Generalized and degenerate Whittaker models for representations of reductive groups over local fields

Dmitry Gourevitch http://www.wisdom.weizmann.ac.il/~dimagur

Sphericity workshop, Kloster Reute, Germany

February 2016

Whittaker models

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.

Whittaker models

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).

Whittaker models

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel $B=H U$,

Whittaker models

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel $B=H U$,
- $\Psi^{\times}:=$non-degenerate unitary characters of U.

Whittaker models

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel $B=H U$,
- $\Psi^{\times}:=$non-degenerate unitary characters of U.
- For $\psi \in \Psi^{\times}$define $\mathcal{W}_{\psi}:=\operatorname{ind}_{U}^{G}(\psi)$.

Whittaker models

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel $B=H U$,
- $\Psi^{\times}:=$non-degenerate unitary characters of U.
- For $\psi \in \Psi^{\times}$define $\mathcal{W}_{\psi}:=\operatorname{ind}_{U}^{G}(\psi)$.
- For $\pi \in \mathcal{M}(G)$ define

$$
\mathcal{W}_{\psi}(\pi):=\operatorname{Hom}_{G}\left(\mathcal{W}_{\psi}, \pi^{*}\right)=\operatorname{Hom}_{U}(\pi, \psi)
$$

Whittaker models

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel $B=H U$,
- $\Psi^{\times}:=$non-degenerate unitary characters of U.
- For $\psi \in \Psi^{\times}$define $\mathcal{W}_{\psi}:=\operatorname{ind}_{U}^{G}(\psi)$.
- For $\pi \in \mathcal{M}(G)$ define

$$
\mathcal{W}_{\psi}(\pi):=\operatorname{Hom}_{G}\left(\mathcal{W}_{\psi}, \pi^{*}\right)=\operatorname{Hom}_{U}(\pi, \psi)
$$

Whittaker models

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel $B=H U$,
- $\Psi^{\times}:=$non-degenerate unitary characters of U.
- For $\psi \in \Psi^{\times}$define $\mathcal{W}_{\psi}:=\operatorname{ind}_{U}^{G}(\psi)$.
- For $\pi \in \mathcal{M}(G)$ define

$$
\mathcal{W}_{\psi}(\pi):=\operatorname{Hom}_{G}\left(\mathcal{W}_{\psi}, \pi^{*}\right)=\operatorname{Hom}_{U}(\pi, \psi)
$$

Theorem (Jacquet, Gelfand-Kazhdan, Shalika, Rodier, Kostant, Vogan, Casselman-Hecht-Milicic, 70s-90s)

- For any $\psi \in \Psi^{\times}, \quad \pi \mapsto \mathcal{W}_{\psi}(\pi)$ is an exact functor.

Whittaker models

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel $B=H U$,
- $\Psi^{\times}:=$non-degenerate unitary characters of U.
- For $\psi \in \Psi^{\times}$define $\mathcal{W}_{\psi}:=\operatorname{ind}_{U}^{G}(\psi)$.
- For $\pi \in \mathcal{M}(G)$ define

$$
\mathcal{W}_{\psi}(\pi):=\operatorname{Hom}_{G}\left(\mathcal{W}_{\psi}, \pi^{*}\right)=\operatorname{Hom}_{U}(\pi, \psi)
$$

Theorem (Jacquet, Gelfand-Kazhdan, Shalika, Rodier, Kostant, Vogan, Casselman-Hecht-Milicic, 70s-90s)

- For any $\psi \in \Psi^{\times}, \quad \pi \mapsto \mathcal{W}_{\psi}(\pi)$ is an exact functor.
- For any $\pi \in \operatorname{Irr}(G), \psi \in \Psi^{\times}$we have $\operatorname{dim} \mathcal{W}_{\psi}(\pi) \leq 1$.

Whittaker models

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel $B=H U$,
- $\Psi^{\times}:=$non-degenerate unitary characters of U.
- For $\psi \in \Psi^{\times}$define $\mathcal{W}_{\psi}:=\operatorname{ind}_{U}^{G}(\psi)$.
- For $\pi \in \mathcal{M}(G)$ define

$$
\mathcal{W}_{\psi}(\pi):=\operatorname{Hom}_{G}\left(\mathcal{W}_{\psi}, \pi^{*}\right)=\operatorname{Hom}_{U}(\pi, \psi)
$$

Theorem (Jacquet, Gelfand-Kazhdan, Shalika, Rodier, Kostant, Vogan, Casselman-Hecht-Milicic, 70s-90s)

- For any $\psi \in \Psi^{\times}, \quad \pi \mapsto \mathcal{W}_{\psi}(\pi)$ is an exact functor.
- For any $\pi \in \operatorname{Irr}(G), \psi \in \Psi^{\times}$we have $\operatorname{dim} \mathcal{W}_{\psi}(\pi) \leq 1$.
- For any $\pi \in \mathcal{M}(G)$,

$$
\left(\exists \psi \in \Psi^{\times} \text {with } \mathcal{W}_{\psi}(\pi) \neq 0\right) \Leftrightarrow \pi \text { is large. }
$$

Wave front set and wave-front cycle

Theorem (Howe, Harish-Chandra, Barbasch-Vogan, 70s)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$
\exp ^{*}\left(\chi_{\pi}\right) \approx \sum \operatorname{co}_{\mathcal{O}} \mathcal{F}\left(\mu_{\mathcal{O}}\right)
$$

Wave front set and wave-front cycle

Theorem (Howe, Harish-Chandra, Barbasch-Vogan, 70s)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$
\exp ^{*}\left(\chi_{\pi}\right) \approx \sum \operatorname{co}_{\mathcal{O}} \mathcal{F}\left(\mu_{\mathcal{O}}\right)
$$

- Let $\mathcal{N} \subset \mathfrak{g}^{*}$ denote the nilpotent cone.

