Relations between Fourier coefficients of automorphic forms with applications to vanishing and Eulerianity

Weizmann Institute of Science, Israel
http://www.wisdom.weizmann.ac.il/~dimagur
Number Theory / Representation Theory Seminar, University of
Wisconsin - Madison
j.w. R. Gomez, H. P. A. Gustafsson, A. Kleinschmidt, D. Persson, and

Dmitry Gourevitch

Following Piatetski-Shapiro–Shalika, Jian-Shu Li, Ginzburg–Rallis–Soudry, Moeglin-Waldspurger, Jiang–Liu–Savin, Ahlen, Hundley–Sayag, Shen, Green-Miller-Vanhove, Kazhdan–Polishchuk, Bossard–Pioline

- \mathbb{K} : number field, $\mathbb{A} := \mathbb{A}_{\mathbb{K}}$, \mathbf{G} : reductive group over \mathbb{K} , $\Gamma := \mathbf{G}(\mathbb{K})$, $G := \mathbf{G}(\mathbb{A})$, $\mathfrak{g} := Lie(\Gamma)$.
- Fix a semisimple $H \in \mathfrak{g}$, and let $\mathfrak{g}_i := \mathfrak{g}_i^H$ denote the eigenspaces of ad(H). Assume that all the eigenvalues i lie in \mathbb{Q} .
- Let $f \in \mathfrak{g}_{-2}$. Call $(H, f) \in \mathfrak{g} \times \mathfrak{g}$ a Whittaker pair.
- Define $\mathfrak{n} := \mathfrak{n}_{H,f} := (\mathfrak{g}_1 \cap \mathfrak{g}^f) \oplus \bigoplus_{i>1} \mathfrak{g}_i, \ \mathcal{N} := \mathsf{Exp}(\mathfrak{n})(\mathbb{A}).$
- Fix a non-trivial unitary additive character $\psi : \mathbb{K} \setminus \mathbb{A} \to \mathbb{C}$ and define $\chi_f : \mathcal{N} \to \mathbb{C}$ by $\chi_f(\operatorname{Exp} X) := \psi(\langle f, X \rangle)$.
- Let $[N] := (\Gamma \cap N) \setminus N$. For automorphic form η on G, define Fourier coefficient

$$\mathcal{F}_{H,f}[\eta](g) := \int_{[N]} \eta(ng) \chi_f(n)^{-1} dn.$$

Two central cases of Fourier coefficients

$$[H, f] = -2f$$
, $\mathfrak{n} = (\mathfrak{g}_1 \cap \mathfrak{g}^f) \oplus \bigoplus_{i>1} \mathfrak{g}_i$, $N = \mathsf{Exp}(\mathfrak{n})(\mathbb{A})$,

 $\mathcal{F}_{H,f}[\eta](g) := \int_{[N]} \eta(ng) \chi_f(n)^{-1} dn.$

• Neutral Fourier coefficient, coming from
$$\mathfrak{sl}_2$$
-triple (e,H,f), e.g.:

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} f = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \mathfrak{n} = \begin{pmatrix} 0 & \underline{*} & 0 & * \\ 0 & 0 & 0 & 0 \\ 0 & * & 0 & \underline{*} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

ullet Whittaker coefficient \mathcal{W}_f , with extstyle N maximal unipotent, e.g.:

$$H = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix} f = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \mathfrak{n} = \begin{pmatrix} 0 & \frac{*}{2} & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & \frac{*}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Coefficients that are both neutral and Whittaker are Eulerian by local

Coefficients that are both neutral and Whittaker are Eulerian by local uniqueness of Whittaker models.

