Generalized and degenerate Whittaker models for representations of reductive groups over local fields

Dmitry Gourevitch http://www.wisdom.weizmann.ac.il/~dimagur

Sphericity workshop, Kloster Reute, Germany

February 2016

Dmitry Gourevitch ()

Generalized & degenerate Whittaker models

• \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel B = HU,

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel B = HU,
- $\Psi^{\times} :=$ non-degenerate unitary characters of U.

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel B = HU,
- $\Psi^{\times} :=$ non-degenerate unitary characters of U.
- For $\psi \in \Psi^{ imes}$ define $\mathcal{W}_{\psi} := \mathsf{ind}_U^{\mathsf{G}}(\psi)$.

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel B = HU,
- $\Psi^{\times} :=$ non-degenerate unitary characters of U.
- For $\psi \in \Psi^{ imes}$ define $\mathcal{W}_{\psi} := \operatorname{ind}_U^{\mathcal{G}}(\psi)$.
- For $\pi \in \mathcal{M}(G)$ define

$$\mathcal{W}_{\psi}(\pi) := \operatorname{Hom}_{\mathcal{G}}(\mathcal{W}_{\psi}, \pi^*) = \operatorname{Hom}_{\mathcal{U}}(\pi, \psi).$$

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel B = HU,
- $\Psi^{\times} :=$ non-degenerate unitary characters of U.
- For $\psi \in \Psi^{ imes}$ define $\mathcal{W}_{\psi} := \operatorname{ind}_U^{\mathcal{G}}(\psi)$.
- For $\pi \in \mathcal{M}(G)$ define

$$\mathcal{W}_{\psi}(\pi) := \operatorname{Hom}_{\mathcal{G}}(\mathcal{W}_{\psi}, \pi^*) = \operatorname{Hom}_{\mathcal{U}}(\pi, \psi).$$

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel B = HU,
- $\Psi^{\times} :=$ non-degenerate unitary characters of U.
- For $\psi \in \Psi^{ imes}$ define $\mathcal{W}_{\psi} := \operatorname{ind}_U^{\mathcal{G}}(\psi)$.
- For $\pi \in \mathcal{M}(G)$ define

$$\mathcal{W}_{\psi}(\pi) := \operatorname{Hom}_{\mathcal{G}}(\mathcal{W}_{\psi}, \pi^*) = \operatorname{Hom}_{\mathcal{U}}(\pi, \psi).$$

Theorem (Jacquet,Gelfand-Kazhdan, Shalika, Rodier, Kostant, Vogan, Casselman-Hecht-Milicic, 70s-90s)

• For any $\psi \in \Psi^{\times}$, $\pi \mapsto \mathcal{W}_{\psi}(\pi)$ is an exact functor.

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel B = HU,
- $\Psi^{\times} :=$ non-degenerate unitary characters of U.
- For $\psi \in \Psi^{ imes}$ define $\mathcal{W}_{\psi} := \operatorname{ind}_U^{\mathcal{G}}(\psi)$.
- For $\pi \in \mathcal{M}(G)$ define

$$\mathcal{W}_{\psi}(\pi) := \operatorname{Hom}_{\mathcal{G}}(\mathcal{W}_{\psi}, \pi^*) = \operatorname{Hom}_{\mathcal{U}}(\pi, \psi).$$

Theorem (Jacquet,Gelfand-Kazhdan, Shalika, Rodier, Kostant, Vogan, Casselman-Hecht-Milicic, 70s-90s)

• For any $\psi \in \Psi^{\times}$, $\pi \mapsto \mathcal{W}_{\psi}(\pi)$ is an exact functor.

• For any $\pi \in Irr(G)$, $\psi \in \Psi^{\times}$ we have dim $\mathcal{W}_{\psi}(\pi) \leq 1$.

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible f.g. representations (of moderate growth).
- Just for this slide assume G is quasisplit and fix a Borel B = HU,
- $\Psi^{\times} :=$ non-degenerate unitary characters of U.
- For $\psi \in \Psi^{\times}$ define $\mathcal{W}_{\psi} := \operatorname{ind}_{U}^{\mathcal{G}}(\psi)$.
- For $\pi \in \mathcal{M}(G)$ define

$$\mathcal{W}_{\psi}(\pi) := \operatorname{Hom}_{\mathcal{G}}(\mathcal{W}_{\psi}, \pi^*) = \operatorname{Hom}_{\mathcal{U}}(\pi, \psi).$$

Theorem (Jacquet,Gelfand-Kazhdan, Shalika, Rodier, Kostant, Vogan, Casselman-Hecht-Milicic, 70s-90s)

- For any $\psi \in \Psi^{\times}$, $\pi \mapsto \mathcal{W}_{\psi}(\pi)$ is an exact functor.
- For any $\pi \in Irr(G)$, $\psi \in \Psi^{\times}$ we have dim $\mathcal{W}_{\psi}(\pi) \leq 1$.
- For any $\pi \in \mathcal{M}(G)$,

 $(\exists \psi \in \Psi^{\times} \text{ with } \mathcal{W}_{\psi}(\pi) \neq 0) \Leftrightarrow \pi \text{ is large.}$

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_{\pi}) \approx \sum c_{\mathcal{O}} \mathcal{F}(\mu_{\mathcal{O}})$$

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_{\pi}) \approx \sum c_{\mathcal{O}} \mathcal{F}(\mu_{\mathcal{O}})$$

• Let $\mathcal{N} \subset \mathfrak{g}^*$ denote the nilpotent cone.

