(\operatorname{Exp} X):=\psi(\langle f, X\rangle)$.
- $C^{\infty}(\Gamma \backslash G):=$ functions on $\Gamma \backslash G$ smooth on G_{∞} and finite under $K_{\text {fin }}$.
- Let $[N]:=(\Gamma \cap N) \backslash N$. For $\eta \in C^{\infty}(\Gamma \backslash G)$, define Fourier coefficient

$$
\mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n
$$

Two central cases of Fourier coefficients

$$
\begin{gathered}
{[H, f]=-2 f, \mathfrak{n}=\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \oplus_{i>1} \mathfrak{g}_{i}, N=\operatorname{Exp}(\mathfrak{n})(\mathbb{A}), \eta \in C^{\infty}(\Gamma \backslash G),} \\
\mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n .
\end{gathered}
$$

Two central cases of Fourier coefficients

$$
\begin{aligned}
{[H, f]=-2 f, \mathfrak{n}=} & \left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \oplus_{i>1} \mathfrak{g}_{i}, N=\operatorname{Exp}(\mathfrak{n})(\mathbb{A}), \eta \in C^{\infty}(\Gamma \backslash G), \\
& \mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n .
\end{aligned}
$$

- Neutral Fourier coefficient, coming from $\mathfrak{s l}_{2}$-triple (e, H, f), e.g.:

$$
H=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) f=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{llll}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Two central cases of Fourier coefficients

$$
\begin{gathered}
{[H, f]=-2 f, \mathfrak{n}=\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \oplus_{i>1} \mathfrak{g}_{i}, N=\operatorname{Exp}(\mathfrak{n})(\mathbb{A}), \eta \in C^{\infty}(\Gamma \backslash G),} \\
\mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n .
\end{gathered}
$$

- Neutral Fourier coefficient, coming from $\mathfrak{s l}_{2}$-triple (e, H,f), e.g.:

$$
H=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) f=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{cccc}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & \underline{*} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- Whittaker coefficient \mathcal{W}_{f}, with N maximal unipotent, e.g.:

$$
H=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right) f=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{cccc}
0 & \underline{*} & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & \underline{*} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Two central cases of Fourier coefficients

$$
\begin{gathered}
{[H, f]=-2 f, \mathfrak{n}=\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \oplus_{i>1} \mathfrak{g}_{i}, N=\operatorname{Exp}(\mathfrak{n})(\mathbb{A}), \eta \in C^{\infty}(\Gamma \backslash G),} \\
\mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n .
\end{gathered}
$$

- Neutral Fourier coefficient, coming from $\mathfrak{s l}_{2}$-triple (e, H,f), e.g.:

$$
H=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) f=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{cccc}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & \underline{*} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- Whittaker coefficient \mathcal{W}_{f}, with N maximal unipotent, e.g.:

$$
H=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right) f=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{cccc}
0 & \underline{*} & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & \underline{*} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Two central cases of Fourier coefficients

$$
\begin{aligned}
{[H, f]=-2 f, \mathfrak{n}=} & \left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \oplus_{i>1} \mathfrak{g}_{i}, N=\operatorname{Exp}(\mathfrak{n})(\mathbb{A}), \eta \in C^{\infty}(\Gamma \backslash G), \\
& \mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n .
\end{aligned}
$$

- Neutral Fourier coefficient, coming from $\mathfrak{s l}_{2}$-triple (e, H,f), e.g.:

$$
H=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) f=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{cccc}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & \underline{*} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- Whittaker coefficient \mathcal{W}_{f}, with N maximal unipotent, e.g.:

$$
H=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right) f=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{cccc}
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & \underline{*} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Coefficients that are both neutral and Whittaker are Eulerian by local uniqueness of Whittaker models.