Examples of Fourier coefficients

$$[H, f] = -2f, \, \mathfrak{n} = (\mathfrak{g}_1 \cap \mathfrak{g}^f) \oplus \bigoplus_{i>1} \mathfrak{g}_i, \, N = \mathsf{Exp}(\mathfrak{n})(\mathbb{A})$$
$$\mathcal{F}_{H, f}[\eta](g) := \int_{[N]} \eta(ng) \chi_f(n)^{-1} dn.$$

Comparison for $G = GL_3(\mathbb{A})$:

• Neutral Fourier coefficient:

$$H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 , $f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $\mathfrak{n} = \begin{pmatrix} 0 & 0 & \frac{*}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Whittaker coefficient:

$$H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -1 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \mathfrak{n} = \begin{pmatrix} 0 & * & \frac{*}{2} \\ 0 & 0 & 0 \\ 0 & * & 0 \end{pmatrix}$$

Fourier-Jacobi coefficients

- $\mathfrak{u} := \mathfrak{g}_1/(\mathfrak{g}_1 \cap \mathfrak{g}^f)$. $\omega_f(X,Y) := \langle f, [X,Y] \rangle$ symplectic form.
- ullet isotropic subspace $\mathfrak{i}\subset\mathfrak{u}$, let $I:=\mathsf{Exp}(\mathfrak{i})(\mathbb{A})$

$$\mathcal{F}_{H,f}^I[\eta](g) := \int_{[I]} \mathcal{F}_{H,f}[\eta](ug) \, du$$

Lemma (Root exchange, cf. Ginzburg-Rallis-Soudry)

$$\mathcal{F}_{H,f}^{J}[\eta](g)=\int_{J(\mathbb{A})}\mathcal{F}_{H,f}^{J}[\eta](ug)\,du$$

For
$$H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$: $\begin{pmatrix} 0 & i & \underline{n} \\ 0 & 0 & j \\ 0 & 0 & 0 \end{pmatrix}$

Cf. θ , Stone-von-Neumann thm, Poisson summation formula.

Relating different coefficients

- $WO(\eta) := \{ \mathcal{O} \in \mathcal{N}(\mathfrak{g}) \mid \forall \text{ neutral } (h, f) \text{ with } f \in \mathcal{O}, \mathcal{F}_{h,f}(\eta) \not\equiv 0 \}.$
- Say $(H, f) \succ (S, f)$ if [H, S] = 0 and $\mathfrak{g}^f \cap \mathfrak{g}_{\geq 1}^H \subseteq \mathfrak{g}_{\geq 0}^{S-H}$.
- f is \mathbb{K} -distinguished if \forall Levi $\mathfrak{l} \ni f$ defined over \mathbb{K} , $\mathfrak{l} = \mathfrak{g}$. Equivalently: the semi-simple part of the centralizer G_f is anisotropic
- (S, f) is called Levi-distinguished if \exists parabolic $\mathfrak{p} = \mathfrak{l}\mathfrak{u}$ s.t. f is \mathbb{K} -distinguished in \mathfrak{l} , and $\mathfrak{n}_{S,f} = \mathfrak{l}_{S,f} \oplus \mathfrak{u}$.
- Whittaker coefficients are Levi-distinguished.
- For Whittaker pairs with the same f and commuting H-s, neutral \succ any \succ Levi-distinguished.

Theorem

Let $(H, f) \succ (S, f)$. Then

- \mathfrak{O} $\mathcal{F}_{S,f}[\eta]$ can be expressed through $\mathcal{F}_{H,f}[\eta]$.
- ① If $\Gamma f \in WO^{\max}(\eta)$ and $\mathfrak{g}_1^H = \mathfrak{g}_1^S = 0$ let $\mathfrak{v} := \mathfrak{g}_{>1}^H \cap \mathfrak{g}_{<1}^S$. Then

$$\mathcal{F}_{H,f}[\eta](g) = \int_{V(\mathbb{A})} \mathcal{F}_{S,f}[\eta](vg) \, dv$$

Theorem

Let $(H, f) \succ (S, f)$. Then

- **(a)** $\mathcal{F}_{S,f}[\eta]$ can be expressed through $\mathcal{F}_{H,f}[\eta]$.

$$\mathcal{F}_{H,f}[\eta](g) = \int_{V(\mathbb{A})} \mathcal{F}_{S,f}[\eta](vg) dv$$