Wave front set and wave-front cycle

Theorem (Howe, Harish-Chandra, Barbasch-Vogan, 70s)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$
\exp ^{*}\left(\chi_{\pi}\right) \approx \sum c_{\mathcal{O}} \mathcal{F}\left(\mu_{\mathcal{O}}\right)
$$

- Let $\mathcal{N} \subset \mathfrak{g}^{*}$ denote the nilpotent cone.
- Define $\operatorname{WF}(\pi)=\cup\left\{\overline{\mathcal{O}} \mid c_{\mathcal{O}} \neq 0\right\} \subset \mathcal{N}$.

Wave front set and wave-front cycle

Theorem (Howe, Harish-Chandra, Barbasch-Vogan, 70s)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$
\exp ^{*}\left(\chi_{\pi}\right) \approx \sum c_{\mathcal{O}} \mathcal{F}\left(\mu_{\mathcal{O}}\right)
$$

- Let $\mathcal{N} \subset \mathfrak{g}^{*}$ denote the nilpotent cone.
- Define $\operatorname{WF}(\pi)=\cup\left\{\overline{\mathcal{O}} \mid c_{\mathcal{O}} \neq 0\right\} \subset \mathcal{N}$.
- π is called large if $\operatorname{dim} \operatorname{WF}(\pi)=\operatorname{dim} \mathcal{N}$.

The result of Moeglin and Waldspurger in the p-adic case

- Fix a semisimple $H \in \mathfrak{g}$, and let \mathfrak{g}_{i} denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.

The result of Moeglin and Waldspurger in the p-adic case

- Fix a semisimple $H \in \mathfrak{g}$, and let \mathfrak{g}_{i} denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in \mathbb{Q}.
- Let $\varphi \in \mathfrak{g}_{-2}^{*}$ and let $\mathfrak{l} \subset \mathfrak{g}_{1}$ be a maximal isotropic subspace w.r.t $\omega(X, Y):=\varphi([X, Y])$.

The result of Moeglin and Waldspurger in the p－adic case

－Fix a semisimple $H \in \mathfrak{g}$ ，and let \mathfrak{g}_{i} denote the eigenspaces of $\operatorname{ad}(H)$ ． Assume that all the eigenvalues i lie in \mathbb{Q} ．
－Let $\varphi \in \mathfrak{g}_{-2}^{*}$ and let $\mathfrak{l} \subset \mathfrak{g}_{1}$ be a maximal isotropic subspace w．r．t $\omega(X, Y):=\varphi([X, Y])$ ．
－Define $\mathfrak{v}:=\bigoplus_{i>1} \mathfrak{g}_{i}, \mathfrak{n}:=\mathfrak{v} \oplus \mathfrak{l}, N:=\operatorname{Exp}(\mathfrak{n})$

The result of Moeglin and Waldspurger in the p-adic case

- Fix a semisimple $H \in \mathfrak{g}$, and let \mathfrak{g}_{i} denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in Q.
- Let $\varphi \in \mathfrak{g}_{-2}^{*}$ and let $\mathfrak{l} \subset \mathfrak{g}_{1}$ be a maximal isotropic subspace w.r.t $\omega(X, Y):=\varphi([X, Y])$.
- Define $\mathfrak{v}:=\bigoplus_{i>1} \mathfrak{g}_{i}, \mathfrak{n}:=\mathfrak{v} \oplus \mathfrak{l}, N:=\operatorname{Exp}(\mathfrak{n})$
- Define $\mathcal{W}_{H, \varphi}:=\operatorname{ind}_{N}^{G} \varphi$, and for $\pi \in \mathcal{M}(G)$ let

$$
\mathcal{W}_{H, \varphi}(\pi):=\operatorname{Hom}_{G}\left(\mathcal{W}_{H, \varphi}, \pi^{*}\right)=\operatorname{Hom}_{N}(\pi, \varphi)
$$

The result of Moeglin and Waldspurger in the p-adic case

- Fix a semisimple $H \in \mathfrak{g}$, and let \mathfrak{g}_{i} denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in Q.
- Let $\varphi \in \mathfrak{g}_{-2}^{*}$ and let $\mathfrak{l} \subset \mathfrak{g}_{1}$ be a maximal isotropic subspace w.r.t $\omega(X, Y):=\varphi([X, Y])$.
- Define $\mathfrak{v}:=\bigoplus_{i>1} \mathfrak{g}_{i}, \mathfrak{n}:=\mathfrak{v} \oplus \mathfrak{l}, N:=\operatorname{Exp}(\mathfrak{n})$
- Define $\mathcal{W}_{H, \varphi}:=\operatorname{ind}_{N}^{G} \varphi$, and for $\pi \in \mathcal{M}(G)$ let

$$
\mathcal{W}_{H, \varphi}(\pi):=\operatorname{Hom}_{G}\left(\mathcal{W}_{H, \varphi}, \pi^{*}\right)=\operatorname{Hom}_{N}(\pi, \varphi)
$$

Theorem (Moeglin-Waldspurger, 87')

Assume that \mathbb{F} is non-archimedean, and H is tangent to a 1-parameter subgroup. Let $\pi \in \mathcal{M}(G)$. Then

