Finite multiplicities beyond spherical pairs

Dmitry Gourevitch
Weizmann Institute of Science, Israel
http://www.wisdom.weizmann.ac.il/~dimagur
Basic Functions, Orbital Integrals, and Beyond Endoscopy
j.w. Avraham Aizenbud
arXiv:2109.00204

BIRS, November 2021

- G: reductive group over $\mathbb{R}, \mathbf{X}:=$ algebraic \mathbf{G}-manifold, $\mathfrak{g}:=\operatorname{Lie}(\mathbf{G})$, $\mathcal{N}\left(\mathfrak{g}^{*}\right):=$ nilpotent cone, $G:=\mathbf{G}(\mathbb{R}), X:=\mathbf{X}(\mathbb{R})$,
- G: reductive group over $\mathbb{R}, \mathbf{X}:=$ algebraic \mathbf{G}-manifold, $\mathfrak{g}:=\operatorname{Lie}(\mathbf{G})$, $\mathcal{N}\left(\mathfrak{g}^{*}\right):=$ nilpotent cone, $G:=\mathbf{G}(\mathbb{R}), X:=\mathbf{X}(\mathbb{R})$,
- $\mathcal{S}(X):=$ smooth functions on X, flat at infinity (Schwartz).
－G：reductive group over $\mathbb{R}, \mathbf{X}:=$ algebraic \mathbf{G}－manifold， $\mathfrak{g}:=\operatorname{Lie}(\mathbf{G})$ ， $\mathcal{N}\left(\mathfrak{g}^{*}\right):=$ nilpotent cone，$G:=\mathbf{G}(\mathbb{R}), X:=\mathbf{X}(\mathbb{R})$ ，
－ $\mathcal{S}(X):=$ smooth functions on X ，flat at infinity（Schwartz）．
－ \mathbf{X} is called spherical if it has an open orbit of a Borel subgroup $\mathbf{B} \subset \mathbf{G}$ ．
- G: reductive group over $\mathbb{R}, \mathbf{X}:=$ algebraic \mathbf{G}-manifold, $\mathfrak{g}:=\operatorname{Lie}(\mathbf{G})$, $\mathcal{N}\left(\mathfrak{g}^{*}\right):=$ nilpotent cone, $G:=\mathbf{G}(\mathbb{R}), X:=\mathbf{X}(\mathbb{R})$,
- $\mathcal{S}(X):=$ smooth functions on X, flat at infinity (Schwartz).
- \mathbf{X} is called spherical if it has an open orbit of a Borel subgroup $\mathbf{B} \subset \mathbf{G}$.
- X is called real spherical if it has an open orbit of a minimal parabolic subgroup.
- G: reductive group over $\mathbb{R}, \mathbf{X}:=$ algebraic \mathbf{G}-manifold, $\mathfrak{g}:=\operatorname{Lie}(\mathbf{G})$, $\mathcal{N}\left(\mathfrak{g}^{*}\right):=$ nilpotent cone, $G:=\mathbf{G}(\mathbb{R}), X:=\mathbf{X}(\mathbb{R})$,
- $\mathcal{S}(X):=$ smooth functions on X, flat at infinity (Schwartz).
- \mathbf{X} is called spherical if it has an open orbit of a Borel subgroup $\mathbf{B} \subset \mathbf{G}$.
- X is called real spherical if it has an open orbit of a minimal parabolic subgroup.
- G: reductive group over $\mathbb{R}, \mathbf{X}:=$ algebraic \mathbf{G}-manifold, $\mathfrak{g}:=\operatorname{Lie}(\mathbf{G})$, $\mathcal{N}\left(\mathfrak{g}^{*}\right):=$ nilpotent cone, $G:=\mathbf{G}(\mathbb{R}), X:=\mathbf{X}(\mathbb{R})$,
- $\mathcal{S}(X):=$ smooth functions on X, flat at infinity (Schwartz).
- \mathbf{X} is called spherical if it has an open orbit of a Borel subgroup $\mathbf{B} \subset \mathbf{G}$.
- X is called real spherical if it has an open orbit of a minimal parabolic subgroup.
Major Goal: study $L^{2}(X), C^{\infty}(X), \mathcal{S}(X)$ as rep-s of G.
Studied by Bernstein, Delorme, van den Ban, Schlichtkrull, Kroetz, Kobayashi, Oshima, Knop, Beuzart-Plessis, Kuit, Wan,...
- G: reductive group over $\mathbb{R}, \mathbf{X}:=$ algebraic \mathbf{G}-manifold, $\mathfrak{g}:=\operatorname{Lie}(\mathbf{G})$, $\mathcal{N}\left(\mathfrak{g}^{*}\right):=$ nilpotent cone, $G:=\mathbf{G}(\mathbb{R}), X:=\mathbf{X}(\mathbb{R})$,
- $\mathcal{S}(X):=$ smooth functions on X, flat at infinity (Schwartz).
- \mathbf{X} is called spherical if it has an open orbit of a Borel subgroup $\mathbf{B} \subset \mathbf{G}$.
- X is called real spherical if it has an open orbit of a minimal parabolic subgroup.
Major Goal: study $L^{2}(X), C^{\infty}(X), \mathcal{S}(X)$ as rep-s of G.
Studied by Bernstein, Delorme, van den Ban, Schlichtkrull, Kroetz, Kobayashi, Oshima, Knop, Beuzart-Plessis, Kuit, Wan,...