Examples of Fourier coefficients

$$
\begin{gathered}
{[H, f]=-2 f, \mathfrak{n}=\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \oplus_{i>1} \mathfrak{g}_{i}, N=\operatorname{Exp}(\mathfrak{n})(\mathbb{A}), \eta \in C^{\infty}(\Gamma \backslash G),} \\
\mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n .
\end{gathered}
$$

Comparison for $G=G L_{3}(\mathbb{K})$:

- Neutral Fourier coefficient:

$$
H=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), f=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \mathfrak{n}=\left(\begin{array}{lll}
0 & 0 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Examples of Fourier coefficients

$$
\begin{gathered}
{[H, f]=-2 f, \mathfrak{n}=\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \oplus_{i>1} \mathfrak{g}_{i}, N=\operatorname{Exp}(\mathfrak{n})(\mathbb{A}), \eta \in C^{\infty}(\Gamma \backslash G),} \\
\mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n .
\end{gathered}
$$

Comparison for $G=\mathrm{GL}_{3}(\mathbb{K})$:

- Neutral Fourier coefficient:

$$
H=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), f=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \mathfrak{n}=\left(\begin{array}{lll}
0 & 0 & \frac{*}{*} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Whittaker coefficient:

$$
H=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -1
\end{array}\right), f=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \mathfrak{n}=\left(\begin{array}{lll}
0 & * & * \\
0 & 0 & 0 \\
0 & * & 0
\end{array}\right)
$$

Root exchange

- $\mathfrak{u}:=\mathfrak{g}_{1} /\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) . \omega_{f}(X, Y):=\langle f,[X, Y]\rangle$ - symplectic form.

Root exchange

- $\mathfrak{u}:=\mathfrak{g}_{1} /\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right)$. $\omega_{f}(X, Y):=\langle f,[X, Y]\rangle$ - symplectic form.
- \forall isotropic subspace $\mathfrak{i} \subset \mathfrak{u}$, let $I:=\operatorname{Exp}(\mathfrak{i})(\mathbb{A})$ and

$$
\mathcal{F}_{H, f}^{\prime}[\eta](g):=\int_{[I]} \mathcal{F}_{H, f}[\eta](u g) d u
$$

Root exchange

- $\mathfrak{u}:=\mathfrak{g}_{1} /\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right)$. $\omega_{f}(X, Y):=\langle f,[X, Y]\rangle$ - symplectic form.
- \forall isotropic subspace $\mathfrak{i} \subset \mathfrak{u}$, let $I:=\operatorname{Exp}(\mathfrak{i})(\mathbb{A})$ and

$$
\mathcal{F}_{H, f}^{\prime}[\eta](g):=\int_{[I]} \mathcal{F}_{H, f}[\eta](u g) d u
$$

Root exchange

- $\mathfrak{u}:=\mathfrak{g}_{1} /\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right)$. $\omega_{f}(X, Y):=\langle f,[X, Y]\rangle$ - symplectic form.
- \forall isotropic subspace $\mathfrak{i} \subset \mathfrak{u}$, let $I:=\operatorname{Exp}(\mathfrak{i})(\mathbb{A})$ and

$$
\mathcal{F}_{H, f}^{\prime}[\eta](g):=\int_{[I]} \mathcal{F}_{H, f}[\eta](u g) d u
$$

Lemma

(i) $\mathcal{F}_{H, f}[\eta](g)=\sum_{\gamma \in\left(U / I^{\perp}\right)(\mathbb{K})} \mathcal{F}_{H, f}^{\prime}[\eta](\gamma g)$
(ii) For any isotropic subspace $\mathfrak{j} \subset \mathfrak{u}$ with $\operatorname{dim} \mathfrak{j}=\operatorname{dim} \mathfrak{i}$ and $\mathfrak{j} \cap \mathfrak{i}^{\perp}=\{0\}$,

$$
\mathcal{F}_{H, f}^{J}[\eta](g)=\int_{J(\mathbb{A})} \mathcal{F}_{H, f}^{\prime}[\eta](u g) d u
$$

$$
\text { For } H=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), f=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right): \quad\left(\begin{array}{lll}
0 & \mathfrak{i} & \mathfrak{n} \\
0 & 0 & \mathfrak{j} \\
0 & 0 & 0
\end{array}\right)
$$

Relating different coefficients

- $\mathrm{WO}(\eta):=\left\{\mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall\right.$ neutral (h, f) with $\left.f \in \mathcal{O}, \mathcal{F}_{h, f}(\eta) \not \equiv 0\right\}$.

Relating different coefficients

- $\mathrm{WO}(\eta):=\left\{\mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall\right.$ neutral (h, f) with $\left.f \in \mathcal{O}, \mathcal{F}_{h, f}(\eta) \not \equiv 0\right\}$.
- Say $(H, f) \succ(S, f)$ if $[H, S]=0$ and $\mathfrak{g}^{f} \cap \mathfrak{g}_{\geq 1}^{H} \subseteq \mathfrak{g}_{\geq 0}^{S-H}$.