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_{\pi}) \approx \sum c_{\mathcal{O}} \mathcal{F}(\mu_{\mathcal{O}})$$

- Let $\mathcal{N} \subset \mathfrak{g}^*$ denote the nilpotent cone.
- Define $WF(\pi) = \cup \{\overline{\mathcal{O}} \mid c_{\mathcal{O}} \neq 0\} \subset \mathcal{N}.$

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_{\pi}) \approx \sum c_{\mathcal{O}} \mathcal{F}(\mu_{\mathcal{O}})$$

- Let $\mathcal{N} \subset \mathfrak{g}^*$ denote the nilpotent cone.
- Define $WF(\pi) = \cup \{\overline{\mathcal{O}} \mid c_{\mathcal{O}} \neq 0\} \subset \mathcal{N}.$
- π is called *large* if dim WF(π) = dim \mathcal{N} .

Fix a semisimple H ∈ g, and let g_i denote the eigenspaces of ad(H).
 Assume that all the eigenvalues i lie in Q.

Fix a semisimple H ∈ g, and let g_i denote the eigenspaces of ad(H).
 Assume that all the eigenvalues i lie in Q.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Let $\varphi \in \mathfrak{g}_{-2}^*$ and let $\mathfrak{l} \subset \mathfrak{g}_1$ be a maximal isotropic subspace w.r.t $\omega(X, Y) := \varphi([X, Y]).$

Fix a semisimple H ∈ g, and let g_i denote the eigenspaces of ad(H).
 Assume that all the eigenvalues i lie in Q.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Let $\varphi \in \mathfrak{g}_{-2}^*$ and let $\mathfrak{l} \subset \mathfrak{g}_1$ be a maximal isotropic subspace w.r.t $\omega(X, Y) := \varphi([X, Y]).$
- Define $\mathfrak{v} := \bigoplus_{i>1} \mathfrak{g}_i$, $\mathfrak{n} := \mathfrak{v} \oplus \mathfrak{l}$, $N := \mathsf{Exp}(\mathfrak{n})$

- Fix a semisimple H ∈ g, and let g_i denote the eigenspaces of ad(H).
 Assume that all the eigenvalues i lie in Q.
- Let $\varphi \in \mathfrak{g}_{-2}^*$ and let $\mathfrak{l} \subset \mathfrak{g}_1$ be a maximal isotropic subspace w.r.t $\omega(X, Y) := \varphi([X, Y]).$
- Define $\mathfrak{v} := \bigoplus_{i>1} \mathfrak{g}_{i,\mathfrak{v}} \mathfrak{n} := \mathfrak{v} \oplus \mathfrak{l}, \ N := \mathsf{Exp}(\mathfrak{n})$
- Define $\mathcal{W}_{H,\varphi} := \operatorname{ind}_N^G \varphi$, and for $\pi \in \mathcal{M}(G)$ let

$$\mathcal{W}_{H,\varphi}(\pi) := \operatorname{Hom}_{G}(\mathcal{W}_{H,\varphi}, \pi^{*}) = \operatorname{Hom}_{N}(\pi, \varphi).$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Fix a semisimple H ∈ g, and let g_i denote the eigenspaces of ad(H).
 Assume that all the eigenvalues i lie in Q.
- Let $\varphi \in \mathfrak{g}_{-2}^*$ and let $\mathfrak{l} \subset \mathfrak{g}_1$ be a maximal isotropic subspace w.r.t $\omega(X, Y) := \varphi([X, Y]).$
- Define $\mathfrak{v} := \bigoplus_{i>1} \mathfrak{g}_{i,\mathfrak{v}} \mathfrak{n} := \mathfrak{v} \oplus \mathfrak{l}, \ N := \mathsf{Exp}(\mathfrak{n})$
- Define $\mathcal{W}_{H,\varphi} := \operatorname{ind}_N^G \varphi$, and for $\pi \in \mathcal{M}(G)$ let

$$\mathcal{W}_{H,\varphi}(\pi) := \operatorname{Hom}_{\mathcal{G}}(\mathcal{W}_{H,\varphi}, \pi^*) = \operatorname{Hom}_{\mathcal{N}}(\pi, \varphi).$$