Theorem (Kobayashi-Oshima, 2013)

Let $\mathbf{X}=\mathbf{G} / \mathbf{H}$. Then
(1) X is spherical $\Longleftrightarrow \mathcal{S}(X)$ has bounded multiplicities.
(1) X is real-spherical $\Longleftrightarrow \mathcal{S}(X)$ has finite multiplicities.

$$
m_{\sigma}(\mathcal{S}(X)):=\operatorname{dim} \operatorname{Hom}(\mathcal{S}(X), \sigma), \quad m_{\sigma}(\mathcal{S}(G / H))=\operatorname{dim}\left(\sigma^{-\infty}\right)^{H}
$$

- G: reductive group over $\mathbb{R}, \mathbf{X}:=$ algebraic \mathbf{G}-manifold, $\mathfrak{g}:=\operatorname{Lie}(\mathbf{G})$, $\mathcal{N}\left(\mathfrak{g}^{*}\right):=$ nilpotent cone, $G:=\mathbf{G}(\mathbb{R}), X:=\mathbf{X}(\mathbb{R})$,
- $\mathcal{S}(X):=$ smooth functions on X, flat at infinity (Schwartz).
- \mathbf{X} is called spherical if it has an open orbit of a Borel subgroup $\mathbf{B} \subset \mathbf{G}$.
- X is called real spherical if it has an open orbit of a minimal parabolic subgroup.
Major Goal: study $L^{2}(X), C^{\infty}(X), \mathcal{S}(X)$ as rep-s of G.
Studied by Bernstein, Delorme, van den Ban, Schlichtkrull, Kroetz, Kobayashi, Oshima, Knop, Beuzart-Plessis, Kuit, Wan,...

Theorem (Kobayashi-Oshima, 2013)

Let $\mathbf{X}=\mathbf{G} / \mathbf{H}$. Then
(1) X is spherical $\Longleftrightarrow \mathcal{S}(X)$ has bounded multiplicities.
(1) X is real-spherical $\Longleftrightarrow \mathcal{S}(X)$ has finite multiplicities.

$$
m_{\sigma}(\mathcal{S}(X)):=\operatorname{dim} \operatorname{Hom}(\mathcal{S}(X), \sigma), \quad m_{\sigma}(\mathcal{S}(G / H))=\operatorname{dim}\left(\sigma^{-\infty}\right)^{H}
$$

Theorem (Casselman, 1978)

$0<m_{\sigma}(\mathcal{S}(G / U))<\infty \quad \forall \sigma \in \operatorname{Irr}(G)$, where $U=$ maximal unipotent.

E-spherical spaces

$\forall x \in \mathbf{X}$, have action map $\mathbf{G} \rightarrow \mathbf{X}$, thus $\mathfrak{g} \rightarrow T_{x} \mathbf{X}$, and $T_{x}^{*} \mathbf{X} \rightarrow \mathfrak{g}^{*}$. This gives the moment map $\mu: T^{*} \mathbf{X} \rightarrow \mathfrak{g}^{*}$.
For $\mathbf{X}=\mathbf{G} / \mathbf{H}: T^{*} \mathbf{X} \cong \mathbf{G} \times_{H} \mathfrak{h}^{\perp}$ and $\mu(g, \alpha)=g \cdot \alpha$

E-spherical spaces

$\forall x \in \mathbf{X}$, have action map $\mathbf{G} \rightarrow \mathbf{X}$, thus $\mathfrak{g} \rightarrow T_{x} \mathbf{X}$, and $T_{x}^{*} \mathbf{X} \rightarrow \mathfrak{g}^{*}$.
This gives the moment map $\mu: T^{*} \mathbf{X} \rightarrow \mathfrak{g}^{*}$.
For $\mathbf{X}=\mathbf{G} / \mathbf{H}: T^{*} \mathbf{X} \cong \mathbf{G} \times_{H} \mathfrak{h}^{\perp}$ and $\mu(g, \alpha)=g \cdot \alpha$

Definition

- For a nilpotent orbit $\mathbf{O} \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$, say \mathbf{X} is \mathbf{O}-spherical if

$$
\operatorname{dim} \mu^{-1}(\mathbf{O}) \leq \operatorname{dim} \mathbf{X}+\operatorname{dim} \mathbf{O} / 2
$$

- For a G-invariant subset $\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$, say \mathbf{X} is Ξ-spherical if \mathbf{X} is \mathbf{O}-spherical $\forall \mathbf{O} \subset \Xi$.

For $\mathbf{X}=\mathbf{G} / \mathbf{H}, \mathbf{X}$ is \mathbf{O}-spherical $\Longleftrightarrow \operatorname{dim} \mathbf{O} \cap \mathfrak{h}^{\perp} \leq \operatorname{dim} \mathbf{O} / 2$.

E-spherical spaces

$\forall x \in \mathbf{X}$, have action map $\mathbf{G} \rightarrow \mathbf{X}$, thus $\mathfrak{g} \rightarrow T_{x} \mathbf{X}$, and $T_{x}^{*} \mathbf{X} \rightarrow \mathfrak{g}^{*}$.
This gives the moment map $\mu: T^{*} \mathbf{X} \rightarrow \mathfrak{g}^{*}$.
For $\mathbf{X}=\mathbf{G} / \mathbf{H}: T^{*} \mathbf{X} \cong \mathbf{G} \times_{H} \mathfrak{h}^{\perp}$ and $\mu(g, \alpha)=g \cdot \alpha$

Definition

- For a nilpotent orbit $\mathbf{O} \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$, say \mathbf{X} is \mathbf{O}-spherical if

$$
\operatorname{dim} \mu^{-1}(\mathbf{O}) \leq \operatorname{dim} \mathbf{X}+\operatorname{dim} \mathbf{O} / 2
$$

- For a G-invariant subset $\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$, say \mathbf{X} is Ξ-spherical if \mathbf{X} is \mathbf{O}-spherical $\forall \mathbf{O} \subset \Xi$.

For $\mathbf{X}=\mathbf{G} / \mathbf{H}, \mathbf{X}$ is \mathbf{O}-spherical $\Longleftrightarrow \operatorname{dim} \mathbf{O} \cap \mathfrak{h}^{\perp} \leq \operatorname{dim} \mathbf{O} / 2$. For parabolic $\mathbf{P} \subset \mathbf{G}, \mathbf{O}_{\mathbf{P}}:=$ the unique orbit s.t. $\mathfrak{p}^{\perp} \cap \mathbf{O}_{\mathbf{P}}$ is dense in \mathfrak{p}^{\perp}.

