## Relations between Fourier coefficients of automorphic forms with applications to vanishing and Eulerianity

## Dmitry Gourevitch

Weizmann Institute of Science, Israel
http://www.wisdom.weizmann.ac.il/~dimagur
Number Theory / Representation Theory Seminar, University of Wisconsin - Madison
j.w. R. Gomez, H. P. A. Gustafsson, A. Kleinschmidt, D. Persson, and S. Sahi

Following Piatetski-Shapiro-Shalika, Jian-Shu Li, Ginzburg-Rallis-Soudry, Moeglin-Waldspurger, Jiang-Liu-Savin, Ahlen, Hundley-Sayag, Shen, Green-Miller-Vanhove, Kazhdan-Polishchuk, Bossard-Pioline

## Definitions

- $\mathbb{K}$ : number field, $\mathbb{A}:=\mathbb{A}_{\mathbb{K}}, \mathbf{G}$ : reductive group over $\mathbb{K}, \Gamma:=\mathbf{G}(\mathbb{K})$, $G:=\mathbf{G}(\mathbb{A}), \mathfrak{g}:=\operatorname{Lie}(\Gamma)$.
- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_{i}:=\mathfrak{g}_{i}^{H}$ denote the eigenspaces of $\operatorname{ad}(H)$. Assume that all the eigenvalues $i$ lie in $\mathbb{Q}$.
- Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.
- Define $\mathfrak{n}:=\mathfrak{n}_{H, f}:=\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \bigoplus_{i>1} \mathfrak{g}_{i}, N:=\operatorname{Exp}(\mathfrak{n})(\mathbb{A})$.
- Fix a non-trivial unitary additive character $\psi: \mathbb{K} \backslash \mathbb{A} \rightarrow \mathbb{C}$ and define $\chi_{f}: N \rightarrow \mathbb{C}$ by $\chi_{f}(\operatorname{Exp} X):=\psi(\langle f, X\rangle)$.
- Let $[N]:=(\Gamma \cap N) \backslash N$. For automorphic form $\eta$ on $G$, define Fourier coefficient

$$
\mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n
$$

## Two central cases of Fourier coefficients

$$
\begin{aligned}
& {[H, f]=-2 f, \mathfrak{n}=}\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \oplus_{i>1} \mathfrak{g}_{i}, N=\operatorname{Exp}(\mathfrak{n})(\mathbb{A}), \\
& \mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n .
\end{aligned}
$$

- Neutral Fourier coefficient, coming from $\mathfrak{s l}_{2}$-triple (e, $\mathrm{H}, \mathrm{f}$ ), e.g.:

$$
H=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) f=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{cccc}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- Whittaker coefficient $\mathcal{W}_{f}$, with $N$ maximal unipotent, e.g.:

$$
H=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right) f=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathfrak{n}=\left(\begin{array}{llll}
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Coefficients that are both neutral and Whittaker are Eulerian by local uniqueness of Whittaker models.

## Examples of Fourier coefficients

$$
\begin{aligned}
& {[H, f]=-2 f, \mathfrak{n}=}\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right) \oplus \oplus_{i>1} \mathfrak{g}_{i}, N=\operatorname{Exp}(\mathfrak{n})(\mathbb{A}) \\
& \mathcal{F}_{H, f}[\eta](g):=\int_{[N]} \eta(n g) \chi_{f}(n)^{-1} d n .
\end{aligned}
$$

Comparison for $G=\mathrm{GL}_{3}(\mathbb{A})$ :

- Neutral Fourier coefficient:

$$
H=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), f=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \mathfrak{n}=\left(\begin{array}{lll}
0 & 0 & \frac{*}{*} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Whittaker coefficient:

$$
H=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -1
\end{array}\right), f=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \mathfrak{n}=\left(\begin{array}{lll}
0 & * & * \\
0 & 0 & 0 \\
0 & * & 0
\end{array}\right)
$$