Relating different coefficients

- $\mathrm{WO}(\eta):=\left\{\mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall\right.$ neutral (h, f) with $\left.f \in \mathcal{O}, \mathcal{F}_{h, f}(\eta) \not \equiv 0\right\}$.
- Say $(H, f) \succ(S, f)$ if $[H, S]=0$ and $\mathfrak{g}^{f} \cap \mathfrak{g}_{\geq 1}^{H} \subseteq \mathfrak{g}_{\geq 0}^{S-H}$.
- f is \mathbb{K}-distinguished if \forall Levi $\mathfrak{l} \ni f$ defined over $\mathbb{K}, \overline{\mathfrak{l}}=\mathfrak{g}$.

Relating different coefficients

- $\mathrm{WO}(\eta):=\left\{\mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall\right.$ neutral (h, f) with $\left.f \in \mathcal{O}, \mathcal{F}_{h, f}(\eta) \not \equiv 0\right\}$.
- Say $(H, f) \succ(S, f)$ if $[H, S]=0$ and $\mathfrak{g}^{f} \cap \mathfrak{g}_{\geq 1}^{H} \subseteq \mathfrak{g}_{\geq 0}^{S-H}$.
- f is \mathbb{K}-distinguished if \forall Levi $\mathfrak{l} \ni f$ defined over $\mathbb{K}, \overline{\mathfrak{l}}=\mathfrak{g}$.
- (S, f) is called Levi-distinguished if \exists parabolic $\mathfrak{p}=\mathfrak{l u}$ s.t. f is \mathbb{K}-distinguished in \mathfrak{l}, and $\mathfrak{n}_{S, f}=\mathfrak{l}_{S, f} \oplus \mathfrak{u}$.

Relating different coefficients

- $\mathrm{WO}(\eta):=\left\{\mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall\right.$ neutral (h, f) with $\left.f \in \mathcal{O}, \mathcal{F}_{h, f}(\eta) \not \equiv 0\right\}$.
- Say $(H, f) \succ(S, f)$ if $[H, S]=0$ and $\mathfrak{g}^{f} \cap \mathfrak{g}_{\geq 1}^{H} \subseteq \mathfrak{g}_{\geq 0}^{S-H}$.
- f is \mathbb{K}-distinguished if \forall Levi $\mathfrak{l} \ni f$ defined over $\mathbb{K}, \overline{\mathfrak{l}}=\mathfrak{g}$.
- (S, f) is called Levi-distinguished if \exists parabolic $\mathfrak{p}=\mathfrak{l u}$ s.t. f is \mathbb{K}-distinguished in \mathfrak{l}, and $\mathfrak{n}_{S, f}=\mathfrak{l}_{S, f} \oplus \mathfrak{u}$.
- Whittaker coefficients are Levi-distinguished.

Relating different coefficients

- $\mathrm{WO}(\eta):=\left\{\mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall\right.$ neutral (h, f) with $\left.f \in \mathcal{O}, \mathcal{F}_{h, f}(\eta) \not \equiv 0\right\}$.
- Say $(H, f) \succ(S, f)$ if $[H, S]=0$ and $\mathfrak{g}^{f} \cap \mathfrak{g}_{\geq 1}^{H} \subseteq \mathfrak{g}_{\geq 0}^{S-H}$.
- f is \mathbb{K}-distinguished if \forall Levi $\mathfrak{l} \ni f$ defined over $\mathbb{K}, \overline{\mathfrak{l}}=\mathfrak{g}$.
- (S, f) is called Levi-distinguished if \exists parabolic $\mathfrak{p}=\mathfrak{l u}$ s.t. f is \mathbb{K}-distinguished in \mathfrak{l}, and $\mathfrak{n}_{S, f}=\mathfrak{l}_{S, f} \oplus \mathfrak{u}$.
- Whittaker coefficients are Levi-distinguished.
- For Whittaker pairs with the same f and commuting H-s, neutral \succ any \succ Levi-distinguished.