Theorem 1 (Aizenbud - G. 2021)
\mathbf{X} is $\overline{\mathbf{O}}_{\mathbf{P}}$-spherical $\Longleftrightarrow \mathbf{P}$ has finitely many orbits on \mathbf{X}.
$\forall x \in \mathbf{X}$, have action map $\mathbf{G} \rightarrow \mathbf{X}$, thus $\mathfrak{g} \rightarrow T_{x} \mathbf{X}$, and $T_{x}^{*} \mathbf{X} \rightarrow \mathfrak{g}^{*}$. This gives the moment map $\mu: T^{*} \mathbf{X} \rightarrow \mathfrak{g}^{*}$. For $\mathbf{X}=\mathbf{G} / \mathbf{H}: T^{*} \mathbf{X} \cong \mathbf{G} \times_{H} \mathfrak{h}^{\perp}$ and $\mu(g, \alpha)=g \cdot \alpha$

Definition

- For a nilpotent orbit $\mathbf{O} \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$, say \mathbf{X} is \mathbf{O}-spherical if

$$
\operatorname{dim} \mu^{-1}(\mathbf{O}) \leq \operatorname{dim} \mathbf{X}+\operatorname{dim} \mathbf{O} / 2
$$

- For a G-invariant subset $\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$, say \mathbf{X} is Ξ-spherical if \mathbf{X} is O-spherical $\forall \mathbf{O} \subset \Xi$.

For $\mathbf{X}=\mathbf{G} / \mathbf{H}, \mathbf{X}$ is \mathbf{O}-spherical $\Longleftrightarrow \operatorname{dim} \mathbf{O} \cap \mathfrak{h}^{\perp} \leq \operatorname{dim} \mathbf{O} / 2$. For parabolic $\mathbf{P} \subset \mathbf{G}, \mathbf{O}_{\mathbf{P}}:=$ the unique orbit s.t. $\mathfrak{p}^{\perp} \cap \mathbf{O}_{\mathbf{P}}$ is dense in \mathfrak{p}^{\perp}.

Theorem 1 (Aizenbud - G. 2021)
\mathbf{X} is $\overline{\mathbf{O P}_{\mathbf{P}}}$-spherical $\Longleftrightarrow \mathbf{P}$ has finitely many orbits on \mathbf{X}.

Corollary (following Wen-Wei Li)

- \mathbf{X} is $\mathcal{N}\left(\mathfrak{g}^{*}\right)$-spherical $\Longleftrightarrow \mathbf{X}$ is spherical
- \mathbf{X} is $\{0\}$-spherical $\Longleftrightarrow \mathbf{G}$ has finitely many orbits on \mathbf{X}.

Associated variety of the annihilator \& the main theorem

- $\mathcal{U}_{n}(\mathfrak{g})$ - PBW filtration on universal enveloping algebra.

Associated variety of the annihilator \& the main theorem

- $\mathcal{U}_{n}(\mathfrak{g})$ - PBW filtration on universal enveloping algebra.
- $\operatorname{gr\mathcal {U}}(\mathfrak{g}) \cong S(\mathfrak{g}) \cong \operatorname{Pol}\left(\mathfrak{g}^{*}\right)$.

Associated variety of the annihilator \& the main theorem

- $\mathcal{U}_{n}(\mathfrak{g})$ - PBW filtration on universal enveloping algebra.
- $\operatorname{gr\mathcal {U}}(\mathfrak{g}) \cong S(\mathfrak{g}) \cong \operatorname{Pol}\left(\mathfrak{g}^{*}\right)$.
- For an ideal $I \subset \mathcal{U}(\mathfrak{g}), \mathcal{V}(I):=$ zero set of symbols of I in \mathfrak{g}^{*}.

Associated variety of the annihilator \& the main theorem

- $\mathcal{U}_{n}(\mathfrak{g})$ - PBW filtration on universal enveloping algebra.
- $\operatorname{gr\mathcal {U}}(\mathfrak{g}) \cong S(\mathfrak{g}) \cong \operatorname{Pol}\left(\mathfrak{g}^{*}\right)$.
- For an ideal $I \subset \mathcal{U}(\mathfrak{g}), \mathcal{V}(I):=$ zero set of symbols of I in \mathfrak{g}^{*}.
- For a \mathfrak{g}-module $M, \operatorname{Ann}(M) \subset \mathcal{U}(\mathfrak{g})$ - annihilator, $\mathcal{V}(\operatorname{Ann}(M)) \subset \mathfrak{g}^{*}$

Associated variety of the annihilator \& the main theorem

- $\mathcal{U}_{n}(\mathfrak{g})$ - PBW filtration on universal enveloping algebra.
- $\operatorname{gr\mathcal {U}}(\mathfrak{g}) \cong S(\mathfrak{g}) \cong \operatorname{Pol}\left(\mathfrak{g}^{*}\right)$.
- For an ideal $I \subset \mathcal{U}(\mathfrak{g}), \mathcal{V}(I):=$ zero set of symbols of I in \mathfrak{g}^{*}.
- For a \mathfrak{g}-module $M, \operatorname{Ann}(M) \subset \mathcal{U}(\mathfrak{g})$ - annihilator, $\mathcal{V}(\operatorname{Ann}(M)) \subset \mathfrak{g}^{*}$
- $\mathcal{M}(G)$ - the Casselman-Wallach category (abelian): finitely generated smooth admissible Fréchet representations of moderate growth .