## Fourier-Jacobi coefficients

- $\mathfrak{u}:=\mathfrak{g}_{1} /\left(\mathfrak{g}_{1} \cap \mathfrak{g}^{f}\right)$. $\omega_{f}(X, Y):=\langle f,[X, Y]\rangle$ - symplectic form.
- $\forall$ isotropic subspace $\mathfrak{i} \subset \mathfrak{u}$, let $l:=\operatorname{Exp}(\mathfrak{i})(\mathbb{A})$

$$
\mathcal{F}_{H, f}^{\prime}[\eta](g):=\int_{[I]} \mathcal{F}_{H, f}[\eta](u g) d u
$$

## Lemma (Root exchange, cf. Ginzburg-Rallis-Soudry)

(1) $\mathcal{F}_{H, f}[\eta](g)=\sum_{\gamma \in\left(U / I^{\perp}\right)(\mathbb{K})} \mathcal{F}_{H, f}^{\prime}[\eta](\gamma g)$
(©) For any isotropic subspace $\mathfrak{j} \subset \mathfrak{u}$ with $\operatorname{dim} \mathfrak{j}=\operatorname{dim} \mathfrak{i}$ and $\mathfrak{j} \cap \mathfrak{i}^{\perp}=\{0\}$,

$$
\mathcal{F}_{H, f}^{J}[\eta](g)=\int_{J(\mathbb{A})} \mathcal{F}_{H, f}^{\prime}[\eta](u g) d u
$$

$$
\text { For } H=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), f=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right): \quad\left(\begin{array}{lll}
0 & \mathfrak{i} & \mathfrak{n} \\
0 & 0 & \mathfrak{j} \\
0 & 0 & 0
\end{array}\right)
$$

Cf. $\theta$, Stone-von-Neumann thm, Poisson summation formula.

## Relating different coefficients

- $\mathrm{WO}(\eta):=\left\{\mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall\right.$ neutral $(h, f)$ with $\left.f \in \mathcal{O}, \mathcal{F}_{h, f}(\eta) \not \equiv 0\right\}$.
- Say $(H, f) \succ(S, f)$ if $[H, S]=0$ and $\mathfrak{g}^{f} \cap \mathfrak{g}_{\geq 1}^{H} \subseteq \mathfrak{g}_{\geq 0}^{S-H}$.
- $f$ is $\mathbb{K}$-distinguished if $\forall$ Levi $\mathfrak{l} \ni f$ defined over $\mathbb{K}, \overline{\mathfrak{l}}=\mathfrak{g}$.

Equivalently: the semi-simple part of the centralizer $G_{f}$ is anisotropic

- $(S, f)$ is called Levi-distinguished if $\exists$ parabolic $\mathfrak{p}=\mathfrak{l u}$ s.t. $f$ is $\mathbb{K}$-distinguished in $\mathfrak{l}$, and $\mathfrak{n}_{S, f}=\mathfrak{l}_{S, f} \oplus \mathfrak{u}$.
- Whittaker coefficients are Levi-distinguished.
- For Whittaker pairs with the same $f$ and commuting $H$-s, neutral $\succ$ any $\succ$ Levi-distinguished.


## Theorem

Let $(H, f) \succ(S, f)$. Then
(1) $\mathcal{F}_{S, f}[\eta]$ can be expressed through $\mathcal{F}_{H, f}[\eta]$.
(1) If $\Gamma f \in \mathrm{WO}^{\max }(\eta)$ and $\mathfrak{g}_{1}^{H}=\mathfrak{g}_{1}^{S}=0$ let $\mathfrak{v}:=\mathfrak{g}_{>1}^{H} \cap \mathfrak{g}_{<1}^{S}$. Then

$$
\mathcal{F}_{H, f}[\eta](g)=\int_{V(\mathbb{A})} \mathcal{F}_{S, f}[\eta](v g) d v
$$

## Theorem

Let $(H, f) \succ(S, f)$. Then
(1) $\mathcal{F}_{S, f}[\eta]$ can be expressed through $\mathcal{F}_{H, f}[\eta]$.
(1) If $\Gamma f \in \mathrm{WO}^{\max }(\eta)$ and $\mathfrak{g}_{1}^{H}=\mathfrak{g}_{1}^{S}=0$ let $\mathfrak{v}:=\mathfrak{g}_{>1}^{H} \cap \mathfrak{g}_{<1}^{S}$. Then

$$
\mathcal{F}_{H, f}[\eta](g)=\int_{V(\mathbb{A})} \mathcal{F}_{S, f}[\eta](v g) d v
$$