Relating different coefficients

- $\mathrm{WO}(\eta):=\left\{\mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall\right.$ neutral (h, f) with $\left.f \in \mathcal{O}, \mathcal{F}_{h, f}(\eta) \not \equiv 0\right\}$.
- Say $(H, f) \succ(S, f)$ if $[H, S]=0$ and $\mathfrak{g}^{f} \cap \mathfrak{g}_{\geq 1}^{H} \subseteq \mathfrak{g}_{\geq 0}^{S-H}$.
- f is \mathbb{K}-distinguished if \forall Levi $\mathfrak{l} \ni f$ defined over $\mathbb{K}, \overline{\mathfrak{l}}=\mathfrak{g}$.
- (S, f) is called Levi-distinguished if \exists parabolic $\mathfrak{p}=\mathfrak{l u}$ s.t. f is \mathbb{K}-distinguished in \mathfrak{l}, and $\mathfrak{n}_{S, f}=\mathfrak{l}_{S, f} \oplus \mathfrak{u}$.
- Whittaker coefficients are Levi-distinguished.
- For Whittaker pairs with the same f and commuting H-s, neutral \succ any \succ Levi-distinguished.

Relating different coefficients

- $\mathrm{WO}(\eta):=\left\{\mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall\right.$ neutral (h, f) with $\left.f \in \mathcal{O}, \mathcal{F}_{h, f}(\eta) \not \equiv 0\right\}$.
- Say $(H, f) \succ(S, f)$ if $[H, S]=0$ and $\mathfrak{g}^{f} \cap \mathfrak{g}_{\geq 1}^{H} \subseteq \mathfrak{g}_{\geq 0}^{S-H}$.
- f is \mathbb{K}-distinguished if \forall Levi $\mathfrak{l} \ni f$ defined over $\mathbb{K}, \overline{\mathfrak{l}}=\mathfrak{g}$.
- (S, f) is called Levi-distinguished if \exists parabolic $\mathfrak{p}=\mathfrak{l u}$ s.t. f is \mathbb{K}-distinguished in \mathfrak{l}, and $\mathfrak{n}_{S, f}=\mathfrak{l}_{S, f} \oplus \mathfrak{u}$.
- Whittaker coefficients are Levi-distinguished.
- For Whittaker pairs with the same f and commuting H-s, neutral \succ any \succ Levi-distinguished.

Theorem

Let $(H, f) \succ(S, f)$. Then
(i) $\mathcal{F}_{H, f}[\eta]$ linearly determines $\mathcal{F}_{S, f}[\eta]$.
(ii) If $\Gamma f \in \mathrm{WO}^{\max }(\eta)$ and $\mathfrak{g}_{1}^{H}=\mathfrak{g}_{1}^{S}=0$ let $\mathfrak{v}:=\mathfrak{g}_{>1}^{H} \cap \mathfrak{g}_{<1}^{S}$. Then

$$
\mathcal{F}_{H, f}[\eta](g)=\int_{V(\mathbb{A})} \mathcal{F}_{S, f}[\eta](v g) d v
$$

Theorem
Let $(H, f) \succ(S, f)$. Then
(i) $\mathcal{F}_{H, f}[\eta]$ linearly determines $\mathcal{F}_{S, f}[\eta]$.
(ii) If $\Gamma f \in \mathrm{WO}^{\max }(\eta)$ and $\mathfrak{g}_{1}^{H}=\mathfrak{g}_{1}^{S}=0$ let $\mathfrak{v}:=\mathfrak{g}_{>1}^{H} \cap \mathfrak{g}_{<1}^{S}$. Then

$$
\mathcal{F}_{H, f}[\eta](g)=\int_{V(\mathbb{A})} \mathcal{F}_{S, f}[\eta](v g) d v
$$

Theorem

Let $(H, f) \succ(S, f)$. Then
(i) $\mathcal{F}_{H, f}[\eta]$ linearly determines $\mathcal{F}_{S, f}[\eta]$.
(ii) If $\Gamma f \in \mathrm{WO}^{\max }(\eta)$ and $\mathfrak{g}_{1}^{H}=\mathfrak{g}_{1}^{S}=0$ let $\mathfrak{v}:=\mathfrak{g}_{>1}^{H} \cap \mathfrak{g}_{<1}^{S}$. Then

$$
\mathcal{F}_{H, f}[\eta](g)=\int_{V(\mathbb{A})} \mathcal{F}_{S, f}[\eta](v g) d v
$$