Associated variety of the annihilator \& the main theorem

- $\mathcal{U}_{n}(\mathfrak{g})$ - PBW filtration on universal enveloping algebra.
- $\operatorname{gr\mathcal {U}}(\mathfrak{g}) \cong S(\mathfrak{g}) \cong \operatorname{Pol}\left(\mathfrak{g}^{*}\right)$.
- For an ideal $I \subset \mathcal{U}(\mathfrak{g}), \mathcal{V}(I):=$ zero set of symbols of I in \mathfrak{g}^{*}.
- For a \mathfrak{g}-module $M, \operatorname{Ann}(M) \subset \mathcal{U}(\mathfrak{g})$ - annihilator, $\mathcal{V}(\operatorname{Ann}(M)) \subset \mathfrak{g}^{*}$
- $\mathcal{M}(G)$ - the Casselman-Wallach category (abelian): finitely generated smooth admissible Fréchet representations of moderate growth .
- For $\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right), \mathcal{M}_{\Xi}(G)=\{\pi \in \mathcal{M}(G) \mid \mathcal{V}(\operatorname{Ann}(\pi)) \subset \Xi\}$

Associated variety of the annihilator \& the main theorem

- $\mathcal{U}_{n}(\mathfrak{g})$ - PBW filtration on universal enveloping algebra.
- $\operatorname{gr\mathcal {U}}(\mathfrak{g}) \cong S(\mathfrak{g}) \cong \operatorname{Pol}\left(\mathfrak{g}^{*}\right)$.
- For an ideal $I \subset \mathcal{U}(\mathfrak{g}), \mathcal{V}(I):=$ zero set of symbols of I in \mathfrak{g}^{*}.
- For a \mathfrak{g}-module $M, \operatorname{Ann}(M) \subset \mathcal{U}(\mathfrak{g})$ - annihilator, $\mathcal{V}(\operatorname{Ann}(M)) \subset \mathfrak{g}^{*}$
- $\mathcal{M}(G)$ - the Casselman-Wallach category (abelian): finitely generated smooth admissible Fréchet representations of moderate growth .
- For $\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right), \mathcal{M}_{\Xi}(G)=\{\pi \in \mathcal{M}(G) \mid \mathcal{V}(\operatorname{Ann}(\pi)) \subset \Xi\}$

Associated variety of the annihilator \& the main theorem

- $\mathcal{U}_{n}(\mathfrak{g})$ - PBW filtration on universal enveloping algebra.
- $\operatorname{gr} \mathcal{U}(\mathfrak{g}) \cong S(\mathfrak{g}) \cong \operatorname{Pol}\left(\mathfrak{g}^{*}\right)$.
- For an ideal $I \subset \mathcal{U}(\mathfrak{g}), \mathcal{V}(I):=$ zero set of symbols of I in \mathfrak{g}^{*}.
- For a \mathfrak{g}-module $M, \operatorname{Ann}(M) \subset \mathcal{U}(\mathfrak{g})$ - annihilator, $\mathcal{V}(\operatorname{Ann}(M)) \subset \mathfrak{g}^{*}$
- $\mathcal{M}(G)$ - the Casselman-Wallach category (abelian): finitely generated smooth admissible Fréchet representations of moderate growth .
- For $\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right), \mathcal{M}_{\Xi}(G)=\{\pi \in \mathcal{M}(G) \mid \mathcal{V}(\operatorname{Ann}(\pi)) \subset \Xi\}$

Theorem 2 (Aizenbud - G. 2021)

Let $\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$ closed \mathbf{G}-invariant. Let \mathbf{X} be Ξ-spherical \mathbf{G}-manifold, and let $\sigma \in \mathcal{M}_{\Xi}(G)$. Then $\operatorname{dim} \operatorname{Hom}(\mathcal{S}(X), \sigma)<\infty$

Applications to branching problems

Corollary

Let $\mathbf{H} \subset \mathbf{G}$ be reductive subgroup. Let $\mathbf{P} \subset \mathbf{G}$ and $\mathbf{Q} \subset \mathbf{H}$ be parabolic subgroups with $|\mathbf{P} \backslash \mathbf{G} / \mathbf{Q}|<\infty$. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H)$, $\operatorname{dim} \operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \tau\right)<\infty$

Applications to branching problems

Corollary

Let $\mathbf{H} \subset \mathbf{G}$ be reductive subgroup. Let $\mathbf{P} \subset \mathbf{G}$ and $\mathbf{Q} \subset \mathbf{H}$ be parabolic subgroups with $|\mathbf{P} \backslash \mathbf{G} / \mathbf{Q}|<\infty$. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H)$,

$$
\operatorname{dim} \operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \tau\right)<\infty
$$

Corollary

(1) Let $\mathbf{P} \subset \mathbf{G}$ be a parabolic subgroup s.t. \mathbf{G} / \mathbf{P} is a spherical \mathbf{H}-variety. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G),\left.\pi\right|_{H}$ has finite multiplicities.
(1) Let $\mathbf{Q} \subset \mathbf{H}$ be a parabolic subgroup that is spherical as a subgroup of G. Then for any $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H)$, ind ${ }_{H}^{G} \tau$ has finite multiplicities.

Applications to branching problems

Corollary

Let $\mathbf{H} \subset \mathbf{G}$ be reductive subgroup. Let $\mathbf{P} \subset \mathbf{G}$ and $\mathbf{Q} \subset \mathbf{H}$ be parabolic subgroups with $|\mathbf{P} \backslash \mathbf{G} / \mathbf{Q}|<\infty$. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G)$ and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H)$,

$$
\operatorname{dim} \operatorname{Hom}_{H}\left(\left.\pi\right|_{H}, \tau\right)<\infty
$$

Corollary

(1) Let $\mathbf{P} \subset \mathbf{G}$ be a parabolic subgroup s.t. \mathbf{G} / \mathbf{P} is a spherical \mathbf{H}-variety. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(G),\left.\pi\right|_{H}$ has finite multiplicities.
(1) Let $\mathbf{Q} \subset \mathbf{H}$ be a parabolic subgroup that is spherical as a subgroup of G. Then for any $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H)$, ind ${ }_{H}^{G} \tau$ has finite multiplicities.

For simple \mathbf{G} and symmetric $\mathbf{H} \subset \mathbf{G}$, all $\mathbf{P} \subset \mathbf{G}$ satisfying (i), and all $\mathbf{Q} \subset \mathbf{H}$ satisfying (ii) are classified by He, Nishiyama, Ochiai, Oshima. For classical G, all H: Avdeev-Petukhov. They also have a strategy $\forall \mathbf{G}$.