## Corollary

(1) If $\eta$ is cuspidal then any $\mathcal{O} \in \mathrm{WO}^{\max }(\eta)$ is $\mathbb{K}$-distinguished. In particular, $\mathcal{O}$ is totally even for $G=\mathrm{Sp}_{2 n}$, totally odd for $G=S O(V)$, not minimal for rk $G>1$, and not next-to-minimal for rk $G>2, G \neq F_{4}$.
(1) Lower bounds for partitions of $\mathcal{O} \in \mathrm{WO}^{\max }(\eta)$ with cuspidal $\eta$ : $2^{n}$ for $S_{2 n}, 3^{n} 1^{n}$ for $S O(2 n, 2 n), 53^{n-1} 1^{n}$ for $S O(2 n+1,2 n+1)$, $3^{n} 1^{n+1}$ for $S O(2 n+1,2 n)$, and $\left(3^{n+1}, 1^{n}\right)$ for $S O(2 n+2,2 n+1)$.
(1) If $f \notin \mathrm{WO}(\eta)$ then $\mathcal{F}_{H, f}(\eta)=0$ for any $H$.

## Corollary

(1) If $\eta$ is cuspidal then any $\mathcal{O} \in \mathrm{WO}^{\max }(\eta)$ is $\mathbb{K}$-distinguished. In particular, $\mathcal{O}$ is totally even for $G=\mathrm{Sp}_{2 n}$, totally odd for $G=S O(V)$, not minimal for rk $G>1$, and not next-to-minimal for rk $G>2, G \neq F_{4}$.
(1) Lower bounds for partitions of $\mathcal{O} \in \mathrm{WO}^{\max }(\eta)$ with cuspidal $\eta$ : $2^{n}$ for $\operatorname{Sp}_{2 n}, 3^{n} 1^{n}$ for $S O(2 n, 2 n), 53^{n-1} 1^{n}$ for $S O(2 n+1,2 n+1)$, $3^{n} 1^{n+1}$ for $S O(2 n+1,2 n)$, and $\left(3^{n+1}, 1^{n}\right)$ for $S O(2 n+2,2 n+1)$.
(1) If $\not \notin \mathrm{WO}(\eta)$ then $\mathcal{F}_{H, f}(\eta)=0$ for any $H$.

## Proof of (i).

Let $\mathfrak{l} \subset \mathfrak{g}$ be Levi subalgebra intersecting $\mathcal{O}$. Let $(e, h, f) \in \mathfrak{l}$ be an $\mathfrak{s l}_{2}$-triple with $f \in \mathcal{O}$. Let $Z \in \mathfrak{g}$ be a (rational) semi-simple element s.t. $\mathfrak{l}=\mathfrak{g}^{Z}$. Let $T \gg 0 \in \mathbb{Z}$ and let $H:=h+T Z$.
Then $\mathcal{F}_{H, f}(\eta)=\mathcal{F}_{H, f}\left(c_{L}(\eta)\right)$, where $c_{L}(\eta)$ denotes the constant term.
Since $\mathcal{F}_{H, f}(\eta) \neq 0$ by the theorem and $\eta$ is cuspidal, $L=G$.

## Example for the proof of the Theorem

$G:=\operatorname{GL}(4, \mathbb{A}), f:=E_{21}+E_{43}, H:=\operatorname{diag}(3,1,-1,-3)$,
$h=\operatorname{diag}(1,-1,1,-1), Z=H-h=\operatorname{diag}(2,2,-2,-2), H_{t}:=h+t Z$.
Then $\mathfrak{n}_{0} \subset \mathfrak{n}_{1 / 4} \oplus \mathfrak{i} \sim \mathfrak{n}_{1 / 4} \oplus \mathfrak{j} \subset \mathfrak{n}_{3 / 4}=\mathfrak{n}_{1}:$

$$
\begin{gathered}
\left(\begin{array}{llll}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right) \subset\left(\begin{array}{cccc}
0 & * & a & * \\
0 & 0 & 0 & a \\
0 & - & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
0 & * & - & * \\
0 & 0 & 0 & - \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right) \\
\\
\subset\left(\begin{array}{llll}
0 & * & * & * \\
0 & 0 & - & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Both $*$ and - denote arbitrary elements. $*$ denotes the entries in $\mathfrak{g}_{>1}^{H_{t}}$ and - those in $\mathfrak{g}_{1}^{H_{t}}$. a denotes equal elements in $\mathfrak{g}_{1}^{H_{t}} \cap \mathfrak{g}^{f}$.