Corollary

(i) If η is cuspidal then any $\mathcal{O} \in \mathrm{WO}^{\max }(\eta)$ is \mathbb{K}-distinguished. In particular, \mathcal{O} is totally even for $G=\mathrm{Sp}_{2 n}$, totally odd for $G=S O(V)$, not minimal for rk $G>1$, and not next-to-minimal for rk $G>2, G \neq F_{4}$.
(ii) If $f \notin \mathrm{WO}(\eta)$ then $\mathcal{F}_{H, f}(\eta)=0$ for any H.
(iii) Let G be simply-laced, H define a maximal parabolic, $f \in \mathrm{WO}^{\max }(\eta)$: f is minimal $\Rightarrow \mathcal{F}_{H, f}(\eta)=\mathcal{W}_{f}(\eta)$
f is next-to-minimal $\Rightarrow \mathcal{F}_{H, f}(\eta)=\int_{V(\mathbb{A})} \mathcal{W}_{f}(\eta)$.
The RHS is frequently Eulerian.

Example

$$
\begin{aligned}
& G:=\mathrm{GL}(4, \mathbb{A}), f:=E_{21}+E_{43}, H:=\operatorname{diag}(3,1,-1,-3), \\
& h=\operatorname{diag}(1,-1,1,-1), Z=H-h=\operatorname{diag}(2,2,-2,-2), H_{t}:=h+t Z
\end{aligned}
$$

Example

$G:=\mathrm{GL}(4, \mathbb{A}), f:=E_{21}+E_{43}, H:=\operatorname{diag}(3,1,-1,-3)$,
$h=\operatorname{diag}(1,-1,1,-1), Z=H-h=\operatorname{diag}(2,2,-2,-2), H_{t}:=h+t Z$.
Then $\mathfrak{n}_{0} \subset \mathfrak{n}_{1 / 4} \oplus \mathfrak{i} \sim \mathfrak{n}_{1 / 4} \oplus \mathfrak{j} \subset \mathfrak{n}_{3 / 4}=\mathfrak{n}_{1}$:

$$
\begin{gathered}
\left(\begin{array}{cccc}
0 & - & 0 & - \\
0 & 0 & 0 & 0 \\
0 & - & 0 & - \\
0 & 0 & 0 & 0
\end{array}\right) \subset\left(\begin{array}{cccc}
0 & - & a & - \\
0 & 0 & 0 & a \\
0 & * & 0 & - \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
0 & - & * & - \\
0 & 0 & 0 & * \\
0 & 0 & 0 & - \\
0 & 0 & 0 & 0
\end{array}\right) \\
\\
\subset\left(\begin{array}{llll}
0 & - & - \\
0 & 0 & * & - \\
0 & 0 & 0 & - \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llcc}
0 & - & - & - \\
0 & 0 & - & - \\
0 & 0 & 0 & - \\
0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Both $*$ and - denote arbitrary elements. - denotes the entries in $\mathfrak{g}_{>0}^{H_{t}}$ and * those in $\mathfrak{g}_{1}^{H_{t}}$. a denotes equal elements in $\mathfrak{g}_{1}^{H_{t}} \cap \mathfrak{g}^{f}$.

Expressing forms through their Whittaker coefficients

Theorem
 Any $\mathcal{F}_{H, f}$ is linearly determined by all Levi-distinguished Fourier coefficients $\mathcal{F}_{S, F}$ with $\Gamma F \geq \Gamma f$.

Expressing forms through their Whittaker coefficients

Theorem

Any $\mathcal{F}_{H, f}$ is linearly determined by all Levi-distinguished Fourier coefficients $\mathcal{F}_{S, F}$ with $\Gamma F \geq \Gamma f$.

Corollary

(i) Any $\eta \in C^{\infty}(\Gamma \backslash G)$ is linearly determined by all its Levi-distinguished Fourier coefficients.

Expressing forms through their Whittaker coefficients

Theorem

Any $\mathcal{F}_{H, f}$ is linearly determined by all Levi-distinguished Fourier coefficients $\mathcal{F}_{S, F}$ with $\Gamma F \geq \Gamma f$.