Corollary

- ① If η is cuspidal then any $\mathcal{O} \in \mathsf{WO}^{\mathsf{max}}(\eta)$ is \mathbb{K} -distinguished. In particular, \mathcal{O} is totally even for $G = \mathrm{Sp}_{2n}$, totally odd for G = SO(V), not minimal for $\mathrm{rk} G > 1$, and not next-to-minimal for $\mathrm{rk} G > 2$, $G \neq F_4$.
- **a** Lower bounds for partitions of $\mathcal{O} \in WO^{max}(\eta)$ with cuspidal η : 2^n for Sp_{2n} , 3^n1^n for SO(2n,2n), $53^{n-1}1^n$ for SO(2n+1,2n+1), 3^n1^{n+1} for SO(2n+1,2n), and $(3^{n+1},1^n)$ for SO(2n+2,2n+1).
- ① If $f \notin WO(\eta)$ then $\mathcal{F}_{H,f}(\eta) = 0$ for any H.

7 / 24

Corollary

- If η is cuspidal then any $\mathcal{O} \in \mathsf{WO}^{\mathsf{max}}(\eta)$ is \mathbb{K} -distinguished. In particular, \mathcal{O} is totally even for $G = \mathrm{Sp}_{2n}$, totally odd for G = SO(V), not minimal for $\mathrm{rk} G > 1$, and not next-to-minimal for $\mathrm{rk} G > 2$, $G \neq F_4$.
- ① Lower bounds for partitions of $\mathcal{O} \in WO^{max}(\eta)$ with cuspidal η : 2^n for Sp_{2n} , 3^n1^n for SO(2n,2n), $53^{n-1}1^n$ for SO(2n+1,2n+1), 3^n1^{n+1} for SO(2n+1,2n), and $(3^{n+1},1^n)$ for SO(2n+2,2n+1).
- ① If $f \notin WO(\eta)$ then $\mathcal{F}_{H,f}(\eta) = 0$ for any H.

Proof of (i).

Let $\mathfrak{l}\subset \mathfrak{g}$ be Levi subalgebra intersecting \mathcal{O} . Let $(e,h,f)\in \mathfrak{l}$ be an \mathfrak{sl}_2 -triple with $f\in \mathcal{O}$. Let $Z\in \mathfrak{g}$ be a (rational) semi-simple element s.t. $\mathfrak{l}=\mathfrak{g}^Z$. Let $T>>0\in \mathbb{Z}$ and let H:=h+TZ. Then $\mathcal{F}_{H,f}(\eta)=\mathcal{F}_{H,f}(c_L(\eta))$, where $c_L(\eta)$ denotes the constant term. Since $\mathcal{F}_{H,f}(\eta)\neq 0$ by the theorem and η is cuspidal, L=G.

$$\begin{split} & G := \mathsf{GL}(4,\mathbb{A}), \ f := E_{21} + E_{43}, \ H := \mathsf{diag}(3,1,-1,-3), \\ & h = \mathsf{diag}(1,-1,1,-1), \ Z = H - h = \mathsf{diag}(2,2,-2,-2), H_t := h + tZ. \\ & \mathsf{Then} \ \mathfrak{n}_0 \subset \mathfrak{n}_{1/4} \oplus \mathfrak{i} \sim \mathfrak{n}_{1/4} \oplus \mathfrak{j} \subset \mathfrak{n}_{3/4} = \mathfrak{n}_1 : \end{split}$$

$$\begin{pmatrix}
0 & * & 0 & * \\
0 & 0 & 0 & 0 \\
0 & * & 0 & * \\
0 & 0 & 0 & 0
\end{pmatrix}
\subset
\begin{pmatrix}
0 & * & a & * \\
0 & 0 & 0 & a \\
0 & - & 0 & * \\
0 & 0 & 0 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
0 & * & - & * \\
0 & 0 & 0 & - \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Both * and - denote arbitrary elements. * denotes the entries in $\mathfrak{g}_{>1}^{H_t}$ and - those in $\mathfrak{g}_1^{H_t}$. a denotes equal elements in $\mathfrak{g}_1^{H_t} \cap \mathfrak{g}^f$.