The result of Moeglin and Waldspurger in the p-adic case

- Fix a semisimple $H \in \mathfrak{g}$, and let \mathfrak{g}_{i} denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in Q.
- Let $\varphi \in \mathfrak{g}_{-2}^{*}$ and let $\mathfrak{l} \subset \mathfrak{g}_{1}$ be a maximal isotropic subspace w.r.t $\omega(X, Y):=\varphi([X, Y])$.
- Define $\mathfrak{v}:=\bigoplus_{i>1} \mathfrak{g}_{i}, \mathfrak{n}:=\mathfrak{v} \oplus \mathfrak{l}, N:=\operatorname{Exp}(\mathfrak{n})$
- Define $\mathcal{W}_{H, \varphi}:=\operatorname{ind}_{N}^{G} \varphi$, and for $\pi \in \mathcal{M}(G)$ let

$$
\mathcal{W}_{H, \varphi}(\pi):=\operatorname{Hom}_{G}\left(\mathcal{W}_{H, \varphi}, \pi^{*}\right)=\operatorname{Hom}_{N}(\pi, \varphi)
$$

Theorem (Moeglin-Waldspurger, 87')

Assume that \mathbb{F} is non-archimedean, and H is tangent to a 1-parameter subgroup. Let $\pi \in \mathcal{M}(G)$. Then

- If $\mathcal{W}_{H, \varphi}(\pi) \neq 0$ then $\varphi \in \operatorname{WF}(\pi)$.

The result of Moeglin and Waldspurger in the p-adic case

- Fix a semisimple $H \in \mathfrak{g}$, and let \mathfrak{g}_{i} denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues i lie in Q.
- Let $\varphi \in \mathfrak{g}_{-2}^{*}$ and let $\mathfrak{l} \subset \mathfrak{g}_{1}$ be a maximal isotropic subspace w.r.t $\omega(X, Y):=\varphi([X, Y])$.
- Define $\mathfrak{v}:=\bigoplus_{i>1} \mathfrak{g}_{i}, \mathfrak{n}:=\mathfrak{v} \oplus \mathfrak{l}, N:=\operatorname{Exp}(\mathfrak{n})$
- Define $\mathcal{W}_{H, \varphi}:=\operatorname{ind}_{N}^{G} \varphi$, and for $\pi \in \mathcal{M}(G)$ let

$$
\mathcal{W}_{H, \varphi}(\pi):=\operatorname{Hom}_{G}\left(\mathcal{W}_{H, \varphi}, \pi^{*}\right)=\operatorname{Hom}_{N}(\pi, \varphi)
$$

Theorem (Moeglin-Waldspurger, 87')

Assume that \mathbb{F} is non-archimedean, and H is tangent to a 1-parameter subgroup. Let $\pi \in \mathcal{M}(G)$. Then

- If $\mathcal{W}_{H, \varphi}(\pi) \neq 0$ then $\varphi \in \operatorname{WF}(\pi)$.
- For any (H, φ) with $G \varphi$ open in $\operatorname{WF}(\pi)$,

$$
\operatorname{dim} \mathcal{W}_{H, \varphi}(\pi)=c_{\varphi} .
$$

Examples

- We call (H, φ) a Whittaker pair, and $\mathcal{W}_{H, \varphi}$ a degenerate Whittaker model. We call them generalized if (H, φ) can be completed to an $\mathfrak{s l}_{2}$-triple, and principal degenerate if they come from a regular Whittaker pair of a Levi subgroup. Some examples for $G=G L_{4}(\mathbb{F})$:

Examples

- We call (H, φ) a Whittaker pair, and $\mathcal{W}_{H, \varphi}$ a degenerate Whittaker model. We call them generalized if (H, φ) can be completed to an $\mathfrak{s l}_{2}$-triple, and principal degenerate if they come from a regular Whittaker pair of a Levi subgroup. Some examples for $G=G L_{4}(\mathbb{F})$:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{cccc}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Examples

- We call (H, φ) a Whittaker pair, and $\mathcal{W}_{H, \varphi}$ a degenerate Whittaker model. We call them generalized if (H, φ) can be completed to an $\mathfrak{s l}_{2}$-triple, and principal degenerate if they come from a regular Whittaker pair of a Levi subgroup. Some examples for $G=G L_{4}(\mathbb{F})$:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{cccc}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{cccc}
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

In both cases $\mathfrak{n}=\mathfrak{v}$.

Some results in the real case

In this slide $\mathbb{F}=\mathbb{R}$.
Theorem (Matumoto 87',92')

- If $\mathcal{W}_{H, \varphi}(\pi) \neq 0$ then $\varphi \in G_{C} \cdot \operatorname{WF}(\pi)$.
- If φ is regular nilpotent then $\mathcal{W}_{H, \varphi}(\pi) \neq 0 \Leftrightarrow \varphi \in \operatorname{WF}(\pi)$.

Some results in the real case

In this slide $\mathbb{F}=\mathbb{R}$.

Theorem (Matumoto 87',92')

- If $\mathcal{W}_{H, \varphi}(\pi) \neq 0$ then $\varphi \in G_{C} \cdot \operatorname{WF}(\pi)$.
- If φ is regular nilpotent then $\mathcal{W}_{H, \varphi}(\pi) \neq 0 \Leftrightarrow \varphi \in \mathrm{WF}(\pi)$.

Theorem (G.-Sahi, 2013)

Let G be quasi-split and (H, φ) be principal degenerate Whittaker pair.

$$
\mathcal{W}_{H, \varphi}(\pi) \neq 0 \Rightarrow \varphi \in \operatorname{WF}(\pi) \Rightarrow \exists g \in F_{G} \text { s.t. } \mathcal{W}_{H, g \cdot \varphi}(\pi) \neq 0
$$

where $F_{G}=\{1\}$ if $G=G L_{n}(\mathbb{R})$ or if G is a complex group, and $F_{G}=$ finite abelian group $\operatorname{Norm}_{G_{C}}(G) /\left(Z_{G_{C}} \cdot G\right)$ otherwise.