Corollary

(i) Any $\eta \in C^{\infty}(\Gamma \backslash G)$ is linearly determined by all its Levi-distinguished Fourier coefficients.
(ii) If all $\mathcal{O} \in \mathrm{WO}(\eta)$ admit Whittaker coefficients then η is linearly determined by its Whittaker coefficients.

Expressing forms through their Whittaker coefficients

Theorem

Any $\mathcal{F}_{H, f}$ is linearly determined by all Levi-distinguished Fourier coefficients $\mathcal{F}_{S, F}$ with $\Gamma F \geq \Gamma f$.

Corollary

(i) Any $\eta \in C^{\infty}(\Gamma \backslash G)$ is linearly determined by all its Levi-distinguished Fourier coefficients.
(ii) If all $\mathcal{O} \in \mathrm{WO}(\eta)$ admit Whittaker coefficients then η is linearly determined by its Whittaker coefficients.
(iii) If G is split and simply-laced, and η is minimal or next-to-minimal then all Fourier coefficients of η are linearly determined by Whittaker coefficients of η.

Parabolic minimal Fourier coeff. of next-to-minimal forms

- \mathfrak{g} split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{u}$ Borel

Parabolic minimal Fourier coeff. of next-to-minimal forms

- \mathfrak{g} split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{u}$ Borel
- α simple root. $\mathfrak{q}_{\alpha}=\mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha}=\mathfrak{g}_{\geq 0}^{S_{\alpha}}$ max. parabolic.

Parabolic minimal Fourier coeff. of next-to-minimal forms

- \mathfrak{g} split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{u}$ Borel
- α simple root. $\mathfrak{q}_{\alpha}=\mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha}=\mathfrak{g}_{\geq 0}^{S_{\alpha}}$ max. parabolic.
- $I^{(\perp \alpha)}=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ Bourbaki enumeration of the simple roots orthogonal to α.

Parabolic minimal Fourier coeff. of next-to-minimal forms

- \mathfrak{g} split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{u}$ Borel
- α simple root. $\mathfrak{q}_{\alpha}=\mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha}=\mathfrak{g}_{\geq 0}^{S_{\alpha}}$ max. parabolic.
- $I^{(\perp \alpha)}=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ Bourbaki enumeration of the simple roots orthogonal to α.
- $\forall i G \supset L_{i}:=$ Levi given by roots $\beta_{1}, \ldots, \beta_{i}$

Parabolic minimal Fourier coeff. of next-to-minimal forms

- \mathfrak{g} split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{u}$ Borel
- α simple root. $\mathfrak{q}_{\alpha}=\mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha}=\mathfrak{g}_{\geq 0}^{S_{\alpha}}$ max. parabolic.
- $I^{(\perp \alpha)}=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ Bourbaki enumeration of the simple roots orthogonal to α.
- $\forall i G \supset L_{i}:=$ Levi given by roots $\beta_{1}, \ldots, \beta_{i}$
- $L_{i} \supset S_{i}:=$ stabilizer of the root space $\mathfrak{g}_{-\beta_{i}}, \Gamma_{i}:=\left(L_{i} \cap \Gamma\right) /\left(S_{i} \cap \Gamma\right)$.

Parabolic minimal Fourier coeff. of next-to-minimal forms

- \mathfrak{g} split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{u}$ Borel
- α simple root. $\mathfrak{q}_{\alpha}=\mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha}=\mathfrak{g}_{\geq 0}^{S_{\alpha}}$ max. parabolic.
- $I^{(\perp \alpha)}=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ Bourbaki enumeration of the simple roots orthogonal to α.
- $\forall i G \supset L_{i}:=$ Levi given by roots $\beta_{1}, \ldots, \beta_{i}$
- $L_{i} \supset S_{i}:=$ stabilizer of the root space $\mathfrak{g}_{-\beta_{i}}, \Gamma_{i}:=\left(L_{i} \cap \Gamma\right) /\left(S_{i} \cap \Gamma\right)$.
- For $f \in \mathfrak{g}_{-\alpha}^{\times}$and next-to-minimal $\eta_{\mathrm{ntm}} \in C^{\infty}(\Gamma \backslash G)$ let

$$
A_{i}^{f}\left[\eta_{\mathrm{ntm}}\right](g):=\sum_{\gamma \in \Gamma_{i-1}} \sum_{\varphi \in \mathfrak{g}_{-\beta_{i}}} \mathcal{W}_{\varphi+f}\left[\eta_{\mathrm{ntm}}\right](\gamma g)
$$