(미) (웹) (홈) (홈) 등

Theorem (Moeglin-Waldspurger, 87')

Assume that \mathbb{F} is non-archimedean, and H is tangent to a 1-parameter subgroup. Let $\pi \in \mathcal{M}(G)$. Then

- Fix a semisimple H ∈ g, and let g_i denote the eigenspaces of ad(H).
 Assume that all the eigenvalues i lie in Q.
- Let $\varphi \in \mathfrak{g}_{-2}^*$ and let $\mathfrak{l} \subset \mathfrak{g}_1$ be a maximal isotropic subspace w.r.t $\omega(X, Y) := \varphi([X, Y]).$
- Define $\mathfrak{v} := \bigoplus_{i>1} \mathfrak{g}_{i, \mathfrak{v}} \mathfrak{n} := \mathfrak{v} \oplus \mathfrak{l}, \ N := \mathsf{Exp}(\mathfrak{n})$
- Define $\mathcal{W}_{H,\varphi} := \operatorname{ind}_N^G \varphi$, and for $\pi \in \mathcal{M}(G)$ let

$$\mathcal{W}_{H,\varphi}(\pi) := \operatorname{Hom}_{\mathcal{G}}(\mathcal{W}_{H,\varphi}, \pi^*) = \operatorname{Hom}_{\mathcal{N}}(\pi, \varphi)$$

(미) (웹) (홈) (홈) 등

Theorem (Moeglin-Waldspurger, 87')

Assume that \mathbb{F} is non-archimedean, and H is tangent to a 1-parameter subgroup. Let $\pi \in \mathcal{M}(G)$. Then

• If $\mathcal{W}_{H,\varphi}(\pi) \neq 0$ then $\varphi \in WF(\pi)$.

- Fix a semisimple H ∈ g, and let g_i denote the eigenspaces of ad(H).
 Assume that all the eigenvalues i lie in Q.
- Let $\varphi \in \mathfrak{g}_{-2}^*$ and let $\mathfrak{l} \subset \mathfrak{g}_1$ be a maximal isotropic subspace w.r.t $\omega(X, Y) := \varphi([X, Y]).$
- Define $\mathfrak{v} := \bigoplus_{i>1} \mathfrak{g}_{i, \mathfrak{v}} \mathfrak{n} := \mathfrak{v} \oplus \mathfrak{l}, \ N := \mathsf{Exp}(\mathfrak{n})$
- Define $\mathcal{W}_{H,\varphi} := \operatorname{ind}_N^G \varphi$, and for $\pi \in \mathcal{M}(G)$ let

$$\mathcal{W}_{H,\varphi}(\pi) := \operatorname{Hom}_{G}(\mathcal{W}_{H,\varphi}, \pi^{*}) = \operatorname{Hom}_{N}(\pi, \varphi)$$

Theorem (Moeglin-Waldspurger, 87')

Assume that \mathbb{F} is non-archimedean, and H is tangent to a 1-parameter subgroup. Let $\pi \in \mathcal{M}(G)$. Then

- If $\mathcal{W}_{H,\varphi}(\pi) \neq 0$ then $\varphi \in WF(\pi)$.
- For any (H, φ) with $G\varphi$ open in WF (π) ,

 $\dim \mathcal{W}_{H,\varphi}(\pi) = c_{\varphi}.$

(ロ) (型) (目) (目) (日) (の)

Examples

We call (H, φ) a Whittaker pair, and W_{H,φ} a degenerate Whittaker model. We call them generalized if (H, φ) can be completed to an sl₂-triple, and principal degenerate if they come from a regular Whittaker pair of a Levi subgroup. Some examples for G = GL₄(F):

Examples

۲

We call (H, φ) a Whittaker pair, and W_{H,φ} a degenerate Whittaker model. We call them generalized if (H, φ) can be completed to an sl₂-triple, and principal degenerate if they come from a regular Whittaker pair of a Levi subgroup. Some examples for G = GL₄(F):

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right), \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right) \mathfrak{n} = \left(\begin{array}{cccc} 0 & \frac{*}{2} & 0 & * \\ 0 & 0 & 0 & 0 \\ 0 & * & 0 & \frac{*}{2} \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Examples

We call (H, φ) a Whittaker pair, and W_{H,φ} a degenerate Whittaker model. We call them generalized if (H, φ) can be completed to an sl₂-triple, and principal degenerate if they come from a regular Whittaker pair of a Levi subgroup. Some examples for G = GL₄(F):

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right) \mathfrak{n} = \left(\begin{array}{rrrr} 0 & \frac{\ast}{2} & 0 & \ast \\ 0 & 0 & 0 & 0 \\ 0 & \ast & 0 & \frac{\ast}{2} \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\left(\begin{array}{cccc} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{array}\right), \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right) \mathfrak{n} = \left(\begin{array}{cccc} 0 & \underline{*} & \ast & \ast \\ 0 & 0 & \varepsilon & \ast \\ 0 & 0 & 0 & \underline{*} \\ 0 & 0 & 0 & 0 \end{array}\right)$$

In both cases n = v.