Corollary

Let \mathbf{H} be a reductive group, and $\mathbf{P}, \mathbf{Q} \subset \mathbf{H}$ be parabolic subgroups s.t. $\mathbf{H} / \mathbf{P} \times \mathbf{H} / \mathbf{Q}$ is a spherical \mathbf{H}-variety, under the diagonal action. Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(H)$, and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H), \pi \otimes \tau$ has finite multiplicities.

All such triples $(\mathbf{H}, \mathbf{P}, \mathbf{Q})$ were classified by Stembridge.
Example: $\mathbf{H}=\mathrm{GL}_{n}, \tau \in \mathcal{M}_{\overline{\mathbf{O}_{\text {min }}}}(H)$, or classical \mathbf{H} and $\pi, \tau \in \mathcal{M}_{\overline{\mathbf{O}_{2^{n}}}}(H)$.

Corollary

Let \mathbf{H} be a reductive group, and $\mathbf{P}, \mathbf{Q} \subset \mathbf{H}$ be parabolic subgroups s.t. $\mathbf{H} / \mathbf{P} \times \mathbf{H} / \mathbf{Q}$ is a spherical \mathbf{H}-variety, under the diagonal action.
Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(H)$, and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H), \pi \otimes \tau$ has finite multiplicities.
All such triples $(\mathbf{H}, \mathbf{P}, \mathbf{Q})$ were classified by Stembridge.
Example: $\mathbf{H}=\mathrm{GL}_{n}, \tau \in \mathcal{M}_{\overline{\mathbf{0}_{\min }}}(H)$, or classical \mathbf{H} and $\pi, \tau \in \mathcal{M}_{\overline{\mathbf{O}_{2^{n}}}}(H)$.

- Our results also extend to certain representations of non-reductive H.

Corollary

Let \mathbf{H} be a reductive group, and $\mathbf{P}, \mathbf{Q} \subset \mathbf{H}$ be parabolic subgroups s.t. $\mathbf{H} / \mathbf{P} \times \mathbf{H} / \mathbf{Q}$ is a spherical \mathbf{H}-variety, under the diagonal action.
Then $\forall \pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{P}}}}(H)$, and $\tau \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{Q}}}}(H), \pi \otimes \tau$ has finite multiplicities.
All such triples $(\mathbf{H}, \mathbf{P}, \mathbf{Q})$ were classified by Stembridge.
Example: $\mathbf{H}=\mathrm{GL}_{n}, \tau \in \mathcal{M}_{\overline{\mathbf{0}_{\min }}}(H)$, or classical \mathbf{H} and $\pi, \tau \in \mathcal{M}_{\overline{\mathbf{O}_{2^{n}}}}(H)$.

- Our results also extend to certain representations of non-reductive H.

Example (Generalized Shalika model)

Let $\mathbf{G}=\mathrm{GL}_{2 n}, \mathbf{R}=\mathbf{L U} \subset \mathbf{G}$ with $\mathbf{L}=\mathrm{GL}_{n} \times \mathrm{GL}_{n}$ and $\mathbf{U}=\mathrm{Mat}_{\mathbf{n} \times \mathbf{n}}$, $\mathbf{M}=\Delta \mathrm{GL}_{n} \subset \mathbf{L}, \mathbf{H}:=\mathbf{M U}$.
Let $\mathfrak{m}^{*} \supset \mathbf{O}_{\text {min }}:=$ minimal nilpotent orbit, and $\pi \in \mathcal{M}_{\overline{\mathbf{O}_{\text {min }}}}(M)$. Let ψ be a unitary character of H.
Then $\operatorname{ind}_{H}^{G}(\pi \otimes \psi)$ has finite multiplicities.
Similar case: $\mathbf{G}=O_{4 n}, \mathbf{L}=G L_{2 n}, \mathbf{M}=\operatorname{Sp}_{2 n}, \mathbf{O}_{\mathrm{ntm}} \subset \mathfrak{m}^{*}$.

Some necessary conditions for finite multiplicities

Theorem（Tauchi）

Let $P \subset G$ be a parabolic subgroup．If all degenerate principal series representations of the form $\operatorname{Ind}_{P}^{G} \rho$ ，with $\operatorname{dim} \rho<\infty$ ，have finite H－multiplicities，then H has finitely many orientable orbits on G / P ．

Some necessary conditions for finite multiplicities

Theorem (Tauchi)

Let $P \subset G$ be a parabolic subgroup. If all degenerate principal series representations of the form $\operatorname{Ind}_{P}^{G} \rho$, with $\operatorname{dim} \rho<\infty$, have finite H-multiplicities, then H has finitely many orientable orbits on G/P.

Corollary

Let $\mathbf{P} \subset \mathbf{G}$ be a parabolic subgroup defined over \mathbb{R}. Suppose that for all but finitely many orbits of \mathbf{H} on \mathbf{G} / \mathbf{P}, the set of real points is non-empty and orientable. Then the following are equivalent.
(1) \mathbf{H} is $\overline{\mathbf{O}_{\mathbf{P}}}$-spherical.
(1) Every $\pi \in \mathcal{M}_{\overline{\mathbf{O}_{\mathbf{p}}}}(G)$ has finite multiplicities in $\mathcal{S}(G / H)$.
(1) H has finitely many orbits on G/P.
(0) \mathbf{H} has finitely many orbits on G/P.

The assumption of the corollary holds if H and G are complex reductive groups.

Corollary

Let $\mathbf{P} \subset \mathbf{G}$ be a parabolic subgroup defined over \mathbb{R}. Suppose that for all but finitely many orbits of \mathbf{H} on \mathbf{G} / \mathbf{P}, the set of real points is non-empty and orientable. Then the following are equivalent.
(1) \mathbf{H} is $\overline{\mathbf{O}_{\mathbf{P}}}$-spherical.
(1) Every $\pi \in \mathcal{M}_{\overline{\mathrm{O}_{\mathbf{p}}}}(G)$ has finite multiplicities in $\mathcal{S}(G / H)$.
(i.) H has finitely many orbits on G / P.
(0) \mathbf{H} has finitely many orbits on \mathbf{G} / \mathbf{P}.