Parabolic minimal Fourier coeff. of next-to-minimal forms

- \mathfrak{g} split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{u}$ Borel
- α simple root. $\mathfrak{q}_{\alpha}=\mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha}=\mathfrak{g}_{\geq 0}^{S_{\alpha}}$ max. parabolic.
- $I^{(\perp \alpha)}=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ Bourbaki enumeration of the simple roots orthogonal to α.
- $\forall i G \supset L_{i}:=$ Levi given by roots $\beta_{1}, \ldots, \beta_{i}$
- $L_{i} \supset S_{i}:=$ stabilizer of the root space $\mathfrak{g}_{-\beta_{i}}, \Gamma_{i}:=\left(L_{i} \cap \Gamma\right) /\left(S_{i} \cap \Gamma\right)$.
- For $f \in \mathfrak{g}_{-\alpha}^{\times}$and next-to-minimal $\eta_{\mathrm{ntm}} \in C^{\infty}(\Gamma \backslash G)$ let

$$
A_{i}^{f}\left[\eta_{\mathrm{ntm}}\right](g):=\sum_{\gamma \in \Gamma_{i-1}} \sum_{\varphi \in \mathfrak{g}_{-\beta_{i}}} \mathcal{W}_{\varphi+f}\left[\eta_{\mathrm{ntm}}\right](\gamma g)
$$

Parabolic minimal Fourier coeff. of next-to-minimal forms

- \mathfrak{g} split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{u}$ Borel
- α simple root. $\mathfrak{q}_{\alpha}=\mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha}=\mathfrak{g}_{\geq 0}^{S_{\alpha}}$ max. parabolic.
- $I^{(\perp \alpha)}=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ Bourbaki enumeration of the simple roots orthogonal to α.
- $\forall i G \supset L_{i}:=$ Levi given by roots $\beta_{1}, \ldots, \beta_{i}$
- $L_{i} \supset S_{i}:=$ stabilizer of the root space $\mathfrak{g}_{-\beta_{i}}, \Gamma_{i}:=\left(L_{i} \cap \Gamma\right) /\left(S_{i} \cap \Gamma\right)$.
- For $f \in \mathfrak{g}_{-\alpha}^{\times}$and next-to-minimal $\eta_{\mathrm{ntm}} \in C^{\infty}(\Gamma \backslash G)$ let

$$
A_{i}^{f}\left[\eta_{\mathrm{ntm}}\right](g):=\sum_{\gamma \in \Gamma_{i-1}} \sum_{\varphi \in \mathfrak{g}_{-\beta_{i}}^{\times}} \mathcal{W}_{\varphi+f}\left[\eta_{\mathrm{ntm}}\right](\gamma g)
$$

Theorem

$$
\mathcal{F}_{S_{\alpha}, f}\left[\eta_{\mathrm{ntm}}\right]=\mathcal{W}_{f}\left[\eta_{\mathrm{ntm}}\right]+\sum_{i=1}^{k} A_{i}^{f}\left[\eta_{\mathrm{ntm}}\right]
$$

Explanation for GL_{n} (PS-Shalika, Ahlen-Gustafsson-Liu-

 Kleinschmidt-Persson)Let $\eta \in C^{\infty}\left(\Gamma \backslash \mathrm{GL}_{n}(\mathbb{A})\right)$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\mathrm{GL}_{n-1}(\mathbb{K})$.

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Explanation for GL_{n}

Let $\eta \in C^{\infty}\left(\Gamma \backslash \mathrm{GL}_{n}(\mathbb{A})\right)$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\mathrm{GL}_{n-1}(\mathbb{K})$. Conjugate, restrict to the next column and continue
$\left(\begin{array}{lllll}0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccccc}0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)+\left(\begin{array}{ccccc}0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\cdots$