Dmitry Gourevitch ()

Some results in the real case

In this slide $\mathbb{F} = \mathbb{R}$.

Theorem (Matumoto 87',92')

- If $\mathcal{W}_{H,\varphi}(\pi) \neq 0$ then $\varphi \in G_{\mathbb{C}} \cdot WF(\pi)$.
- If φ is regular nilpotent then $\mathcal{W}_{H,\varphi}(\pi) \neq 0 \Leftrightarrow \varphi \in WF(\pi)$.

Some results in the real case

In this slide $\mathbb{F} = \mathbb{R}$.

Theorem (Matumoto 87',92')

- If $\mathcal{W}_{H,\varphi}(\pi) \neq 0$ then $\varphi \in G_{\mathbb{C}} \cdot WF(\pi)$.
- If φ is regular nilpotent then $\mathcal{W}_{H,\varphi}(\pi) \neq 0 \Leftrightarrow \varphi \in WF(\pi)$.

Theorem (G.-Sahi, 2013)

Let G be quasi-split and (H, φ) be principal degenerate Whittaker pair.

$$\mathcal{W}_{H,\varphi}(\pi) \neq 0 \Rightarrow \varphi \in \mathsf{WF}(\pi) \Rightarrow \exists g \in F_G \text{ s.t. } \mathcal{W}_{H,g \cdot \varphi}(\pi) \neq 0,$$

where $F_G = \{1\}$ if $G = GL_n(\mathbb{R})$ or if G is a complex group, and $F_G = finite$ abelian group $Norm_{G_{\mathbb{C}}}(G) / (Z_{G_{\mathbb{C}}} \cdot G)$ otherwise.

Some results in the real case

In this slide $\mathbb{F} = \mathbb{R}$.

Theorem (Matumoto 87',92')

• If
$$\mathcal{W}_{H,\varphi}(\pi) \neq 0$$
 then $\varphi \in G_{\mathbb{C}} \cdot \mathsf{WF}(\pi)$.

• If φ is regular nilpotent then $\mathcal{W}_{H,\varphi}(\pi) \neq 0 \Leftrightarrow \varphi \in WF(\pi)$.

Theorem (G.-Sahi, 2013)

Let G be quasi-split and (H, φ) be principal degenerate Whittaker pair.

$$\mathcal{W}_{H,\varphi}(\pi) \neq 0 \Rightarrow \varphi \in \mathsf{WF}(\pi) \Rightarrow \exists g \in F_G \text{ s.t. } \mathcal{W}_{H,g\cdot\varphi}(\pi) \neq 0,$$

where $F_G = \{1\}$ if $G = GL_n(\mathbb{R})$ or if G is a complex group, and $F_G =$ finite abelian group Norm_{G_C} (G) / (Z_{G_C} · G) otherwise. Moreover, if G is complex classical and $\pi \in Irr(G)$ then the set of principal degenerate Whittaker pairs (H, φ) with $W_{H,\varphi}(\pi) \neq 0$ determines WF(π).

• Let (H, Φ) be a Whittaker pair, let $\varphi \in \overline{G_H}\Phi$. Then $\exists W_{\varphi}^{gen} \twoheadrightarrow W_{H,\Phi}$.

Let (H,Φ) be a Whittaker pair, let φ ∈ G_HΦ. Then ∃W^{gen}_φ → W_{H,Φ}.
For G = GL_n(𝔅), π ∈ M(G), W^{gen}_φ(π) ≠ 0 ⇔ φ ∈ WF(π).

Let (H,Φ) be a Whittaker pair, let φ ∈ G_HΦ. Then ∃W^{gen}_φ → W_{H,Φ}.
For G = GL_n(𝔅), π ∈ M(G), W^{gen}_φ(π) ≠ 0 ⇔ φ ∈ WF(π).

For p-adic 𝔽, and φ in the interior of WF(π) we obtain a functorial isomorphism W_{H,φ}(π) ≃ W_{H',φ}(π) for any H, H' tangent to 1-parameter subgroups.

• Let (H, Φ) be a Whittaker pair, let $\varphi \in \overline{G_H}\Phi$. Then $\exists W_{\varphi}^{gen} \twoheadrightarrow W_{H,\Phi}$.