9 / 24

Corollary (Hidden symmetry)

Let η be an automorphic form on G, and let (H,f) be a Whittaker pair with $\Gamma f \in WO^{max}(\eta)$. Then any unipotent element u of the centralizer of the pair (H,f) in G acts trivially on the Fourier coefficient $\mathcal{F}_{H,f}[\eta]$ using the left regular action.

Proof.

Want to show that $\mathcal{F}_{H,f}[\eta - \eta^u] = 0$. By the theorem, enough to show $\mathcal{F}_{H+Z,f}[\eta - \eta^u] = 0$ for some Z. Find Z such that $u \in N_{H+Z,f}$.

Example:
$$G = GL_4(\mathbb{A})$$
, $f = E_{31} + E_{42}$, $H = \text{diag}(1, 1, -1, -1)$, $u = Id + E_{12} + E_{34}$, $Z = \text{diag}(1, -1, 1, -1)$.

$$\mathfrak{n}_{H,f} = \begin{pmatrix} 0 & b & \underline{*} & * \\ 0 & 0 & \underline{*} & \underline{*} \\ 0 & 0 & 0 & b \\ 0 & 0 & 0 & 0 \end{pmatrix}; \mathfrak{n}_{H+Z,f} = \begin{pmatrix} 0 & * & \underline{*} & * \\ 0 & 0 & 0 & \underline{*} \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\underline{*}$: non-zero pairing with f. b: entries of u.

Corollary: if $WO^{\max}(\eta) = \{2^n\}$ then η has almost-Shalika model.

Applications of hidden symmetry

Corollary (Hidden symmetry)

Let η be an automorphic form on G, and let (H,f) be a Whittaker pair with $\Gamma f \in \mathsf{WO}^{\mathsf{max}}(\eta)$. Then any unipotent element u of the centralizer of the pair (H,f) in G acts trivially on the Fourier coefficient $\mathcal{F}_{H,f}[\eta]$ using the left regular action.

Proof.

Want to show that $\mathcal{F}_{H,f}[\eta - \eta^u] = 0$. By the theorem, enough to show $\mathcal{F}_{H+Z,f}[\eta - \eta^u] = 0$ for some Z. Find Z such that $u \in N_{H+Z,f}$.

Corollary

If $G \in \{SO(n, n), SO(n + 1, n)\}$ and $WO^{max}(\eta) = \{31...1\}$ then $\mathcal{F}_{H,f}[\eta]$ is Eulerian.

Follows from uniqueness of Bessel models.

11 / 24

Fourier-Jacobi periods and the Weil representation

For a symplectic space V over \mathbb{K} , let $\mathcal{H}(V):=V\oplus\mathbb{K}$ be the Heisenberg group and $\widetilde{J(V)}:=\operatorname{Sp}(V(\mathbb{A}))\ltimes\mathcal{H}(V(\mathbb{A}))$ be the double cover Jacobi group. It has unique irreducible unitarizable representation ϖ_V with central character χ . It has automorphic realization given by theta functions:

$$\theta_f(g) = \sum_{\mathbf{a} \in \mathcal{E}(K)} \omega_{\chi}(g) f(\mathbf{a}), \text{ where } g \in \widetilde{J(V)}, f \in \mathcal{S}(\mathcal{E}(\mathbb{A})), \ \mathcal{E} \subset V \text{ Lagrang}$$

For a Whittaker pair (H, f) let $\mathfrak{u} := \mathfrak{g}_{\geq 1}^H$ and $V := \mathfrak{u}/\mathfrak{n}_{H,f}$, with symplectic form $\omega_f(A, B) := \langle f, [A, B] \rangle$. Then we have a natural map $\ell : U \rtimes \widetilde{G_{H,f}} \to J(V)$. Define $FJ : \pi \otimes \varpi_V \to C^\infty(\Gamma \backslash \widetilde{G_{H,f}})$ by

$$f \otimes \eta \mapsto \int_{U(K) \setminus U(\mathbb{A})} f(u\tilde{g}) \theta_{\eta}(\ell(u, \tilde{g})) du$$

M:=split semi-simple part of the centralizer $G_{H,f}$.