Some results in the real case

In this slide $\mathbb{F}=\mathbb{R}$.

Theorem (Matumoto 87',92')

- If $\mathcal{W}_{H, \varphi}(\pi) \neq 0$ then $\varphi \in G_{C} \cdot \operatorname{WF}(\pi)$.
- If φ is regular nilpotent then $\mathcal{W}_{H, \varphi}(\pi) \neq 0 \Leftrightarrow \varphi \in \mathrm{WF}(\pi)$.

Theorem (G.-Sahi, 2013)

Let G be quasi-split and (H, φ) be principal degenerate Whittaker pair.

$$
\mathcal{W}_{H, \varphi}(\pi) \neq 0 \Rightarrow \varphi \in \operatorname{WF}(\pi) \Rightarrow \exists g \in F_{G} \text { s.t. } \mathcal{W}_{H, g \cdot \varphi}(\pi) \neq 0
$$

where $F_{G}=\{1\}$ if $G=G L_{n}(\mathbb{R})$ or if G is a complex group, and $F_{G}=$ finite abelian group $\operatorname{Norm}_{G_{C}}(G) /\left(Z_{G_{C}} \cdot G\right)$ otherwise. Moreover, if G is complex classical and $\pi \in \operatorname{Irr}(G)$ then the set of principal degenerate Whittaker pairs (H, φ) with $\mathcal{W}_{H, \varphi}(\pi) \neq 0$ determines $\mathrm{WF}(\pi)$.

Our uniform results

Theorem (Gomez-G.-Sahi, 2015)

- Let (H, Φ) be a Whittaker pair, let $\varphi \in \overline{G_{H}} \Phi$. Then $\exists \mathcal{W}_{\varphi}^{\text {gen }} \rightarrow \mathcal{W}_{H, \Phi}$.

Our uniform results

Theorem (Gomez-G.-Sahi, 2015)

- Let (H, Φ) be a Whittaker pair, let $\varphi \in \overline{G_{H}} \Phi$. Then $\exists \mathcal{W}_{\varphi}^{\text {gen }} \rightarrow \mathcal{W}_{H, \Phi}$.
- For $G=\mathrm{GL}_{n}(\mathbb{F}), \pi \in \mathcal{M}(G), \mathcal{W}_{\varphi}^{\text {gen }}(\pi) \neq 0 \Leftrightarrow \varphi \in \operatorname{WF}(\pi)$.

Our uniform results

Theorem (Gomez-G.-Sahi, 2015)

- Let (H, Φ) be a Whittaker pair, let $\varphi \in \overline{G_{H}} \Phi$. Then $\exists \mathcal{W}_{\varphi}^{\text {gen }} \rightarrow \mathcal{W}_{H, \Phi}$.
- For $G=\mathrm{GL}_{n}(\mathbb{F}), \pi \in \mathcal{M}(G), \mathcal{W}_{\varphi}^{\text {gen }}(\pi) \neq 0 \Leftrightarrow \varphi \in \operatorname{WF}(\pi)$.
- For p-adic \mathbb{F}, and φ in the interior of $\operatorname{WF}(\pi)$ we obtain a functorial isomorphism $\mathcal{W}_{H, \phi}(\pi) \simeq \mathcal{W}_{H^{\prime}, \phi}(\pi)$ for any H, H^{\prime} tangent to 1-parameter subgroups.

Our uniform results

Theorem (Gomez-G.-Sahi, 2015)

- Let (H, Φ) be a Whittaker pair, let $\varphi \in \overline{G_{H}} \Phi$. Then $\exists \mathcal{W}_{\varphi}^{\text {gen }} \rightarrow \mathcal{W}_{H, \Phi}$.
- For $G=\mathrm{GL}_{n}(\mathbb{F}), \pi \in \mathcal{M}(G), \mathcal{W}_{\varphi}^{\text {gen }}(\pi) \neq 0 \Leftrightarrow \varphi \in \operatorname{WF}(\pi)$.
- For p-adic \mathbb{F}, and φ in the interior of $\operatorname{WF}(\pi)$ we obtain a functorial isomorphism $\mathcal{W}_{H, \phi}(\pi) \simeq \mathcal{W}_{H^{\prime}, \phi}(\pi)$ for any H, H^{\prime} tangent to 1-parameter subgroups.
- For $\mathrm{GL}_{n}(\mathbb{F})$ we also describe $\mathcal{W}_{\varphi}^{\text {gen }}(\pi)$ in terms of an analog of Bernstein-Zelevinsky derivatives. This enables us to extend to $G L_{n}(\mathbb{R})$ and $\mathrm{GL}_{n}(\mathbb{C})$ the results of Moeglin-Waldspurger on the dimension of $\mathcal{W}_{\varphi}^{\text {gen }}(\pi)$ and on the exactness of the generalized Whittaker functor.