## Corollary (Hidden symmetry)

Let $\eta$ be an automorphic form on $G$, and let $(H, f)$ be a Whittaker pair with $\Gamma f \in \mathrm{WO}^{\max }(\eta)$. Then any unipotent element $u$ of the centralizer of the pair $(H, f)$ in $G$ acts trivially on the Fourier coefficient $\mathcal{F}_{H, f}[\eta]$ using the left regular action.

## Proof.

Want to show that $\mathcal{F}_{H, f}\left[\eta-\eta^{u}\right]=0$. By the theorem, enough to show $\mathcal{F}_{H+Z, f}\left[\eta-\eta^{u}\right]=0$ for some $Z$. Find $Z$ such that $u \in N_{H+Z, f}$.

Example: $G=G L_{4}(\mathbb{A}), f=E_{31}+E_{42}, H=\operatorname{diag}(1,1,-1,-1), u=$ $I d+E_{12}+E_{34}, Z=\operatorname{diag}(1,-1,1,-1)$.

$$
\mathfrak{n}_{H, f}=\left(\begin{array}{cccc}
0 & b & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{array}\right) ; \mathfrak{n}_{H+Z, f}=\left(\begin{array}{cccc}
0 & * & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

*: non-zero pairing with $f$. $b$ : entries of $u$.
Corollary: if $\mathrm{WO}^{\max }(\eta)=\left\{2^{n}\right\}$ then $\eta$ has almost-Shalika model.

## Applications of hidden symmetry

## Corollary (Hidden symmetry)

Let $\eta$ be an automorphic form on $G$, and let $(H, f)$ be a Whittaker pair with $\Gamma f \in \mathrm{WO}^{\max }(\eta)$. Then any unipotent element $u$ of the centralizer of the pair $(H, f)$ in $G$ acts trivially on the Fourier coefficient $\mathcal{F}_{H, f}[\eta]$ using the left regular action.

## Proof.

Want to show that $\mathcal{F}_{H, f}\left[\eta-\eta^{u}\right]=0$. By the theorem, enough to show $\mathcal{F}_{H+Z, f}\left[\eta-\eta^{u}\right]=0$ for some $Z$. Find $Z$ such that $u \in N_{H+Z, f}$.

## Corollary

If $G \in\{S O(n, n), S O(n+1, n)\}$ and $\mathrm{WO}^{\max }(\eta)=\{31 \ldots 1\}$ then $\mathcal{F}_{H, f}[\eta]$ is Eulerian.

Follows from uniqueness of Bessel models.

## Fourier-Jacobi periods and the Weil representation

For a symplectic space $V$ over $\mathbb{K}$, let $\mathcal{H}(V):=V \oplus \mathbb{K}$ be the Heisenberg group and $\widetilde{J(V)}:=\mathrm{Sp} \widetilde{(V(\mathbb{A})}) \ltimes \mathcal{H}(V(\mathbb{A}))$ be the double cover Jacobi group. It has unique irreducible unitarizable representation $\omega_{V}$ with central character $\chi$. It has automorphic realization given by theta functions:
$\theta_{f}(g)=\sum_{a \in \mathcal{E}(K)} \omega_{\chi}(g) f(a)$, where $g \in \widetilde{J(V)}, f \in \mathcal{S}(\mathcal{E}(\mathbb{A})), \mathcal{E} \subset V$ Lagrang
For a Whittaker pair $(H, f)$ let $\mathfrak{u}:=\mathfrak{g}_{>1}^{H}$ and $V:=\mathfrak{u} / \mathfrak{n}_{H, f}$, with symplectic form $\omega_{f}(A, B):=\langle f,[A, B]\rangle$. Then we have a natural map $\ell: U \rtimes \widetilde{G_{H, f}} \rightarrow \widetilde{J(V)}$. Define $F J: \pi \otimes \omega_{V} \rightarrow C^{\infty}\left(\Gamma \backslash \widetilde{G_{H, f}}\right)$ by

$$
f \otimes \eta \mapsto \int_{U(K) \backslash U(\mathbb{A})} f(u \tilde{g}) \theta_{\eta}(\ell(u, \tilde{g})) d u
$$

$M:=$ split semi-simple part of the centralizer $G_{H, f}$.