Theorem

If $\Gamma \cdot f \in WO^{max}(\pi)$ then \widetilde{M} acts on the image of FJ by ± 1 .

Fourier-Jacobi periods and the Weil representation

For a Whittaker pair (H, f) let $\mathfrak{u} := \mathfrak{g}_{\geq 1}^H$ and $V := \mathfrak{u}/\mathfrak{n}_{H,f}$, with symplectic form $\omega_{\varphi}(A, B) := \langle f, [A, B] \rangle$. Then we have a natural map $\ell : U \rtimes \widetilde{G_{\gamma}} \to J(V)$. Define $FJ : \pi \otimes \varpi_V \to C^{\infty}(\Gamma \backslash \widetilde{G_{H,f}})$ by

$$f\otimes\eta\mapsto\int_{U(K)\setminus U(\mathbb{A})}f(u ilde{g}) heta_{\eta}(\ell(u, ilde{g}))du$$

M:=split semi-simple part of the centralizer $G_{H,f}$.

Theorem

If $\Gamma \cdot f \in WO^{\max}(\pi)$ then \widetilde{M} acts on the image of FJ by ± 1 .

Since the Weil representation ω_V is genuine, obtain:

Corollary

If $\Gamma \cdot f \in WO^{max}(\pi)$ then the cover \widetilde{M} splits.

Corollary

If $\Gamma \cdot f \in \mathsf{WO}^{\mathsf{max}}(\pi)$ and G is classical then the orbit of f is special.

Eulerianity

Lemma

Let (S,f) and (H,f') be two Whittaker pairs such that $\Gamma f = \Gamma f' \in \mathsf{WO}^{\mathsf{max}}(\eta)$. Let I,I' be maximal isotropic. Suppose that $\mathcal{F}_{S,f}^I[\eta]$ is Eulerian. Then $\mathcal{F}_{H,\psi}^{I'}[\eta]$ is also Eulerian.

Question

Is any Fourier-Jacobi coefficient $\mathcal{F}_{S,f}^I[\eta]$ with $\Gamma f \in \mathsf{WO}^{\mathsf{max}}(\eta)$ and I maximal isotropic Eulerian for any spherical η that generates an irreducible representation?

Verified for:

- Minimal representations of most split simply-laced groups
- Next-to-minimal Eisenstein series of most split simply-laced groups

Expressing forms through their Whittaker coefficients

Theorem

Any $\mathcal{F}_{H,f}$ can be expressed through all Levi-distinguished Fourier coefficients $\mathcal{F}_{S,F}$ with $\Gamma F \geq \Gamma f$.

Corollary

- Any η can be expressed through all its Levi-distinguished Fourier coefficients.
- **1** If all $O \in WO(\eta)$ admit Whittaker coefficients then η can be expressed through its Whittaker coefficients.
- For split simply-laced G, we obtained expressions for all minimal or next-to-minimal η, and all their Fourier coefficients in terms of Whittaker coefficients.

Explanation for GL_n (PS-Shalika, Ahlen–Gustafsson-Liu-Kleinschmidt-Persson)

Let $\eta \in C^{\infty}(\Gamma \backslash \operatorname{GL}_n(\mathbb{A}))$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\operatorname{GL}_{n-1}(\mathbb{K})$.

$$\left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) + \left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

Let $\eta \in C^{\infty}(\Gamma \backslash \operatorname{GL}_n(\mathbb{A}))$. Restrict to the last column and decompose to Fourier series. All non-trivial characters are conjugate by $\operatorname{GL}_{n-1}(\mathbb{K})$. Conjugate, restrict to the next column and continue

$$\begin{pmatrix} 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \cdots$$

Example: Sp(4)

$$\mathfrak{sp}_4 = \left\{ \left(\begin{array}{cc} A & B = B^t \\ C = C^t & -A^t \end{array} \right) \right\}.$$

Let $\mathfrak n$ be the Borel nilradical, and $\mathfrak u\subset\mathfrak n$ be the Siegel nilradical, spanned by B. Characters given by $\bar{\mathfrak u}\cong\operatorname{Sym}^2(\mathbb K^2)$. Restricting η to B and decomposing into Fourier series we obtain $\eta=\sum_{f\in\bar{\mathfrak u}}\mathcal F_{\mathfrak u,f}[\eta]$.