Our uniform results

Theorem (Gomez-G.-Sahi, 2015)

- Let (H, Φ) be a Whittaker pair, let $\varphi \in \overline{G_{H}} \Phi$. Then $\exists \mathcal{W}_{\varphi}^{\text {gen }} \rightarrow \mathcal{W}_{H, \Phi}$.
- For $G=\mathrm{GL}_{n}(\mathbb{F}), \pi \in \mathcal{M}(G), \mathcal{W}_{\varphi}^{\text {gen }}(\pi) \neq 0 \Leftrightarrow \varphi \in \operatorname{WF}(\pi)$.
- For p-adic \mathbb{F}, and φ in the interior of $\operatorname{WF}(\pi)$ we obtain a functorial isomorphism $\mathcal{W}_{H, \phi}(\pi) \simeq \mathcal{W}_{H^{\prime}, \phi}(\pi)$ for any H, H^{\prime} tangent to 1-parameter subgroups.
- For $\mathrm{GL}_{n}(\mathbb{F})$ we also describe $\mathcal{W}_{\varphi}^{\text {gen }}(\pi)$ in terms of an analog of Bernstein-Zelevinsky derivatives. This enables us to extend to $G L_{n}(\mathbb{R})$ and $\mathrm{GL}_{n}(\mathbb{C})$ the results of Moeglin-Waldspurger on the dimension of $\mathcal{W}_{\varphi}^{\text {gen }}(\pi)$ and on the exactness of the generalized Whittaker functor.
- We also have a global (adelic) analogue.

Basic lemma

Define anti-symmetric form ω on \mathfrak{g} by $\omega(X, Y):=\varphi([X, Y])$.

Lemma (Following Ginzburg-Soudry-Rallis, Jiang-Liu, Lapid-Mao)

Let $\mathfrak{n}, \mathfrak{m} \subset \mathfrak{g}$ be nilpotent subalgebras such that $[\mathfrak{n}, \mathfrak{m}] \subset \mathfrak{n} \cap \mathfrak{m},\left.\omega\right|_{\mathfrak{n}}=0$, $\left.\omega\right|_{\mathfrak{m}}=0$ and the radical of $\left.\omega\right|_{\mathfrak{n}+\mathfrak{m}}$ is $\mathfrak{n} \cap \mathfrak{m}$. Then $\mathfrak{n}+\mathfrak{m}$ is a nilpotent Lie algebra and

$$
\operatorname{ind}_{\operatorname{Exp}(\mathfrak{n})}^{\operatorname{Exp}(\mathfrak{n}+\mathfrak{m})} \varphi \simeq \operatorname{ind}_{\operatorname{Exp}(\mathfrak{m})}^{\operatorname{Exp}(\mathfrak{n}+\mathfrak{m})} \varphi .
$$

Basic lemma

Define anti-symmetric form ω on \mathfrak{g} by $\omega(X, Y):=\varphi([X, Y])$.

Lemma (Following Ginzburg-Soudry-Rallis, Jiang-Liu, Lapid-Mao)

Let $\mathfrak{n}, \mathfrak{m} \subset \mathfrak{g}$ be nilpotent subalgebras such that $[\mathfrak{n}, \mathfrak{m}] \subset \mathfrak{n} \cap \mathfrak{m},\left.\omega\right|_{\mathfrak{n}}=0$, $\left.\omega\right|_{\mathfrak{m}}=0$ and the radical of $\left.\omega\right|_{\mathfrak{n}+\mathfrak{m}}$ is $\mathfrak{n} \cap \mathfrak{m}$. Then $\mathfrak{n}+\mathfrak{m}$ is a nilpotent Lie algebra and

$$
\operatorname{ind}_{\operatorname{Exp}(\mathfrak{n})}^{\operatorname{Exp}(\mathfrak{n}+\mathfrak{m})} \varphi \simeq \operatorname{ind}_{\operatorname{Exp}(\mathfrak{m})}^{\operatorname{Exp}(\mathfrak{n}+\mathfrak{m})} \varphi .
$$

Proof.

$\mathfrak{k}:=\mathfrak{n} \cap \mathfrak{m} \cap \operatorname{Ker}(\varphi)$. Then $\operatorname{Exp}(\mathfrak{n}+\mathfrak{m}) / \operatorname{Exp}(\mathfrak{k})$ is Heisenberg group corresponding to $(\mathfrak{n}+\mathfrak{m}) /(\mathfrak{n} \cap \mathfrak{m})$. The subspaces $\mathfrak{m} /(\mathfrak{n} \cap \mathfrak{m}), \mathfrak{n} /(\mathfrak{n} \cap \mathfrak{m})$ are Lagrangian, thus

$$
\operatorname{ind}_{\operatorname{Exp}(\mathfrak{n}) / \operatorname{Exp}(\mathfrak{k})}^{\operatorname{Exp}(\mathfrak{n}+\mathfrak{m}) / \operatorname{Exp}(\mathfrak{k})} \varphi \simeq \operatorname{ind}_{\operatorname{Exp}(\mathfrak{m}) / \operatorname{Exp}(\mathfrak{k})}^{\operatorname{Exp}(\mathfrak{n}+\mathfrak{m}) / \operatorname{Exp}(\mathfrak{k})} \varphi
$$

since both \simeq oscillator representation of $\operatorname{Exp}(\mathfrak{n}+\mathfrak{m}) / \operatorname{Exp}(\mathfrak{k})$ with central character φ.

Example 1

Let $G:=\mathrm{GL}(4, \mathbb{F})$ and define φ by $\varphi(X):=\operatorname{tr}\left(X\left(E_{21}+E_{43}\right)\right)$.
Let $\Phi:=\varphi, H:=\operatorname{diag}(3,1,-1,-3), h=\operatorname{diag}(1,-1,1,-1)$, $Z=H-h=\operatorname{diag}(2,2,-2,-2), H_{t}:=h+t Z$.