The assumption of the corollary holds if H and G are complex reductive groups. In general however, the finiteness of $|\mathbf{H} \backslash \mathbf{G} / \mathbf{P}|$ is not necessary, but the finiteness of $|H \backslash G / P|$ is not sufficient for finite multiplicities.

Corollary

Let $\mathbf{P} \subset \mathbf{G}$ be a parabolic subgroup defined over \mathbb{R}. Suppose that for all but finitely many orbits of \mathbf{H} on \mathbf{G} / \mathbf{P}, the set of real points is non-empty and orientable. Then the following are equivalent.
(1) \mathbf{H} is $\overline{\mathbf{O}_{\mathbf{P}}}$-spherical.
(1) Every $\pi \in \mathcal{M}_{\overline{\mathrm{O}_{\mathbf{p}}}}(G)$ has finite multiplicities in $\mathcal{S}(G / H)$.
(i. H has finitely many orbits on G / P.
(0) \mathbf{H} has finitely many orbits on G/P.

The assumption of the corollary holds if H and G are complex reductive groups. In general however, the finiteness of $|\mathbf{H} \backslash \mathbf{G} / \mathbf{P}|$ is not necessary, but the finiteness of $|H \backslash G / P|$ is not sufficient for finite multiplicities. Branching multiplicities for degenerate principal series were computed in various cases by Frahm-Orsted-Oshima, and Kobayashi. Kobayashi: Conditions for bounded multiplicities in terms of distinction w.r. to symmetric $G^{\prime} \subset G$.

Further Examples

Example (I. Karshon, related to Howe correspondance in type II)
$\mathbf{G}:=\mathrm{Sp}\left(V \otimes W \oplus V^{*} \otimes W^{*}\right), \mathbf{H}:=\mathrm{GL}(V) \times \mathrm{GL}(W) \hookrightarrow G$.
Then $\mathbf{G} / \mathbf{B}_{\mathbf{H}}$ is $\overline{\mathbf{O}_{\text {min }}}$-spherical.

Further Examples

Example (I. Karshon, related to Howe correspondance in type II)

$\mathbf{G}:=\operatorname{Sp}\left(V \otimes W \oplus V^{*} \otimes W^{*}\right), \mathbf{H}:=\mathrm{GL}(V) \times \mathrm{GL}(W) \hookrightarrow G$.
Then $\mathbf{G} / \mathbf{B}_{\mathbf{H}}$ is $\overline{\mathbf{O}_{\text {min }}}$-spherical.

Example (D. Panyushev, strict inequality)

$\mathbf{G}:=\mathrm{Sp}_{2 \mathrm{n}}, \mathbf{P}=\mathbf{L U} \subset \mathbf{G}$ - maximal parabolic subgroup with $U \cong$ Heisenberg group, $\mathbf{O}:=O_{\text {min }}$. Then $\operatorname{dim} \mathbf{O}=2 n$, while $\operatorname{dim} \mathbf{O} \cap \mathfrak{p}^{\perp}=1$. Thus $\operatorname{dim} \mu_{\mathbf{G} / \mathbf{P}}^{-1}(\mathbf{O})<\operatorname{dim} \mathbf{G} / \mathbf{P}+\operatorname{dim} \mathbf{O} / 2$.

Step 1 of the proof: Reduction to distributions

Theorem 3 (Aizenbud - G. 2021)

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$. Let X, Y be $\mathcal{V}(I)$-spherical G-manifolds. Let $\mathcal{S}^{*}(X \times Y)^{\Delta G, I}$ denote the space of ΔG-invariant tempered distributions on $X \times Y$ annihilated by I. Then

$$
\operatorname{dim} \mathcal{S}^{*}(X \times Y)^{\Delta G, I}<\infty
$$

Step 1 of the proof: Reduction to distributions

Theorem 3 (Aizenbud - G. 2021)

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$-spherical \mathbf{G}-manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^{*}(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG-invariant tempered \mathcal{E}-valued distributions on $X \times Y$ annihilated by I. Then

$$
\operatorname{dim} \mathcal{S}^{*}(X \times Y, \mathcal{E})^{\Delta G, I}<\infty
$$

Reduction to distributions

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$. Let X, Y be $\mathcal{V}(I)$-spherical \mathbf{G}-manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^{*}(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG-invariant tempered \mathcal{E}-valued distributions on $X \times Y$ annihilated by I. Then

$$
\operatorname{dim} \mathcal{S}^{*}(X \times Y, \mathcal{E})^{\Delta G, I}<\infty
$$

Proof of Theorem 2.

$\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right), \mathbf{X}$ is Ξ-spherical, $\sigma \in \mathcal{M}_{\Xi}$. Need: $\operatorname{dim} \operatorname{Hom}_{G}(\mathcal{S}(X), \sigma)<\infty$. Let \mathcal{E} be a bundle on $Y:=G / K$ s.t. $\sigma \hookrightarrow \mathcal{S}^{*}(Y, \mathcal{E})$. Let $I:=\operatorname{Ann}(\sigma)$. Then $\mathcal{V}(I) \subset \Xi$, and
$\operatorname{Hom}_{G}(\mathcal{S}(X), \sigma) \hookrightarrow \operatorname{Hom}_{G}\left(\mathcal{S}(X), \mathcal{S}^{*}(Y, \mathcal{E})\right)^{\prime} \hookrightarrow \mathcal{S}^{*}(X \times Y, \mathbb{C} \boxtimes \mathcal{E})^{\Delta G, I}$

Main technique: D-modules

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$. Let X, Y be $\mathcal{V}(I)$-spherical \mathbf{G}-manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^{*}(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG-invariant tempered \mathcal{E}-valued distributions on $X \times Y$ annihilated by I. Then

$$
\operatorname{dim} \mathcal{S}^{*}(X \times Y, \mathcal{E})^{\Delta G, I}<\infty
$$

- $D_{\mathbf{X}}:=$ sheaf of algebraic differential operators. $G r D_{\mathbf{X}} \cong \mathcal{O}\left(T^{*} \mathbf{X}\right)$.
- For a fin.gen. sheaf M of $D_{\mathbf{x}}$-modules, SingS $(M):=$ Supp $\operatorname{Gr}(M) \subset T^{*} \mathbf{X}$.
- Bernstein: if $M \neq 0$ then $\operatorname{dim} \operatorname{SingS}(M) \geq \operatorname{dim} \mathbf{X}$.
- M is called holonomic if $\operatorname{dim} \operatorname{SingS}(M)=\operatorname{dim} \mathbf{X}$.