• For $G = \operatorname{GL}_n(\mathbb{F}), \pi \in \mathcal{M}(G), \ \mathcal{W}_{\varphi}^{gen}(\pi) \neq 0 \Leftrightarrow \varphi \in \operatorname{WF}(\pi).$

- For p-adic 𝔽, and φ in the interior of WF(π) we obtain a functorial isomorphism W_{H,φ}(π) ≃ W_{H',φ}(π) for any H, H' tangent to 1-parameter subgroups.
- For GL_n(F) we also describe W^{gen}_φ(π) in terms of an analog of Bernstein-Zelevinsky derivatives. This enables us to extend to GL_n(R) and GL_n(C) the results of Moeglin-Waldspurger on the dimension of W^{gen}_φ(π) and on the exactness of the generalized Whittaker functor.

• Let (H, Φ) be a Whittaker pair, let $\varphi \in \overline{G_H}\Phi$. Then $\exists W_{\varphi}^{gen} \twoheadrightarrow W_{H,\Phi}$.

• For $G = \operatorname{GL}_n(\mathbb{F}), \pi \in \mathcal{M}(G), \ \mathcal{W}_{\varphi}^{gen}(\pi) \neq 0 \Leftrightarrow \varphi \in \operatorname{WF}(\pi).$

- For p-adic 𝔽, and φ in the interior of WF(π) we obtain a functorial isomorphism W_{H,φ}(π) ≃ W_{H',φ}(π) for any H, H' tangent to 1-parameter subgroups.
- For GL_n(𝔽) we also describe W^{gen}_φ(π) in terms of an analog of Bernstein-Zelevinsky derivatives. This enables us to extend to GL_n(ℝ) and GL_n(ℂ) the results of Moeglin-Waldspurger on the dimension of W^{gen}_φ(π) and on the exactness of the generalized Whittaker functor.
- We also have a global (adelic) analogue.

Basic lemma

Define anti-symmetric form ω on \mathfrak{g} by $\omega(X, Y) := \varphi([X, Y])$.

Lemma (Following Ginzburg-Soudry-Rallis, Jiang-Liu, Lapid-Mao)

Let $\mathfrak{n}, \mathfrak{m} \subset \mathfrak{g}$ be nilpotent subalgebras such that $[\mathfrak{n}, \mathfrak{m}] \subset \mathfrak{n} \cap \mathfrak{m}$, $\omega|_{\mathfrak{n}} = 0$, $\omega|_{\mathfrak{m}} = 0$ and the radical of $\omega|_{\mathfrak{n}+\mathfrak{m}}$ is $\mathfrak{n} \cap \mathfrak{m}$. Then $\mathfrak{n} + \mathfrak{m}$ is a nilpotent Lie algebra and

$$\operatorname{nd}_{\operatorname{Exp}(\mathfrak{n})}^{\operatorname{Exp}(\mathfrak{n}+\mathfrak{m})}\varphi\simeq\operatorname{ind}_{\operatorname{Exp}(\mathfrak{m})}^{\operatorname{Exp}(\mathfrak{n}+\mathfrak{m})}\varphi.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Basic lemma

Define anti-symmetric form ω on \mathfrak{g} by $\omega(X, Y) := \varphi([X, Y])$.

Lemma (Following Ginzburg-Soudry-Rallis, Jiang-Liu, Lapid-Mao)

Let $\mathfrak{n}, \mathfrak{m} \subset \mathfrak{g}$ be nilpotent subalgebras such that $[\mathfrak{n}, \mathfrak{m}] \subset \mathfrak{n} \cap \mathfrak{m}$, $\omega|_{\mathfrak{n}} = 0$, $\omega|_{\mathfrak{m}} = 0$ and the radical of $\omega|_{\mathfrak{n}+\mathfrak{m}}$ is $\mathfrak{n} \cap \mathfrak{m}$. Then $\mathfrak{n} + \mathfrak{m}$ is a nilpotent Lie algebra and

$$\operatorname{\mathsf{Exp}}_{\operatorname{\mathsf{Exp}}(\mathfrak{n})}^{\operatorname{\mathsf{Exp}}(\mathfrak{n}+\mathfrak{m})} \varphi \simeq \operatorname{\mathsf{ind}}_{\operatorname{\mathsf{Exp}}(\mathfrak{m})}^{\operatorname{\mathsf{Exp}}(\mathfrak{n}+\mathfrak{m})} \varphi.$$

Proof.