① Constant term $\mathcal{F}_{\mathfrak{u},0}[\eta]$: Restrict to the Siegel Levi $L \cong \mathsf{GL}_2(\mathbb{A})$, and decompose to Fourier series on the abelian group $N \cap L$:

$$\mathcal{F}_{\mathfrak{u},0}[\eta] = \sum_{\mathbf{a} \in \mathbb{K}} \mathcal{W}_{\mathbf{a},0}[\eta] \,.$$

② Any f of rank one is conjugate under L to $f_1 := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Decomposing $\mathcal{F}_{\mathfrak{u},f_1}[\eta]$ on $N \cap L$:

$$\mathcal{F}_{\mathfrak{u},\mathit{f}_1}[\eta] = \sum_{\mathsf{a} \in \mathbb{K}} \mathcal{W}_{\mathsf{a},1}[\eta]$$
 .

18 / 24

$$\mathfrak{sp}_4 = \left\{ \left(\begin{array}{cc} A & B = B^t \\ C = C^t & -A^t \end{array} \right) \right\}; \quad \eta = \sum_{f \in \overline{\mathfrak{u}}} \mathcal{F}_{\mathfrak{u},f}[\eta].$$

① Constant term $\mathcal{F}_{\mathfrak{u},0}[\eta]$: Decompose to Fourier series on $N \cap L$:

$$\mathcal{F}_{\mathfrak{u},0}[\eta] = \sum_{\mathbf{z} \in \mathbb{Z}} \mathcal{W}_{\mathsf{a},0}[\eta]$$
 .

② Any f of rank one is conjugate under L to $f_1 := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Decomposing $\mathcal{F}_{\mathfrak{ll},f_1}[\eta]$ on $N \cap L$:

$$\mathcal{F}_{\mathfrak{u},f_1}[\eta] = \sum_{}^{} \mathcal{W}_{\mathsf{a},1}[\eta] \,.$$

Split non-degenerate forms are conjugate to $f_2 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Using Weyl group conjugation (24) and root exchange, we express

 $\mathcal{F}_{\mathfrak{u},f_2}$ through $\mathcal{F}_{\mathfrak{u}',e_{21}}$, where $\mathfrak{u}'=Span(e_{12}-e_{43},e_{13},e_{24})\subset\mathfrak{n}$. Fourier expansion by the remaining coordinate of $e_{14}+e_{23}\in\mathfrak{n}$:

$$\mathcal{F}_{\mathfrak{u},f}[\eta](g) = \int \; \mathcal{W}_{1,a}[\eta]((\mathit{Id} + xe_{24})wg).$$

X:=set of anisotropic 2×2 forms. For $f \in X$, we cannot simplify $\mathcal{F}_{\mathfrak{u},f}[\eta]$. Summarizing, for any η on $G = \mathrm{Sp}_4(\mathbb{A})$ we have

$$\begin{split} \eta(g) &= \sum_{f \in X} \mathcal{F}_{\mathfrak{u},f}[\eta](g) + \sum_{a \in \mathbb{K}} \Bigl(\sum_{\gamma \in L/O(1,1)_{\chi \in \mathbb{A}}} \int_{\mathcal{W}_{1,a}} \mathcal{W}_{1,a}[\eta](v_{x}w\gamma g) + \\ &\qquad \qquad \sum_{\gamma \in L/(N \cap L)} \mathcal{W}_{a,1}[\eta](\gamma g) + \mathcal{W}_{a,0}[\eta](g) \Bigr) \end{split}$$