Main technique: D-modules

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$. Let \mathbf{X}, \mathbf{Y} be $\mathcal{V}(I)$-spherical \mathbf{G}-manifolds. Let \mathcal{E} be an algebraic vector bundle on $X \times Y$. Let $\mathcal{S}^{*}(X \times Y, \mathcal{E})^{\Delta G, I}$ denote the space of ΔG-invariant tempered \mathcal{E}-valued distributions on $X \times Y$ annihilated by I. Then

$$
\operatorname{dim} \mathcal{S}^{*}(X \times Y, \mathcal{E})^{\Delta G, I}<\infty
$$

- $D_{\mathbf{X}}:=$ sheaf of algebraic differential operators. $\operatorname{Gr} D_{\mathbf{x}} \cong \mathcal{O}\left(T^{*} \mathbf{X}\right)$.
- For a fin.gen. sheaf M of $D_{\mathbf{x}}$-modules, SingS $(M):=$ Supp $\operatorname{Gr}(M) \subset T^{*} \mathbf{X}$.
- Bernstein: if $M \neq 0$ then $\operatorname{dim} \operatorname{Sing} S(M) \geq \operatorname{dim} \mathbf{X}$.
- M is called holonomic if $\operatorname{dim} \operatorname{SingS}(M)=\operatorname{dim} \mathbf{X}$.

Theorem (Bernstein-Kashiwara)

For any holonomic $M, \operatorname{dim} \operatorname{Hom}_{D_{\mathbf{x}}}\left(M, \mathcal{S}^{*}(X)\right)<\infty$.

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$. Let X, \mathbf{Y} be $\mathcal{V}(I)$-spherical G-manifolds. Let $\mathcal{S}^{*}(X \times Y)^{\Delta G, I}$ denote the space of ΔG-invariant tempered distributions on $X \times Y$ annihilated by I. Then $\operatorname{dim} \mathcal{S}^{*}(X \times Y)^{\Delta G, I}<\infty$

- $D_{\mathbf{X}}:=$ sheaf of algebraic differential operators. $G r D_{\mathbf{X}} \cong \mathcal{O}\left(T^{*} \mathbf{X}\right)$.
- For a f.gen. sheaf M of $D_{\mathbf{x}}$-modules, SingS $(M):=$ Supp $\operatorname{Gr}(M) \subset T^{*} \mathbf{X}$.
- M is called holonomic if $\operatorname{dim} \operatorname{SingS}(M)=\operatorname{dim} \mathbf{X}$.
- Bernstein-Kashiwara: \forall holonomic $M, \operatorname{dim} \operatorname{Hom}_{D_{\mathrm{x}}}\left(M, \mathcal{S}^{*}(X)\right)<\infty$.

Lemma

Let $\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$ and let \mathbf{X}, \mathbf{Y} be Ξ-spherical G-manifolds. Then $\operatorname{dim} \mu_{\mathbf{X} \times \mathbf{Y}}^{-1}\left((\Xi \times \Xi) \cap(\Delta \mathfrak{g})^{\perp}\right) \leq \operatorname{dim} \mathbf{X}+\operatorname{dim} \mathbf{Y}$

Theorem 3

Let $I \subset \mathcal{U}(\mathfrak{g})$ be a two-sided ideal such that $\mathcal{V}(I) \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$. Let X, \mathbf{Y} be $\mathcal{V}(I)$-spherical G-manifolds. Let $\mathcal{S}^{*}(X \times Y)^{\Delta G, I}$ denote the space of ΔG-invariant tempered distributions on $X \times Y$ annihilated by I. Then $\operatorname{dim} \mathcal{S}^{*}(X \times Y)^{\Delta G, I}<\infty$

- $D_{\mathbf{X}}:=$ sheaf of algebraic differential operators. $G r D_{\mathbf{X}} \cong \mathcal{O}\left(T^{*} \mathbf{X}\right)$.
- For a f.gen. sheaf M of $D_{\mathbf{x}}$-modules, SingS $(M):=$ Supp $\operatorname{Gr}(M) \subset T^{*} \mathbf{X}$.
- M is called holonomic if $\operatorname{dim} \operatorname{SingS}(M)=\operatorname{dim} \mathbf{X}$.
- Bernstein-Kashiwara: \forall holonomic M, $\operatorname{dim} \operatorname{Hom}_{D_{\mathbf{x}}}\left(M, \mathcal{S}^{*}(X)\right)<\infty$.

Lemma

Let $\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$ and let \mathbf{X}, \mathbf{Y} be Ξ-spherical G-manifolds. Then $\operatorname{dim} \mu_{\mathbf{X} \times \mathbf{Y}}^{-1}\left((\Xi \times \Xi) \cap(\Delta \mathfrak{g})^{\perp}\right) \leq \operatorname{dim} \mathbf{X}+\operatorname{dim} \mathbf{Y}$

Proof of Theorem 3.

$M:=D_{\mathbf{X} \times \mathbf{Y}}$-module with $\mathcal{S}^{*}(X \times Y)^{\Delta G, I_{\hookrightarrow}} \operatorname{Hom}\left(M, \mathcal{S}^{*}(X, Y)\right)$.
By the lemma, M is holonomic.

Proof of the geometric lemma

Lemma

Let $\Xi \subset \mathcal{N}\left(\mathfrak{g}^{*}\right)$ and let \mathbf{X}, \mathbf{Y} be Ξ-spherical G-manifolds. Then

$$
\operatorname{dim} \mu_{\mathbf{X} \times \mathbf{Y}}^{-1}\left((\Xi \times \Xi) \cap(\Delta \mathfrak{g})^{\perp}\right) \leq \operatorname{dim} \mathbf{X}+\operatorname{dim} \mathbf{Y}
$$

Proof.