 $\mathfrak{k} := \mathfrak{n} \cap \mathfrak{m} \cap \operatorname{Ker}(\varphi). \text{ Then } \operatorname{Exp}(\mathfrak{n} + \mathfrak{m}) / \operatorname{Exp}(\mathfrak{k}) \text{ is Heisenberg group} \\ \text{corresponding to } (\mathfrak{n} + \mathfrak{m}) / (\mathfrak{n} \cap \mathfrak{m}). \text{ The subspaces } \mathfrak{m} / (\mathfrak{n} \cap \mathfrak{m}), \, \mathfrak{n} / (\mathfrak{n} \cap \mathfrak{m}) \\ \text{are Lagrangian, thus}$

$$\mathsf{ind}_{\mathsf{Exp}(\mathfrak{n})/\operatorname{Exp}(\mathfrak{k})}^{\mathsf{Exp}(\mathfrak{n}+\mathfrak{m})/\operatorname{Exp}(\mathfrak{k})}\varphi\simeq\mathsf{ind}_{\mathsf{Exp}(\mathfrak{m})/\operatorname{Exp}(\mathfrak{k})}^{\mathsf{Exp}(\mathfrak{n}+\mathfrak{m})/\operatorname{Exp}(\mathfrak{k})}\varphi$$

since both \simeq oscillator representation of $\text{Exp}(\mathfrak{n} + \mathfrak{m}) / \text{Exp}(\mathfrak{k})$ with central character φ .

Example 1

Let $G := GL(4, \mathbb{F})$ and define φ by $\varphi(X) := tr(X(E_{21} + E_{43}))$. Let $\Phi := \varphi$, H := diag(3, 1, -1, -3), h = diag(1, -1, 1, -1), Z = H - h = diag(2, 2, -2, -2), $H_t := h + tZ$.

Example 1

Let $G := GL(4, \mathbb{F})$ and define φ by $\varphi(X) := tr(X(E_{21} + E_{43}))$. Let $\Phi := \varphi$, H := diag(3, 1, -1, -3), h = diag(1, -1, 1, -1), Z = H - h = diag(2, 2, -2, -2), $H_t := h + tZ$. Then $\mathfrak{n}_0 \subset \mathfrak{n}_{1/4} \sim \mathfrak{n}'_{1/4} \subset \mathfrak{n}_{3/4} = \mathfrak{n}_1$:

$$\begin{pmatrix} 0 & - & 0 & - \\ 0 & 0 & 0 & 0 \\ 0 & - & 0 & - \\ 0 & 0 & 0 & 0 \end{pmatrix} \subset \begin{pmatrix} 0 & - & a & - \\ 0 & 0 & 0 & a \\ 0 & * & 0 & - \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & - & * & - \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & - \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\subset \begin{pmatrix} 0 & - & - & - \\ 0 & 0 & * & - \\ 0 & 0 & 0 & - \\ 0 & 0 & 0 & - \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & - & - & - \\ 0 & 0 & - & - \\ 0 & 0 & 0 & - \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Both * and - denote arbitrary elements. - denotes the entries in v_t and * those in l_t . *a* denotes equal elements.

Dmitry Gourevitch ()

$$\varphi = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \Phi = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
diag $(0, -2, 2, 0), h := (1, -1, 1, -1), Z = H - h = 0$

Let H := diag(0, -2, 2, 0), h := (1, -1, 1, -1), Z = H - h = $\text{diag}(-1, -1, 1, 1), H_t := h + tZ$. Then $\mathfrak{n}_0 = \mathfrak{n}_{1/2} \sim \mathfrak{n}'_{1/2} \subset \mathfrak{n}_1$

3

- 4 週 ト - 4 三 ト - 4 三 ト

$$arphi = \left(egin{array}{cccc} 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight), \quad \Phi = \left(egin{array}{ccccc} 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight)$$

Let H := diag(0, -2, 2, 0), h := (1, -1, 1, -1), Z = H - h = diag(-1, -1, 1, 1), $H_t := h + tZ$. Then $\mathfrak{n}_0 = \mathfrak{n}_{1/2} \sim \mathfrak{n}'_{1/2} \subset \mathfrak{n}_1$

$$\begin{pmatrix} 0 & * & 0 & - \\ 0 & 0 & 0 & 0 \\ 0 & * & 0 & * \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 \\ a & * & 0 & * \\ 0 & -a & 0 & 0 \end{pmatrix} \subset \begin{pmatrix} 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 \\ * & * & 0 & * \\ 0 & * & 0 & 0 \end{pmatrix}$$

э

Definition

$$P_n = \left\{ \begin{pmatrix} * & \cdots & * & * \\ \vdots & \ddots & \vdots & \vdots \\ * & \cdots & * & * \\ 0 & \cdots & 0 & 1 \end{pmatrix} \right\} \subset G_n := GL_n(F)$$

Over p-adic 𝔽, the category Rep[∞](P_n) of smooth P_n-rep-ns is equivalent to the category of G_{n-1}-equivariant sheaves on V^{*}_n := (Fⁿ⁻¹)^{*}.