If η is cuspidal then $\mathcal{W}_{0,a}[\eta] = \mathcal{W}_{a,0}[\eta] = 0$. If η is non-generic, then $\mathcal{W}_{1,a}[\eta] = \mathcal{W}_{a,1}[\eta] = 0$, unless a = 0. Thus

lacksquare If η is cuspidal then $\eta(g) = \sum_{f \in X} \mathcal{F}_{\mathfrak{u},f}[\eta](g) +$

$$\sum_{\mathbf{a} \in \mathbb{K}^{\times}} \Bigl(\sum_{\gamma \in L/O(1,1)} \int\limits_{\mathbf{x} \in \mathbb{A}} \mathcal{W}_{1,\mathbf{a}}[\eta](\mathbf{v}_{\mathbf{x}} \mathbf{w} \gamma \mathbf{g}) + \sum_{\gamma \in L/(\mathsf{N} \cap L)} \mathcal{W}_{\mathbf{a},1}[\eta](\gamma \mathbf{g}) \Bigr)$$

② If η is non-generic then $\eta(g) = \sum_{f \in X} \mathcal{F}_{\mathfrak{u},f}[\eta](g) +$

$$\sum_{\gamma \in L/\mathrm{O}(1,1)_{\mathsf{X}} \in \mathbb{A}} \int \mathcal{W}_{1,0}[\eta](\mathsf{v}_{\mathsf{X}} \mathsf{w} \gamma \mathsf{g}) + \sum_{\gamma \in L/(\mathsf{N} \cap L)} \mathcal{W}_{0,1}[\eta](\gamma \mathsf{g}) + \sum_{\mathsf{a} \in \mathbb{K}} \mathcal{W}_{\mathsf{a},0}[\eta](\gamma \mathsf{g}) + \sum_{\mathsf{b} \in \mathbb{K}} \mathcal{W}_{\mathsf{b},0}[\eta](\gamma \mathsf{g}) + \sum_{\mathsf{b} \in \mathbb{K}} \mathcal{W}_{\mathsf{b},0}[$$

20 / 24

3 If η is cuspidal and non-generic then $\eta = \sum_{f \in X} \mathcal{F}_{\mathfrak{u},f}[\eta]$.

Dmitry Gourevitch Fourier coefficients February 2021

Parabolic minimal Fourier coeff. of next-to-minimal forms

- \bullet $\mathfrak g$ split simply laced, $\mathfrak h\subset \mathfrak g$ Cartan, $\mathfrak b=\mathfrak h\oplus \mathfrak u$ Borel
- α simple root. $\mathfrak{q}_{\alpha} = \mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha} = \mathfrak{g}_{>0}^{S_{\alpha}}$ max. parabolic.
- $I^{(\perp \alpha)} = \{\beta_1, \dots, \beta_k\}$ Bourbaki enumeration of the simple roots orthogonal to α .
- $\forall i \ G \supset L_i := \text{Levi given by roots } \beta_1, \dots, \beta_i$
- $L_i \supset S_i := \text{stabilizer of the root space } \mathfrak{g}_{-\beta_i}, \ \Gamma_i := (L_i \cap \Gamma)/(S_i \cap \Gamma).$
- For $f \in \mathfrak{g}_{-\alpha}^{\times}$ and next-to-minimal $\eta_{\mathrm{ntm}} \in C^{\infty}(\Gamma \backslash G)$ let

$$\mathcal{A}_{i}^{f}[\eta_{ ext{ntm}}](g) := \sum_{\gamma \in \Gamma_{i-1}} \sum_{\phi \in \mathfrak{g}_{-\beta_{i}}^{ imes}} \mathcal{W}_{\phi + f}[\eta_{ ext{ntm}}](\gamma g)$$

Theorem

$$\mathcal{F}_{\mathsf{S}_{lpha,f}}[\eta_{\mathsf{ntm}}] = \mathcal{W}_f[\eta_{\mathsf{ntm}}] + \sum_{i=1}^k A_i^f[\eta_{\mathsf{ntm}}]$$