\forall orbit $\mathbf{O} \subset \Xi$ we have

$$
\begin{gathered}
\operatorname{dim} \mu_{\mathbf{X} \times \mathbf{Y}}^{-1}\left((\mathbf{O} \times \mathbf{O}) \cap(\Delta \mathfrak{g})^{\perp}\right)=\operatorname{dim} \mu_{\mathbf{X}}^{-1}(\mathbf{O})+\operatorname{dim} \mu_{\mathbf{Y}}^{-1}(\mathbf{O})-\operatorname{dim} \mathbf{O} \leq \\
\operatorname{dim} \mathbf{X}+\operatorname{dim} \mathbf{O} / 2+\operatorname{dim} \mathbf{Y}+\operatorname{dim} \mathbf{O} / 2-\operatorname{dim} \mathbf{O}=\operatorname{dim} \mathbf{X}+\operatorname{dim} \mathbf{Y}
\end{gathered}
$$

Open questions

- What's a geometric criterion for $\overline{\mathbf{O}}$-sphericity for non- Richardson $\mathbf{0}$?

Open questions

- What's a geometric criterion for $\overline{\mathbf{0}}$-sphericity for non- Richardson \mathbf{O} ?
- Can we bound $m_{\sigma}(\mathcal{S}(X))$? Have to use some invariant of σ.

Open questions

- What's a geometric criterion for $\overline{\mathbf{O}}$-sphericity for non- Richardson \mathbf{O} ?
- Can we bound $m_{\sigma}(\mathcal{S}(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?

Open questions

- What's a geometric criterion for $\overline{\mathbf{O}}$-sphericity for non- Richardson \mathbf{O} ?
- Can we bound $m_{\sigma}(\mathcal{S}(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by $\mathcal{S}(X) \rightarrow \sigma$ and $\mathcal{S}(X) \rightarrow \tilde{\sigma}$ for $\mathcal{V}(\operatorname{Ann}(\sigma))$-spherical \mathbf{X} are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical \mathbf{X} they are.

Open questions

- What's a geometric criterion for $\overline{\mathbf{O}}$-sphericity for non- Richardson \mathbf{O} ?
- Can we bound $m_{\sigma}(\mathcal{S}(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by $\mathcal{S}(X) \rightarrow \sigma$ and $\mathcal{S}(X) \rightarrow \tilde{\sigma}$ for $\mathcal{V}(\operatorname{Ann}(\sigma))$-spherical \mathbf{X} are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical \mathbf{X} they are.
- If \mathbf{G} / \mathbf{H} is $\mathcal{V}(\operatorname{Ann}(\sigma))$-spherical, is $\left.\sigma^{H C}\right|_{\mathfrak{h}}$ finitely generated? Holds for real spherical G/H (Aizenbud-G.-Kroetz-Liu, Kroetz-Schlichtkrull).

Open questions

- What's a geometric criterion for $\overline{\mathbf{O}}$-sphericity for non- Richardson \mathbf{O} ?
- Can we bound $m_{\sigma}(\mathcal{S}(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by $\mathcal{S}(X) \rightarrow \sigma$ and $\mathcal{S}(X) \rightarrow \tilde{\sigma}$ for $\mathcal{V}(\operatorname{Ann}(\sigma))$-spherical \mathbf{X} are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical \mathbf{X} they are.
- If \mathbf{G} / \mathbf{H} is $\mathcal{V}(\operatorname{Ann}(\sigma))$-spherical, is $\left.\sigma^{H C}\right|_{\mathfrak{h}}$ finitely generated? Holds for real spherical G/H (Aizenbud-G.-Kroetz-Liu, Kroetz-Schlichtkrull).
- Conjecture: Theorem 2 holds over non-archimedean fields as well.

Open questions

- What's a geometric criterion for $\overline{\mathbf{O}}$-sphericity for non- Richardson \mathbf{O} ?
- Can we bound $m_{\sigma}(\mathcal{S}(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by $\mathcal{S}(X) \rightarrow \sigma$ and $\mathcal{S}(X) \rightarrow \tilde{\sigma}$ for $\mathcal{V}(\operatorname{Ann}(\sigma))$-spherical \mathbf{X} are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical \mathbf{X} they are.
- If \mathbf{G} / \mathbf{H} is $\mathcal{V}(\operatorname{Ann}(\sigma))$-spherical, is $\left.\sigma^{H C}\right|_{\mathfrak{h}}$ finitely generated? Holds for real spherical G/H (Aizenbud-G.-Kroetz-Liu, Kroetz-Schlichtkrull).
- Conjecture: Theorem 2 holds over non-archimedean fields as well.

Open questions

- What's a geometric criterion for $\overline{\mathbf{O}}$-sphericity for non- Richardson \mathbf{O} ?
- Can we bound $m_{\sigma}(\mathcal{S}(X))$? Have to use some invariant of σ.
- What are the necessary and sufficient conditions for finite multiplicities?
- By the proof of Theorem 3, relative characters given by $\mathcal{S}(X) \rightarrow \sigma$ and $\mathcal{S}(X) \rightarrow \tilde{\sigma}$ for $\mathcal{V}(\operatorname{Ann}(\sigma))$-spherical \mathbf{X} are holonomic. Are they regular holonomic? Wen-Wei Li: for spherical \mathbf{X} they are.
- If \mathbf{G} / \mathbf{H} is $\mathcal{V}(\operatorname{Ann}(\sigma))$-spherical, is $\left.\sigma^{H C}\right|_{\mathfrak{h}}$ finitely generated? Holds for real spherical G/H (Aizenbud-G.-Kroetz-Liu, Kroetz-Schlichtkrull).
- Conjecture: Theorem 2 holds over non-archimedean fields as well.

Happy Birthday, Bill!

