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Whittaker models

F: local field of char.0, G : reductive group over F.

M(G ): smooth admissible f.g. representations (of moderate growth).
Just for this slide assume G is quasisplit and fix a Borel B = HU,
Ψ× := non-degenerate unitary characters of U.
For ψ ∈ Ψ× define Wψ := indG

U (ψ) .
For π ∈ M(G ) define

Wψ(π) := HomG (Wψ, π∗) = HomU(π, ψ).

Theorem (Jacquet,Gelfand-Kazhdan, Shalika, Rodier, Kostant,
Vogan, Casselman-Hecht-Milicic, 70s-90s)

For any ψ ∈ Ψ×, π 7→ Wψ(π) is an exact functor.

For any π ∈ Irr(G ), ψ ∈ Ψ× we have dimWψ(π) ≤ 1.

For any π ∈ M(G ),

(∃ψ ∈ Ψ× with Wψ(π) 6= 0) ⇔ π is large.
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Wave front set and wave-front cycle

Theorem (Howe, Harish-Chandra, Barbasch-Vogan, 70s)

Near e ∈ G , the character distribution (asymptotically) equals to a linear
combination of Fourier transforms of Haar measures of nilpotent coadjoint
orbits.

exp∗(χπ) ≈∑ cOF (µO)

Let N ⊂ g∗ denote the nilpotent cone.

Define WF(π) = ∪{O | cO 6= 0} ⊂ N .

π is called large if dim WF(π) = dimN .
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The result of Moeglin and Waldspurger in the p-adic case

Fix a semisimple H ∈ g, and let gi denote the eigenspaces of ad(H).
Assume that all the eigenvalues i lie in Q.

Let ϕ ∈ g∗−2 and let l ⊂ g1 be a maximal isotropic subspace w.r.t
ω(X , Y ) := ϕ([X , Y ]).
Define v :=

⊕
i>1 gi , n := v⊕ l, N := Exp(n)

Define WH,ϕ := indG
N ϕ, and for π ∈ M(G ) let

WH,ϕ(π) := HomG (WH,ϕ, π∗) = HomN(π, ϕ).

Theorem (Moeglin-Waldspurger, 87’)

Assume that F is non-archimedean, and H is tangent to a 1-parameter
subgroup. Let π ∈ M(G ). Then

If WH,ϕ(π) 6= 0 then ϕ ∈ WF(π).

For any (H, ϕ) with G ϕ open in WF(π),

dimWH,ϕ(π) = cϕ.
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Examples

We call (H, ϕ) a Whittaker pair, and WH,ϕ a degenerate Whittaker
model. We call them generalized if (H, ϕ) can be completed to an
sl2-triple, and principal degenerate if they come from a regular
Whittaker pair of a Levi subgroup. Some examples for G = GL4(F):


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 n =


0 ∗ 0 ∗
0 0 0 0
0 ∗ 0 ∗
0 0 0 0




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 ,


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 n =


0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0


In both cases n = v.
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Some results in the real case

In this slide F = R.

Theorem (Matumoto 87’,92’)

If WH,ϕ(π) 6= 0 then ϕ ∈ GC ·WF(π).

If ϕ is regular nilpotent then WH,ϕ(π) 6= 0⇔ ϕ ∈ WF(π).

Theorem (G.-Sahi, 2013)

Let G be quasi-split and (H, ϕ) be principal degenerate Whittaker pair.

WH,ϕ(π) 6= 0⇒ ϕ ∈ WF(π)⇒ ∃g ∈ FG s.t. WH,g ·ϕ(π) 6= 0,

where FG = {1} if G = GLn (R) or if G is a complex group,
and FG = finite abelian group NormGC

(G ) / (ZGC
· G ) otherwise.

Moreover, if G is complex classical and π ∈ Irr(G ) then the set of
principal degenerate Whittaker pairs (H, ϕ) with WH,ϕ(π) 6= 0
determines WF(π).
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Our uniform results

Theorem (Gomez-G.-Sahi, 2015)

Let (H, Φ) be a Whittaker pair, let ϕ ∈ GHΦ. Then ∃Wgen
ϕ �WH,Φ.

For G = GLn(F), π ∈ M(G ), Wgen
ϕ (π) 6= 0⇔ ϕ ∈ WF(π).

For p-adic F, and ϕ in the interior of WF(π) we obtain a functorial
isomorphism WH,φ(π) ' WH ′,φ(π) for any H, H ′ tangent to
1-parameter subgroups.

For GLn(F) we also describe Wgen
ϕ (π) in terms of an analog of

Bernstein-Zelevinsky derivatives. This enables us to extend to GLn(R)
and GLn(C) the results of Moeglin-Waldspurger on the dimension of
Wgen

ϕ (π) and on the exactness of the generalized Whittaker functor.

We also have a global (adelic) analogue.
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Basic lemma

Define anti-symmetric form ω on g by ω(X , Y ) := ϕ([X , Y ]).