Example 1

Let $G:=\mathrm{GL}(4, \mathbb{F})$ and define φ by $\varphi(X):=\operatorname{tr}\left(X\left(E_{21}+E_{43}\right)\right)$.
Let $\Phi:=\varphi, H:=\operatorname{diag}(3,1,-1,-3), h=\operatorname{diag}(1,-1,1,-1)$,
$Z=H-h=\operatorname{diag}(2,2,-2,-2), H_{t}:=h+t Z$.
Then $\mathfrak{n}_{0} \subset \mathfrak{n}_{1 / 4} \sim \mathfrak{n}_{1 / 4}^{\prime} \subset \mathfrak{n}_{3 / 4}=\mathfrak{n}_{1}:$

$$
\begin{gathered}
\left(\begin{array}{cccc}
0 & - & 0 & - \\
0 & 0 & 0 & 0 \\
0 & - & 0 & - \\
0 & 0 & 0 & 0
\end{array}\right) \subset\left(\begin{array}{cccc}
0 & - & a & - \\
0 & 0 & 0 & a \\
0 & * & 0 & - \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
0 & - & * & - \\
0 & 0 & 0 & * \\
0 & 0 & 0 & - \\
0 & 0 & 0 & 0
\end{array}\right) \\
\\
\subset\left(\begin{array}{cccc}
0 & - & - & - \\
0 & 0 & * & - \\
0 & 0 & 0 & - \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & - & - & - \\
0 & 0 & - & - \\
0 & 0 & 0 & - \\
0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Both $*$ and - denote arbitrary elements. - denotes the entries in \mathfrak{v}_{t} and * those in \mathfrak{l}_{t}. a denotes equal elements.

Example 2

$$
\varphi=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \Phi=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Let $H:=\operatorname{diag}(0,-2,2,0), h:=(1,-1,1,-1), Z=H-h=$ $\operatorname{diag}(-1,-1,1,1), H_{t}:=h+t Z$. Then $\mathfrak{n}_{0}=\mathfrak{n}_{1 / 2} \sim \mathfrak{n}_{1 / 2}^{\prime} \subset \mathfrak{n}_{1}$

Example 2

$$
\varphi=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \Phi=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Let $H:=\operatorname{diag}(0,-2,2,0), h:=(1,-1,1,-1), Z=H-h=$ $\operatorname{diag}(-1,-1,1,1), H_{t}:=h+t Z$. Then $\mathfrak{n}_{0}=\mathfrak{n}_{1 / 2} \sim \mathfrak{n}_{1 / 2}^{\prime} \subset \mathfrak{n}_{1}$

$$
\left(\begin{array}{cccc}
0 & * & 0 & - \\
0 & 0 & 0 & 0 \\
0 & * & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
0 & * & 0 & 0 \\
0 & 0 & 0 & 0 \\
a & * & 0 & * \\
0 & -a & 0 & 0
\end{array}\right) \subset\left(\begin{array}{cccc}
0 & * & 0 & 0 \\
0 & 0 & 0 & 0 \\
* & * & 0 & * \\
0 & * & 0 & 0
\end{array}\right) .
$$

Prederivatives

Definition

$$
P_{n}=\left\{\left(\begin{array}{cccc}
* & \cdots & * & * \\
\vdots & \ddots & \vdots & \vdots \\
* & \cdots & * & * \\
0 & \cdots & 0 & 1
\end{array}\right)\right\} \subset G_{n}:=G L_{n}(F)
$$

- Over p-adic \mathbb{F}, the category $\operatorname{Rep}^{\infty}\left(P_{n}\right)$ of smooth P_{n}-rep-ns is equivalent to the category of G_{n-1}-equivariant sheaves on $V_{n}^{*}:=\left(F^{n-1}\right)^{*}$.

Prederivatives

Definition

$$
P_{n}=\left\{\left(\begin{array}{cccc}
* & \cdots & * & * \\
\vdots & \ddots & \vdots & \vdots \\
* & \cdots & * & * \\
0 & \cdots & 0 & 1
\end{array}\right)\right\} \subset G_{n}:=G L_{n}(F)
$$

- Over p-adic \mathbb{F}, the category $\operatorname{Rep}^{\infty}\left(P_{n}\right)$ of smooth P_{n}-rep-ns is equivalent to the category of G_{n-1}-equivariant sheaves on $V_{n}^{*}:=\left(F^{n-1}\right)^{*}$.
- Define $\Phi: \operatorname{Rep}^{\infty}\left(P_{n}\right) \rightarrow \operatorname{Rep}^{\infty}\left(P_{n-1}\right)$ by $\Phi(\pi):=\pi_{V_{n}, \psi}$, and $E^{k}: \mathcal{M}\left(G_{n}\right) \rightarrow \operatorname{Rep}^{\infty}\left(G_{n-k}\right)$ by $E^{k}(\pi):=\left.\Phi^{k-1}\left(\left.\pi\right|_{P_{n}}\right)\right|_{G_{n-k}}$.

Prederivatives

Definition

$$
P_{n}=\left\{\left(\begin{array}{cccc}
* & \cdots & * & * \\
\vdots & \ddots & \vdots & \vdots \\
* & \cdots & * & * \\
0 & \cdots & 0 & 1
\end{array}\right)\right\} \subset G_{n}:=G L_{n}(F)
$$

- Over p-adic \mathbb{F}, the category $\operatorname{Rep}^{\infty}\left(P_{n}\right)$ of smooth P_{n}-rep-ns is equivalent to the category of G_{n-1}-equivariant sheaves on

$$
V_{n}^{*}:=\left(F^{n-1}\right)^{*}
$$

- Define $\Phi: \operatorname{Rep}^{\infty}\left(P_{n}\right) \rightarrow \operatorname{Rep}^{\infty}\left(P_{n-1}\right)$ by $\Phi(\pi):=\pi v_{n, \psi}$, and $E^{k}: \mathcal{M}\left(G_{n}\right) \rightarrow \operatorname{Rep}^{\infty}\left(G_{n-k}\right)$ by $E^{k}(\pi):=\left.\Phi^{k-1}\left(\left.\pi\right|_{P_{n}}\right)\right|_{G_{n-k}}$.
- For $\pi \in \mathcal{M}\left(G_{n}\right)$, depth $(\pi):=$ size of max. Jordan block in $\operatorname{WF}(\pi)$.