## Theorem

If $\Gamma \cdot f \in \mathrm{WO}^{\max }(\pi)$ then $\widetilde{M}$ acts on the image of $F J$ by $\pm 1$.

## Fourier-Jacobi periods and the Weil representation

For a Whittaker pair $(H, f)$ let $\mathfrak{u}:=\mathfrak{g}_{\geq 1}^{H}$ and $V:=\mathfrak{u} / \mathfrak{n}_{H, f}$, with symplectic form $\omega_{\varphi}(A, B):=\langle f,[A, B]\rangle$. Then we have a natural map $\ell: U \rtimes \widetilde{G_{\gamma}} \rightarrow \widetilde{J(V)}$. Define FJ : $\pi \otimes \omega_{V} \rightarrow C^{\infty}\left(\Gamma \backslash \widetilde{G_{H, f}}\right)$ by

$$
f \otimes \eta \mapsto \int_{U(K) \backslash U(\mathbb{A})} f(u \tilde{g}) \theta_{\eta}(\ell(u, \tilde{g})) d u
$$

$M:=$ split semi-simple part of the centralizer $G_{H, f}$.

## Theorem

If $\Gamma \cdot f \in \mathrm{WO}^{\text {max }}(\pi)$ then $\widetilde{M}$ acts on the image of $F J$ by $\pm 1$.
Since the Weil representation $\omega_{V}$ is genuine, obtain:

## Corollary

If $\Gamma \cdot f \in \mathrm{WO}^{\max }(\pi)$ then the cover $\widetilde{M}$ splits.
Corollary
If $\Gamma \cdot f \in \operatorname{WO}^{\max }(\pi)$ and $G$ is classical then the orbit of $f$ is special.

## Eulerianity

## Lemma

Let $(S, f)$ and $\left(H, f^{\prime}\right)$ be two Whittaker pairs such that $\Gamma f=\Gamma f^{\prime} \in \mathrm{WO}^{\max }(\eta)$. Let $I, I^{\prime}$ be maximal isotropic. Suppose that $\mathcal{F}_{S, f}^{\prime}[\eta]$ is Eulerian. Then $\mathcal{F}_{H, \psi}^{\prime^{\prime}}[\eta]$ is also Eulerian.

## Question

Is any Fourier-Jacobi coefficient $\mathcal{F}_{S, f}^{\prime}[\eta]$ with $\Gamma f \in \mathrm{WO}^{\max }(\eta)$ and I maximal isotropic Eulerian for any spherical $\eta$ that generates an irreducible representation?

Verified for:
(1) Minimal representations of most split simply-laced groups
(2) Next-to-minimal Eisenstein series of most split simply-laced groups

## Expressing forms through their Whittaker coefficients

## Theorem

Any $\mathcal{F}_{H, f}$ can be expressed through all Levi-distinguished Fourier coefficients $\mathcal{F}_{S, F}$ with $\Gamma F \geq \Gamma f$.

## Corollary

(1) Any $\eta$ can be expressed through all its Levi-distinguished Fourier coefficients.
(1) If all $\mathcal{O} \in \mathrm{WO}(\eta)$ admit Whittaker coefficients then $\eta$ can be expressed through its Whittaker coefficients.
(10) For split simply-laced G, we obtained expressions for all minimal or next-to-minimal $\eta$, and all their Fourier coefficients in terms of Whittaker coefficients.

## Explanation for $\mathrm{GL}_{n}$ (PS-Shalika, Ahlen-Gustafsson-Liu-

 Kleinschmidt-Persson)Let $\eta \in C^{\infty}\left(\Gamma \backslash \mathrm{GL}_{n}(\mathbb{A})\right)$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\mathrm{GL}_{n-1}(\mathbb{K})$.