Explanation for GL_{n}

Let $\eta \in C^{\infty}\left(\Gamma \backslash \mathrm{GL}_{n}(\mathbb{A})\right)$ ．Restrict to the last column and decompose to Fourier series．All non－trivial characters are conjugate by $\mathrm{GL}_{n-1}(\mathbb{K})$ ．
Conjugate，restrict to the next column and continue
$\left(\begin{array}{lllll}0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lllll}0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)+\left(\begin{array}{ccccc}0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\cdots$
－For $\eta_{\min }$ ，only one column can have a non－trivial character．

Explanation for GL_{n}

Let $\eta \in C^{\infty}\left(\Gamma \backslash \mathrm{GL}_{n}(\mathbb{A})\right)$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\mathrm{GL}_{n-1}(\mathbb{K})$.
Conjugate, restrict to the next column and continue
$\left(\begin{array}{lllll}0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccccc}0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)+\left(\begin{array}{ccccc}0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\cdots$

- For $\eta_{\min }$, only one column can have a non-trivial character.
- For $\eta_{\mathrm{ntm}}, \mathcal{F}_{S_{\alpha}, f}$ is a minimal automorphic function on L_{α}.

Explanation for GL_{n}

Let $\eta \in C^{\infty}\left(\Gamma \backslash \mathrm{GL}_{n}(\mathbb{A})\right)$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\mathrm{GL}_{n-1}(\mathbb{K})$.
Conjugate, restrict to the next column and continue
$\left(\begin{array}{lllll}0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccccc}0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)+\left(\begin{array}{ccccc}0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\cdots$

- For $\eta_{\min }$, only one column can have a non-trivial character.
- For $\eta_{\mathrm{ntm}}, \mathcal{F}_{S_{\alpha}, f}$ is a minimal automorphic function on L_{α}.

Explanation for GL_{n}

Let $\eta \in C^{\infty}\left(\Gamma \backslash \mathrm{GL}_{n}(\mathbb{A})\right)$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\mathrm{GL}_{n-1}(\mathbb{K})$.
Conjugate, restrict to the next column and continue
$\left(\begin{array}{lllll}0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lllll}0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0\end{array}\right)+\left(\begin{array}{ccccc}0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & \frac{*}{3} \\ 0 & 0 & 0 & 0 & 0\end{array}\right)=\cdots$

- For $\eta_{\min }$, only one column can have a non-trivial character.
- For $\eta_{\mathrm{ntm}}, \mathcal{F}_{S_{\alpha}, f}$ is a minimal automorphic function on L_{α}.

$$
\left(\begin{array}{lllll}
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lllll}
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lllll}
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

For $\eta_{\mathrm{ntm}}, \mathcal{F}_{S_{\alpha}, f}$ is a minimal automorphic function on L_{α}.

$$
\begin{gathered}
\left(\begin{array}{ccccc}
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccccc}
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccccc}
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\\
\mathcal{F}_{S_{\alpha}, f}\left[\eta_{\mathrm{ntm}}\right]=\mathcal{W}_{f}\left[\eta_{\mathrm{ntm}}\right]+\sum_{i=1}^{k} A_{i}^{f}\left[\eta_{\mathrm{ntm}}\right]
\end{gathered}
$$

where $f \in \mathfrak{g}_{-\alpha}^{\times}$and

$$
A_{i}^{f}[\eta](g):=\sum_{\gamma \in \Gamma_{i-1}} \sum_{\varphi \in \mathfrak{g}_{-\beta_{i}}^{\times}} \mathcal{W}_{\varphi+f}[\eta](\gamma g)
$$

For $\eta_{\mathrm{ntm}}, \mathcal{F}_{S_{\alpha}, f}$ is a minimal automorphic function on L_{α}.

$$
\begin{gathered}
\left(\begin{array}{ccccc}
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccccc}
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccccc}
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\\
\mathcal{F}_{S_{\alpha}, f}\left[\eta_{\mathrm{ntm}}\right]=\mathcal{W}_{f}\left[\eta_{\mathrm{ntm}}\right]+\sum_{i=1}^{k} A_{i}^{f}\left[\eta_{\mathrm{ntm}}\right]
\end{gathered}
$$

where $f \in \mathfrak{g}_{-\alpha}^{\times}$and

$$
A_{i}^{f}[\eta](g):=\sum_{\gamma \in \Gamma_{i-1}} \sum_{\varphi \in \mathfrak{g}_{-\beta_{i}}} \mathcal{W}_{\varphi+f}[\eta](\gamma g)
$$