Theorem (Aizenbud - G. - Sahi, 2012)
Let $\mathcal{M}^{d}\left(G_{n}\right) \subset \mathcal{M}\left(G_{n}\right)$ be the subcategory of rep-s of depth $\leq d$. Then

- E^{d} defines a non-zero exact functor $\mathcal{M}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}\left(G_{n-d}\right)$.

Theorem (Aizenbud - G. - Sahi, 2012)
Let $\mathcal{M}^{d}\left(G_{n}\right) \subset \mathcal{M}\left(G_{n}\right)$ be the subcategory of rep-s of depth $\leq d$. Then

- E^{d} defines a non-zero exact functor $\mathcal{M}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}\left(G_{n-d}\right)$.
- $\left.E^{k}\right|_{\mathcal{M}^{d}\left(G_{n}\right)}=0$ for any $k>d$.

Theorem (Aizenbud - G. - Sahi, 2012)

Let $\mathcal{M}^{d}\left(G_{n}\right) \subset \mathcal{M}\left(G_{n}\right)$ be the subcategory of rep-s of depth $\leq d$. Then

- E^{d} defines a non-zero exact functor $\mathcal{M}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}\left(G_{n-d}\right)$.
- $\left.E^{k}\right|_{\mathcal{M}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- If $\operatorname{WF}(\pi)=\overline{G_{n} J_{\left(d, d_{2}, \ldots, d_{k}\right)}}$ then $\operatorname{WF}\left(E^{d}(\pi)\right)=\overline{G_{n} J_{\left(d_{2}, \ldots, d_{k}\right)}}$

Theorem (Aizenbud - G. - Sahi, 2012)

Let $\mathcal{M}^{d}\left(G_{n}\right) \subset \mathcal{M}\left(G_{n}\right)$ be the subcategory of rep-s of depth $\leq d$. Then

- E^{d} defines a non-zero exact functor $\mathcal{M}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}\left(G_{n-d}\right)$.
- $\left.E^{k}\right|_{\mathcal{M}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- If $\operatorname{WF}(\pi)=\overline{G_{n} J_{\left(d, d_{2}, \ldots, d_{k}\right)}}$ then $\operatorname{WF}\left(E^{d}(\pi)\right)=\overline{G_{n} J_{\left(d_{2}, \ldots, d_{k}\right)}}$
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$. Let $\pi=\chi_{1} \times \ldots \times \chi_{d} \in \mathcal{M}^{d}\left(G_{n}\right)$ denote the corresponding degenerate principal series representation. Then depth $(\pi)=d$ and

$$
\left.E^{d}(\pi) \cong\left(\chi_{1}\right)\right|_{G_{n_{1}-1}} \times \ldots \times\left.\left(\chi_{d}\right)\right|_{G_{n_{d}-1}} .
$$

Theorem (Aizenbud - G. - Sahi, 2012)

Let $\mathcal{M}^{d}\left(G_{n}\right) \subset \mathcal{M}\left(G_{n}\right)$ be the subcategory of rep-s of depth $\leq d$. Then

- E^{d} defines a non-zero exact functor $\mathcal{M}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}\left(G_{n-d}\right)$.
- $\left.E^{k}\right|_{\mathcal{M}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- If $\operatorname{WF}(\pi)=\overline{G_{n} J_{\left(d, d_{2}, \ldots, d_{k}\right)}}$ then $\operatorname{WF}\left(E^{d}(\pi)\right)=\overline{G_{n} J_{\left(d_{2}, \ldots, d_{k}\right)}}$
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$. Let $\pi=\chi_{1} \times \ldots \times \chi_{d} \in \mathcal{M}^{d}\left(G_{n}\right)$ denote the corresponding degenerate principal series representation. Then depth $(\pi)=d$ and

$$
\left.E^{d}(\pi) \cong\left(\chi_{1}\right)\right|_{G_{n_{1}-1}} \times \ldots \times\left.\left(\chi_{d}\right)\right|_{G_{n_{d}-1}}
$$

- For a unitarizable irrep π of depth $d, E^{d}(\pi)=A(\pi)$.

Theorem (Aizenbud - G. - Sahi, 2012)

Let $\mathcal{M}^{d}\left(G_{n}\right) \subset \mathcal{M}\left(G_{n}\right)$ be the subcategory of rep-s of depth $\leq d$. Then

- E^{d} defines a non-zero exact functor $\mathcal{M}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}\left(G_{n-d}\right)$.
- $\left.E^{k}\right|_{\mathcal{M}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- If $\operatorname{WF}(\pi)=\overline{G_{n} J_{\left(d, d_{2}, \ldots, d_{k}\right)}}$ then $\operatorname{WF}\left(E^{d}(\pi)\right)=\overline{G_{n} J_{\left(d_{2}, \ldots, d_{k}\right)}}$
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$. Let $\pi=\chi_{1} \times \ldots \times \chi_{d} \in \mathcal{M}^{d}\left(G_{n}\right)$ denote the corresponding degenerate principal series representation. Then depth $(\pi)=d$ and

$$
\left.E^{d}(\pi) \cong\left(\chi_{1}\right)\right|_{G_{n_{1}-1}} \times \ldots \times\left.\left(\chi_{d}\right)\right|_{G_{n_{d}-1}}
$$

- For a unitarizable irrep π of depth $d, E^{d}(\pi)=A(\pi)$.