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

## Explanation for $\mathrm{GL}_{n}$

Let $\eta \in C^{\infty}\left(\Gamma \backslash \mathrm{GL}_{n}(\mathbb{A})\right)$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\mathrm{GL}_{n-1}(\mathbb{K})$.
Conjugate, restrict to the next column and continue

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lllll}
0 & 0 & 0 & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lllll}
0 & 0 & 0 & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\cdots
$$

$$
\left(\begin{array}{lllll}
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lllll}
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lllll}
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\ldots
$$

## Example: $\operatorname{Sp}(4)$

$$
\mathfrak{s p}_{4}=\left\{\left(\begin{array}{cc}
A & B=B^{t} \\
C=C^{t} & -A^{t}
\end{array}\right)\right\} .
$$

Let $\mathfrak{n}$ be the Borel nilradical, and $\mathfrak{u} \subset \mathfrak{n}$ be the Siegel nilradical, spanned by $B$. Characters given by $\overline{\mathfrak{u}} \cong \operatorname{Sym}^{2}\left(\mathbb{K}^{2}\right)$. Restricting $\eta$ to $B$ and decomposing into Fourier series we obtain $\eta=\sum_{f \in \bar{u}} \mathcal{F}_{\mathfrak{u}, f}[\eta]$.
(1) Constant term $\mathcal{F}_{\mathfrak{u}, 0}[\eta]$ : Restrict to the Siegel Levi $L \cong G L_{2}(\mathbb{A})$, and decompose to Fourier series on the abelian group $N \cap L$ :

$$
\mathcal{F}_{\mathfrak{u}, 0}[\eta]=\sum_{a \in \mathbb{K}} \mathcal{W}_{a, 0}[\eta]
$$

(2) Any $f$ of rank one is conjugate under $L$ to $f_{1}:=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Decomposing $\mathcal{F}_{\mathfrak{u}, f_{1}}[\eta]$ on $N \cap L$ :

$$
\mathcal{F}_{\mathfrak{u}, f_{1}}[\eta]=\sum_{a \in \mathbb{K}} \mathcal{W}_{a, 1}[\eta]
$$

$$
\mathfrak{s p}_{4}=\left\{\left(\begin{array}{cc}
A & B=B^{t} \\
C=C^{t} & -A^{t}
\end{array}\right)\right\} ; \quad \eta=\sum_{f \in \overline{\mathfrak{u}}} \mathcal{F}_{\mathfrak{u}, f}[\eta] .
$$

(1) Constant term $\mathcal{F}_{\mathfrak{u}, 0}[\eta]$ : Decompose to Fourier series on $N \cap L$ :

$$
\mathcal{F}_{\mathfrak{u}, 0}[\eta]=\sum_{a \in \mathbb{K}} \mathcal{W}_{a, 0}[\eta]
$$

(2) Any $f$ of rank one is conjugate under $L$ to $f_{1}:=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

Decomposing $\mathcal{F}_{\mathfrak{u}, f_{1}}[\eta]$ on $N \cap L$ :

$$
\mathcal{F}_{u, f_{1}}[\eta]=\sum_{a \in \mathbb{K}} \mathcal{W}_{a, 1}[\eta]
$$

(3) Split non-degenerate forms are conjugate to $f_{2}:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Using Weyl group conjugation (24) and root exchange, we express $\mathcal{F}_{\mathfrak{u}, f_{2}}$ through $\mathcal{F}_{\mathfrak{u}^{\prime}, e_{21}}$, where $\mathfrak{u}^{\prime}=\operatorname{Span}\left(e_{12}-e_{43}, e_{13}, e_{24}\right) \subset \mathfrak{n}$. Fourier expansion by the remaining coordinate of $e_{14}+e_{23} \in \mathfrak{n}$ :

$$
\mathcal{F}_{\mathfrak{u}, f}[\eta](g)=\int_{v \in \mathbb{A}} \mathcal{W}_{1, a}[\eta]\left(\left(I d+x e_{24}\right) w g\right)
$$