Lemma (Following Ginzburg-Soudry-Rallis, Jiang-Liu, Lapid-Mao)

Let n,m ⊂ g be nilpotent subalgebras such that [n,m] ⊂ n∩m, ω|n = 0,
ω|m = 0 and the radical of ω|n+m is n∩m. Then n+m is a nilpotent Lie
algebra and

ind
Exp(n+m)
Exp(n)

ϕ ' ind
Exp(n+m)
Exp(m)

ϕ.

Proof.

k := n∩m∩Ker(ϕ). Then Exp(n+m)/ Exp(k) is Heisenberg group
corresponding to (n+m)/(n∩m). The subspaces m/(n∩m), n/(n∩m)
are Lagrangian, thus

ind
Exp(n+m)/Exp(k)
Exp(n)/Exp(k)

ϕ ' ind
Exp(n+m)/Exp(k)
Exp(m)/Exp(k)

ϕ,

since both ' oscillator representation of Exp(n+m)/ Exp(k) with central
character ϕ.
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Example 1

Let G := GL(4, F) and define ϕ by ϕ(X ) := tr(X (E21 + E43)).
Let Φ := ϕ, H := diag(3, 1,−1,−3), h = diag(1,−1, 1,−1),
Z = H − h = diag(2, 2,−2,−2), Ht := h + tZ .

Then n0 ⊂ n1/4 ∼ n′1/4 ⊂ n3/4 = n1 :
0 − 0 −
0 0 0 0
0 − 0 −
0 0 0 0

 ⊂


0 − a −
0 0 0 a
0 ∗ 0 −
0 0 0 0

 ∼


0 − ∗ −
0 0 0 ∗
0 0 0 −
0 0 0 0



⊂


0 − − −
0 0 ∗ −
0 0 0 −
0 0 0 0

 =


0 − − −
0 0 − −
0 0 0 −
0 0 0 0


Both ∗ and − denote arbitrary elements. − denotes the entries in vt and
∗ those in lt . a denotes equal elements.
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Example 2

ϕ =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , Φ =


0 0 1 0
1 0 0 1
0 0 0 0
0 0 1 0


Let H := diag(0,−2, 2, 0), h := (1,−1, 1,−1), Z = H − h =
diag(−1,−1, 1, 1), Ht := h + tZ . Then n0 = n1/2 ∼ n′1/2 ⊂ n1


0 ∗ 0 −
0 0 0 0
0 ∗ 0 ∗
0 0 0 0

 ∼


0 ∗ 0 0
0 0 0 0
a ∗ 0 ∗
0 −a 0 0

 ⊂


0 ∗ 0 0
0 0 0 0
∗ ∗ 0 ∗
0 ∗ 0 0

 .
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Prederivatives

Definition

Pn =



∗ · · · ∗ ∗
...

. . .
...

...
∗ · · · ∗ ∗
0 · · · 0 1


 ⊂ Gn := GLn(F )

Over p-adic F, the category Rep∞(Pn) of smooth Pn-rep-ns is
equivalent to the category of Gn−1-equivariant sheaves on
V ∗n := (F n−1)∗.

Define Φ : Rep∞(Pn)→ Rep∞(Pn−1) by Φ(π) := πVn,ψ, and
E k :M(Gn)→ Rep∞(Gn−k) by E k(π) := Φk−1(π|Pn)|Gn−k .

For π ∈ M(Gn), depth(π) := size of max. Jordan block in WF(π).
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Theorem (Aizenbud - G. - Sahi, 2012)

Let Md (Gn) ⊂M(Gn) be the subcategory of rep-s of depth ≤ d. Then

Ed defines a non-zero exact functor Md (Gn)→M(Gn−d ).

E k |Md (Gn) = 0 for any k > d.

If WF(π) = GnJ(d ,d2,...,dk ) then WF(Ed (π)) = GnJ(d2,...,dk )

Let n = n1 + ... + nd and let χi be characters of Gni . Let
π = χ1 × ...× χd ∈ Md (Gn) denote the corresponding degenerate
principal series representation. Then depth(π) = d and
Ed (π) ∼= (χ1)|Gn1−1

× ...× (χd )|Gnd−1
.

For a unitarizable irrep π of depth d, Ed (π) = A(π).

Theorem (Gomez - G. - Sahi, 2015)

Let λ = (n1, . . . , nk) be a partition of n and Jλ be the corresponding
nilpotent Jordan matrix. Then Wgen

Jλ
(π) ∼= Enk (· · · (En1(π)) · · · )∗.
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Example for λ = (3, 2, 1)





0 0 ∗ 0 ∗ ∗
0 0 ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗
0 0 0 0 0 0
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Adelic setting

K - number field, G defined over K , G := G(AK ).

(H, Φ) - Whittaker pair, N defined as before.

For any automorphic function f , let a new function WFH,ϕ(f ) be

WFH,ϕ(f )(x) :=
∫
N(A)/N(K )

Φ(n)−1f (xn)dn.

Theorem

Let ϕ ∈ G Φ and suppose that either G = GLn(A) or ϕ ∈ GHΦ. Then
WFH,Φ is obtained from WFgen

ϕ by an integral transform. In particular,
for any automorphic representation π we have

WF(H,Φ)(π) 6= 0⇒WFgen
ϕ (π) 6= 0.

Thank you for your attention!
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