Theorem (Aizenbud - G. - Sahi, 2012)

Let $\mathcal{M}^{d}\left(G_{n}\right) \subset \mathcal{M}\left(G_{n}\right)$ be the subcategory of rep-s of depth $\leq d$. Then

- E^{d} defines a non-zero exact functor $\mathcal{M}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}\left(G_{n-d}\right)$.
- $\left.E^{k}\right|_{\mathcal{M}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- If $\operatorname{WF}(\pi)=\overline{G_{n}} J_{\left(d, d_{2}, \ldots, d_{k}\right)}$ then $\operatorname{WF}\left(E^{d}(\pi)\right)=\overline{G_{n} J_{\left(d_{2}, \ldots, d_{k}\right)}}$
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$. Let $\pi=\chi_{1} \times \ldots \times \chi_{d} \in \mathcal{M}^{d}\left(G_{n}\right)$ denote the corresponding degenerate principal series representation. Then depth $(\pi)=d$ and $\left.E^{d}(\pi) \cong\left(\chi_{1}\right)\right|_{G_{n_{1}-1}} \times \ldots \times\left.\left(\chi_{d}\right)\right|_{G_{n_{d}-1}}$.
- For a unitarizable irrep π of depth $d, E^{d}(\pi)=A(\pi)$.

Theorem (Gomez - G. - Sahi, 2015)

Let $\lambda=\left(n_{1}, \ldots, n_{k}\right)$ be a partition of n and J_{λ} be the corresponding nilpotent Jordan matrix. Then $\mathcal{W}_{J_{\lambda}}^{\text {gen }}(\pi) \cong E^{n_{k}}\left(\cdots\left(E^{n_{1}}(\pi)\right) \cdots\right)^{*}$.

Example for $\lambda=(3,2,1)$

$$
\left\{\left(\begin{array}{llllll}
0 & 0 & * & 0 & * & * \\
0 & 0 & * & 0 & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\right\}
$$

Adelic setting

- K - number field, \mathbf{G} defined over $K, G:=\mathbf{G}\left(\mathbb{A}_{K}\right)$.

Adelic setting

－K－number field， \mathbf{G} defined over $K, G:=\mathbf{G}\left(\mathbb{A}_{K}\right)$ ．
－(H, Φ)－Whittaker pair，N defined as before．

Adelic setting

- K - number field, \mathbf{G} defined over $K, G:=\mathbf{G}\left(\mathbb{A}_{K}\right)$.
- (H, Φ) - Whittaker pair, N defined as before.
- For any automorphic function f, let a new function $\mathcal{W} \mathcal{F}_{H, \varphi}(f)$ be

$$
\mathcal{W} \mathcal{F}_{H, \varphi}(f)(x):=\int_{N(\mathbb{A}) / N(K)} \Phi(n)^{-1} f(x n) d n
$$

Adelic setting

- K - number field, \mathbf{G} defined over $K, G:=\mathbf{G}\left(\mathbb{A}_{K}\right)$.
- (H, Φ) - Whittaker pair, N defined as before.
- For any automorphic function f, let a new function $\mathcal{W} \mathcal{F}_{H, \varphi}(f)$ be

$$
\mathcal{W} \mathcal{F}_{H, \varphi}(f)(x):=\int_{N(\mathbb{A}) / N(K)} \Phi(n)^{-1} f(x n) d n
$$

Adelic setting

- K - number field, \mathbf{G} defined over $K, G:=\mathbf{G}\left(\mathbb{A}_{K}\right)$.
- (H, Φ) - Whittaker pair, N defined as before.
- For any automorphic function f, let a new function $\mathcal{W} \mathcal{F}_{H, \varphi}(f)$ be

$$
\mathcal{W} \mathcal{F}_{H, \varphi}(f)(x):=\int_{N(\mathbb{A}) / N(K)} \Phi(n)^{-1} f(x n) d n
$$

Theorem

Let $\varphi \in \overline{G \Phi}$ and suppose that either $G=\mathrm{GL}_{n}(\mathbb{A})$ or $\varphi \in \overline{G_{H} \Phi}$. Then $\mathcal{W}_{H, \Phi}$ is obtained from $\mathcal{W} \mathcal{F}_{\varphi}^{g e n}$ by an integral transform. In particular, for any automorphic representation π we have

$$
\mathcal{W} \mathcal{F}_{(H, \Phi)}(\pi) \neq 0 \Rightarrow \mathcal{W} \mathcal{F}_{\varphi}^{g e n}(\pi) \neq 0
$$

Adelic setting

- K - number field, \mathbf{G} defined over $K, G:=\mathbf{G}\left(\mathbb{A}_{K}\right)$.
- (H, Φ) - Whittaker pair, N defined as before.
- For any automorphic function f, let a new function $\mathcal{W} \mathcal{F}_{H, \varphi}(f)$ be

$$
\mathcal{W} \mathcal{F}_{H, \varphi}(f)(x):=\int_{N(\mathbb{A}) / N(K)} \Phi(n)^{-1} f(x n) d n
$$

Theorem

Let $\varphi \in \overline{G \Phi}$ and suppose that either $G=\mathrm{GL}_{n}(\mathbb{A})$ or $\varphi \in \overline{G_{H} \Phi}$. Then $\mathcal{W}_{\mathcal{F}_{H, \Phi}}$ is obtained from $\mathcal{W}_{\varphi}^{\text {gen }}$ by an integral transform. In particular, for any automorphic representation π we have

$$
\mathcal{W} \mathcal{F}_{(H, \Phi)}(\pi) \neq 0 \Rightarrow \mathcal{W} \mathcal{F}_{\varphi}^{\text {gen }}(\pi) \neq 0
$$

Thank you for your attention!