$X:=$ set of anisotropic $2 \times 2$ forms. For $f \in X$, we cannot simplify $\mathcal{F}_{\mathfrak{u}, f}[\eta]$. Summarizing, for any $\eta$ on $G=\operatorname{Sp}_{4}(\mathbb{A})$ we have

$$
\begin{aligned}
& \eta(g)=\sum_{f \in X} \mathcal{F}_{u, f}[\eta](g)+\sum_{a \in \mathbb{K}}\left(\sum_{\gamma \in L / O(1,1)} \int_{x \in \mathbb{A}} \mathcal{W}_{1, a}[\eta]\left(v_{x} w \gamma g\right)+\right. \\
&\left.\sum_{\gamma \in L /(N \cap L)} \mathcal{W}_{a, 1}[\eta](\gamma g)+\mathcal{W}_{a, 0}[\eta](g)\right)
\end{aligned}
$$

If $\eta$ is cuspidal then $\mathcal{W}_{0, a}[\eta]=\mathcal{W}_{a, 0}[\eta]=0$. If $\eta$ is non-generic, then $\mathcal{W}_{1, a}[\eta]=\mathcal{W}_{a, 1}[\eta]=0$, unless $a=0$. Thus
(1) If $\eta$ is cuspidal then $\eta(g)=\sum_{f \in X} \mathcal{F}_{\mathfrak{u}, f}[\eta](g)+$

$$
\sum_{a \in \mathbb{K}^{\times}}\left(\sum_{\gamma \in L / \mathrm{O}(1,1)} \int_{x \in \mathbb{A}} \mathcal{W}_{1, a}[\eta]\left(v_{x} w \gamma g\right)+\sum_{\gamma \in L /(N \cap L)} \mathcal{W}_{a, 1}[\eta](\gamma g)\right)
$$

(2) If $\eta$ is non-generic then $\eta(g)=\sum_{f \in X} \mathcal{F}_{\mathfrak{u}, f}[\eta](g)+$

$$
\sum_{\gamma \in L / \mathrm{O}(1,1)} \int_{x \in \mathbb{A}} \mathcal{W}_{1,0}[\eta]\left(v_{x} w \gamma g\right)+\sum_{\gamma \in L /(N \cap L)} \mathcal{W}_{0,1}[\eta](\gamma g)+\sum_{a \in \mathbb{K}} \mathcal{W}_{\mathrm{a}, 0}[\eta]
$$

(3) If $\eta$ is cuspidal and non-generic then $\eta=\sum_{f \in X} \mathcal{F}_{\mathfrak{u}, f}[\eta]$.

## Parabolic minimal Fourier coeff. of next-to-minimal forms

- $\mathfrak{g}$ split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{u}$ Borel
- $\alpha$ simple root. $\mathfrak{q}_{\alpha}=\mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha}=\mathfrak{g}_{\geq 0}^{S_{\alpha}}$ max. parabolic.
- $I^{(\perp \alpha)}=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ Bourbaki enumeration of the simple roots orthogonal to $\alpha$.
- $\forall i G \supset L_{i}:=$ Levi given by roots $\beta_{1}, \ldots, \beta_{i}$
- $L_{i} \supset S_{i}:=$ stabilizer of the root space $\mathfrak{g}_{-\beta_{i}}, \Gamma_{i}:=\left(L_{i} \cap \Gamma\right) /\left(S_{i} \cap \Gamma\right)$.
- For $f \in \mathfrak{g}_{-\alpha}^{\times}$and next-to-minimal $\eta_{\mathrm{ntm}} \in C^{\infty}(\Gamma \backslash G)$ let

$$
A_{i}^{f}\left[\eta_{\mathrm{ntm}}\right](g):=\sum_{\gamma \in \Gamma_{i-1}} \sum_{\varphi \in \mathfrak{g}_{-\beta_{i}}} \mathcal{W}_{\varphi+f}\left[\eta_{\mathrm{ntm}}\right](\gamma g)
$$

## Theorem

$$
\mathcal{F}_{S_{\alpha}, f}\left[\eta_{\mathrm{ntm}}\right]=\mathcal{W}_{f}\left[\eta_{\mathrm{ntm}}\right]+\sum_{i=1}^{k} A_{i}^{f}\left[\eta_{\mathrm{ntm}}\right]
$$