Definition

$$P_n = \left\{ \begin{pmatrix} * & \cdots & * & * \\ \vdots & \ddots & \vdots & \vdots \\ * & \cdots & * & * \\ 0 & \cdots & 0 & 1 \end{pmatrix} \right\} \subset G_n := GL_n(F)$$

- Over p-adic 𝔽, the category Rep[∞](P_n) of smooth P_n-rep-ns is equivalent to the category of G_{n-1}-equivariant sheaves on V^{*}_n := (Fⁿ⁻¹)^{*}.
- Define $\Phi : \operatorname{Rep}^{\infty}(P_n) \to \operatorname{Rep}^{\infty}(P_{n-1})$ by $\Phi(\pi) := \pi_{V_n,\psi}$, and $E^k : \mathcal{M}(G_n) \to \operatorname{Rep}^{\infty}(G_{n-k})$ by $E^k(\pi) := \Phi^{k-1}(\pi|_{P_n})|_{G_{n-k}}$.

Definition

$$P_n = \left\{ \begin{pmatrix} * & \cdots & * & * \\ \vdots & \ddots & \vdots & \vdots \\ * & \cdots & * & * \\ 0 & \cdots & 0 & 1 \end{pmatrix} \right\} \subset G_n := GL_n(F)$$

- Over p-adic 𝔽, the category Rep[∞](P_n) of smooth P_n-rep-ns is equivalent to the category of G_{n-1}-equivariant sheaves on V^{*}_n := (Fⁿ⁻¹)^{*}.
- Define $\Phi : \operatorname{Rep}^{\infty}(P_n) \to \operatorname{Rep}^{\infty}(P_{n-1})$ by $\Phi(\pi) := \pi_{V_n,\psi}$, and $E^k : \mathcal{M}(G_n) \to \operatorname{Rep}^{\infty}(G_{n-k})$ by $E^k(\pi) := \Phi^{k-1}(\pi|_{P_n})|_{G_{n-k}}$.
- For $\pi \in \mathcal{M}(G_n)$, depth $(\pi) :=$ size of max. Jordan block in WF (π) .

Let $\mathcal{M}^d(G_n) \subset \mathcal{M}(G_n)$ be the subcategory of rep-s of depth $\leq d$. Then

Let $\mathcal{M}^d(G_n)\subset \mathcal{M}(G_n)$ be the subcategory of rep-s of depth $\leq d.$ Then

•
$$E^k|_{\mathcal{M}^d(G_n)} = 0$$
 for any $k > d$.

Let $\mathcal{M}^d(G_n) \subset \mathcal{M}(G_n)$ be the subcategory of rep-s of depth $\leq d$. Then

• E^d defines a non-zero exact functor $\mathcal{M}^d(G_n) \to \mathcal{M}(G_{n-d})$.

•
$$E^k|_{\mathcal{M}^d(G_n)} = 0$$
 for any $k > d$.

• If $WF(\pi) = \overline{G_n J_{(d,d_2,\dots,d_k)}}$ then $WF(E^d(\pi)) = \overline{G_n J_{(d_2,\dots,d_k)}}$

Let $\mathcal{M}^d(G_n)\subset \mathcal{M}(G_n)$ be the subcategory of rep-s of depth $\leq d.$ Then

Let $\mathcal{M}^d(G_n)\subset \mathcal{M}(G_n)$ be the subcategory of rep-s of depth $\leq d.$ Then

•
$$E^k|_{\mathcal{M}^d(G_n)} = 0$$
 for any $k > d$.

- If $WF(\pi) = \overline{G_n J_{(d,d_2,\dots,d_k)}}$ then $WF(E^d(\pi)) = \overline{G_n J_{(d_2,\dots,d_k)}}$
- Let $n = n_1 + ... + n_d$ and let χ_i be characters of G_{n_i} . Let $\pi = \chi_1 \times ... \times \chi_d \in \mathcal{M}^d(G_n)$ denote the corresponding degenerate principal series representation. Then depth $(\pi) = d$ and $E^d(\pi) \cong (\chi_1)|_{G_{n_1-1}} \times ... \times (\chi_d)|_{G_{n_d-1}}$.
- For a unitarizable irrep π of depth d, $E^{d}(\pi) = A(\pi)$.

Let $\mathcal{M}^d(G_n)\subset \mathcal{M}(G_n)$ be the subcategory of rep-s of depth $\leq d.$ Then

•
$$E^k|_{\mathcal{M}^d(G_n)} = 0$$
 for any $k > d$.

- If $WF(\pi) = \overline{G_n J_{(d,d_2,\dots,d_k)}}$ then $WF(E^d(\pi)) = \overline{G_n J_{(d_2,\dots,d_k)}}$
- Let $n = n_1 + ... + n_d$ and let χ_i be characters of G_{n_i} . Let $\pi = \chi_1 \times ... \times \chi_d \in \mathcal{M}^d(G_n)$ denote the corresponding degenerate principal series representation. Then depth $(\pi) = d$ and $E^d(\pi) \cong (\chi_1)|_{G_{n_1-1}} \times ... \times (\chi_d)|_{G_{n_d-1}}$.
- For a unitarizable irrep π of depth d, $E^{d}(\pi) = A(\pi)$.