Dmitry Gourevitch Fourier coefficients February 2021 21 / 24

- g split simply laced, $\mathfrak{h} \subset \mathfrak{g}$ Cartan, $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{u}$ Borel
- α simple root. $\mathfrak{q}_{\alpha} = \mathfrak{l}_{\alpha} \oplus \mathfrak{n}_{\alpha} = \mathfrak{g}_{>0}^{S_{\alpha}}$ max. parabolic.
- $I^{(\perp \alpha)} = \{\beta_1, \dots, \beta_k\}$ Bourbaki enumeration of the simple roots orthogonal to α .
- $\forall i \ G \supset L_i := \text{Levi given by roots } \beta_1, \dots, \beta_i$ • $L_i \supset S_i := \text{stabilizer of the root space } \mathfrak{g}_{-G} \cap \Gamma_i := (L_i \cap \Gamma)/(S_i \cap \Gamma)$
- L_i ⊃ S_i := stabilizer of the root space g_{-βi}, Γ_i := (L_i ∩ Γ)/(S_i ∩ Γ).
 For f ∈ g[×]_{-α} and next-to-minimal η_{ntm} ∈ C[∞](Γ\G) let

$$\mathcal{A}_i^f[\eta_{ ext{ntm}}](g) := \sum_{\gamma \in \Gamma_{i-1}} \sum_{\phi \in \mathfrak{g}_{-eta}^{ imes}} \mathcal{W}_{\phi + f}[\eta_{ ext{ntm}}](\gamma g)$$

Theorem

$$\mathcal{F}_{\mathcal{S}_{\alpha},f}[\eta_{\mathrm{ntm}}] = \mathcal{W}_{f}[\eta_{\mathrm{ntm}}] + \sum_{i=1}^{k} A_{i}^{f}[\eta_{\mathrm{ntm}}]$$

- $F := \text{local field of char. 0, } G := \mathbf{G}(F), \, \mathfrak{g} := \text{Lie}(G),$
- $\bullet \ (H,f) \in \mathfrak{g} \times \mathfrak{g} \ \mathsf{Whittaker} \ \mathsf{pair} \ \mathfrak{u} := \mathfrak{g}_{>1}^H, \ \mathfrak{n}_{H,f} := (\mathfrak{g}_1^H \cap \mathfrak{g}^f) \oplus \mathfrak{g}_{>1}^H.$
- $\mathfrak{u}/\mathfrak{n}_{H,f}$ is a symplectic space, and its Heisenberg group \mathcal{H} is a quotient of U.
- $\omega_{H,f}:=$ oscillator representation of $\mathcal H$ lifted to $\mathfrak u.$ $\mathcal W_{H,f}:=ind_U^{\mathcal G}\omega_{H,f}$
- \forall smooth representation π , define its (H, f)-Whittaker quotient by

$$\pi_{H,f}:=\mathcal{W}_{H,f}\otimes_{\mathcal{G}}\pi\simeq\pi_{I,\chi}.$$

• All the theorems above have local analogues with similar proofs.

Wave front set and wave-front cycle

Let π be smooth, admissible and finitely generated.

Theorem (Howe, Harish-Chandra, Barbasch-Vogan 70s)

Near $e \in G$, the character distribution equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\exp^*(\chi_\pi) pprox \sum c_{\mathcal{O}} \mathcal{F}(\mu_{\mathcal{O}})$$

- Let $\mathcal{N} \subset \mathfrak{g}$ denote the nilpotent cone.
- WF $(\pi) := \cup \{\overline{\mathcal{O}} \mid c_{\mathcal{O}} \neq 0\} \subset \mathcal{N}$.
- WF^{max} $(\pi) :=$ union of maximal orbits in WF (π) .

Theorem (Moeglin-Waldspurger, 87')

Let F be p-adic and let (H, f) be a Whittaker pair.

- If $\pi_{H,f} \neq 0$ then $f \in WF(\pi)$.
- If $f \in WF^{max}(\pi)$ then $\dim \pi_{H,f} = c_f$.