- $\mathfrak{g}$ split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{u}$ Borel
- $\alpha$ simple root. $\mathfrak{q}_{\alpha}=\mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha}=\mathfrak{g}_{\geq 0}^{S_{\alpha}}$ max. parabolic.
- $\boldsymbol{I}^{(\perp \alpha)}=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ Bourbaki enumeration of the simple roots orthogonal to $\alpha$.
- $\forall i G \supset L_{i}:=$ Levi given by roots $\beta_{1}, \ldots, \beta_{i}$
- $L_{i} \supset S_{i}:=$ stabilizer of the root space $\mathfrak{g}_{-\beta_{i}}, \Gamma_{i}:=\left(L_{i} \cap \Gamma\right) /\left(S_{i} \cap \Gamma\right)$.
- For $f \in \mathfrak{g}_{-\alpha}^{\times}$and next-to-minimal $\eta_{\mathrm{ntm}} \in C^{\infty}(\Gamma \backslash G)$ let

$$
A_{i}^{f}\left[\eta_{\mathrm{ntm}}\right](g):=\sum_{\gamma \in \Gamma_{i-1}} \sum_{\varphi \in \mathfrak{g}_{-\beta_{i}}} \mathcal{W}_{\varphi+f}\left[\eta_{\mathrm{ntm}}\right](\gamma g)
$$

Theorem

$$
\mathcal{F}_{S_{\alpha}, f}\left[\eta_{\mathrm{ntm}}\right]=\mathcal{W}_{f}\left[\eta_{\mathrm{ntm}}\right]+\sum_{i=1}^{k} A_{i}^{f}\left[\eta_{\mathrm{ntm}}\right]
$$



## Local picture

- $F:=$ local field of char. $0, G:=\mathbf{G}(F), \mathfrak{g}:=\operatorname{Lie}(G)$,
- $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ Whittaker pair $\mathfrak{u}:=\mathfrak{g}_{\geq 1}^{H}, \mathfrak{n}_{H, f}:=\left(\mathfrak{g}_{1}^{H} \cap \mathfrak{g}^{f}\right) \oplus \mathfrak{g}_{>1}^{H}$.
- $\mathfrak{u} / \mathfrak{n}_{H, f}$ is a symplectic space, and its Heisenberg group $\mathcal{H}$ is a quotient of $U$.
- $\omega_{H, f}:=$ oscillator representation of $\mathcal{H}$ lifted to $\mathfrak{u}$. $\mathcal{W}_{H, f}:=\operatorname{ind}_{U}^{G} \omega_{H, f}$
- $\forall$ smooth representation $\pi$, define its $(H, f)$-Whittaker quotient by

$$
\pi_{H, f}:=\mathcal{W}_{H, f} \otimes_{G} \pi \simeq \pi_{I, \chi} .
$$

- All the theorems above have local analogues with similar proofs.


## Wave front set and wave-front cycle

Let $\pi$ be smooth, admissible and finitely generated.

## Theorem (Howe, Harish-Chandra, Barbasch-Vogan 70s)

Near $e \in G$, the character distribution equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$
\exp ^{*}\left(\chi_{\pi}\right) \approx \sum c_{\mathcal{O}} \mathcal{F}\left(\mu_{\mathcal{O}}\right)
$$

- Let $\mathcal{N} \subset \mathfrak{g}$ denote the nilpotent cone.
- WF $(\pi):=\cup\left\{\overline{\mathcal{O}} \mid c_{\mathcal{O}} \neq 0\right\} \subset \mathcal{N}$.
- $\operatorname{WF}^{\max }(\pi):=$ union of maximal orbits in $\mathrm{WF}(\pi)$.


## Theorem (Moeglin-Waldspurger, 87')

Let $F$ be $p$-adic and let $(H, f)$ be a Whittaker pair.

- If $\pi_{H, f} \neq 0$ then $f \in \mathrm{WF}(\pi)$.
- If $f \in \mathrm{WF}^{\max }(\pi)$ then $\operatorname{dim} \pi_{H, f}=c_{f}$.