Let $\mathcal{M}^d(G_n)\subset \mathcal{M}(G_n)$ be the subcategory of rep-s of depth $\leq d.$ Then

• E^d defines a non-zero exact functor $\mathcal{M}^d(G_n) \to \mathcal{M}(G_{n-d})$.

•
$$E^k|_{\mathcal{M}^d(G_n)} = 0$$
 for any $k > d$.

- If $WF(\pi) = \overline{G_n J_{(d,d_2,\dots,d_k)}}$ then $WF(E^d(\pi)) = \overline{G_n J_{(d_2,\dots,d_k)}}$
- Let $n = n_1 + ... + n_d$ and let χ_i be characters of G_{n_i} . Let $\pi = \chi_1 \times ... \times \chi_d \in \mathcal{M}^d(G_n)$ denote the corresponding degenerate principal series representation. Then depth $(\pi) = d$ and $E^d(\pi) \cong (\chi_1)|_{G_{n_1-1}} \times ... \times (\chi_d)|_{G_{n_d-1}}$.
- For a unitarizable irrep π of depth d, $E^{d}(\pi) = A(\pi)$.

Theorem (Gomez - G. - Sahi, 2015)

Let $\lambda = (n_1, \ldots, n_k)$ be a partition of n and J_{λ} be the corresponding nilpotent Jordan matrix. Then $\mathcal{W}_{J_{\lambda}}^{gen}(\pi) \cong E^{n_k}(\cdots (E^{n_1}(\pi))\cdots)^*$.

< < p>< < p>

3

• *K* - number field, **G** defined over *K*, $G := \mathbf{G}(\mathbb{A}_K)$.

• *K* - number field, **G** defined over *K*, $G := \mathbf{G}(\mathbb{A}_K)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• (H, Φ) - Whittaker pair, N defined as before.

- *K* number field, **G** defined over *K*, $G := \mathbf{G}(\mathbb{A}_K)$.
- (H, Φ) Whittaker pair, N defined as before.
- For any automorphic function f, let a new function $\mathcal{WF}_{H,\varphi}(f)$ be

$$\mathcal{WF}_{H,\varphi}(f)(x) := \int_{N(\mathbb{A})/N(K)} \Phi(n)^{-1} f(xn) dn.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- *K* number field, **G** defined over *K*, $G := \mathbf{G}(\mathbb{A}_K)$.
- (H, Φ) Whittaker pair, N defined as before.
- For any automorphic function f, let a new function $\mathcal{WF}_{H,\varphi}(f)$ be

$$\mathcal{WF}_{H,\varphi}(f)(x) := \int_{N(\mathbb{A})/N(K)} \Phi(n)^{-1} f(xn) dn.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- K number field, **G** defined over K, $G := \mathbf{G}(\mathbb{A}_K)$.
- (H, Φ) Whittaker pair, N defined as before.
- For any automorphic function f, let a new function $\mathcal{WF}_{H,\varphi}(f)$ be

$$\mathcal{WF}_{H,\varphi}(f)(x) := \int_{N(\mathbb{A})/N(K)} \Phi(n)^{-1} f(xn) dn.$$

Theorem

Let $\varphi \in \overline{G\Phi}$ and suppose that either $G = GL_n(\mathbb{A})$ or $\varphi \in \overline{G_H\Phi}$. Then $\mathcal{WF}_{H,\Phi}$ is obtained from $\mathcal{WF}_{\varphi}^{gen}$ by an integral transform. In particular, for any automorphic representation π we have

$$\mathcal{WF}_{(H,\Phi)}(\pi) \neq 0 \Rightarrow \mathcal{WF}_{\varphi}^{gen}(\pi) \neq 0.$$

- K number field, **G** defined over K, $G := \mathbf{G}(\mathbb{A}_K)$.
- (H, Φ) Whittaker pair, N defined as before.
- For any automorphic function f, let a new function $\mathcal{WF}_{H,\varphi}(f)$ be

$$\mathcal{WF}_{H,\varphi}(f)(x) := \int_{N(\mathbb{A})/N(K)} \Phi(n)^{-1} f(xn) dn.$$

Theorem

Let $\varphi \in \overline{G\Phi}$ and suppose that either $G = GL_n(\mathbb{A})$ or $\varphi \in \overline{G_H\Phi}$. Then $\mathcal{WF}_{H,\Phi}$ is obtained from $\mathcal{WF}_{\varphi}^{gen}$ by an integral transform. In particular, for any automorphic representation π we have

$$\mathcal{WF}_{(H,\Phi)}(\pi) \neq 0 \Rightarrow \mathcal{WF}_{\varphi}^{gen}(\pi) \neq 0.$$

Thank you for your attention!

(日) (國) (필) (필) (필) 표