Degenerate Whittaker functionals for real reductive groups

Dmitry Gourevitch & Siddhartha Sahi
Conference on L-functions, Jeju

August 2012
Whittaker functionals

- \mathbb{F}: local field of char.0, G: reductive group over \mathbb{F}.

Theorem (Gelfand-Kazhdan, Shalika)

For $\pi \in \text{Irr}(G)$, $\psi \in \Psi \times$, $\dim \text{Wh}^*\psi(\pi) \leq 1$.

Gourevitch-Sahi

Degenerate Whittaker functionals

August 2012
Whittaker functionals

- \mathbb{F}: local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).

Assume G quasisplit: fix Borel $B = HN$, $n = \text{Lie } F(N)$. Define $n' = [n, n]$, $v = n/n'$, $\Psi = v^* \subset n^*$, $\Psi \leftrightarrow \text{Lie algebra characters of } n \leftrightarrow \text{unitary group characters of } N$. $\Psi \supset \Psi \times = \text{non-degenerate characters.}$

For $\psi \in \Psi \times$, $\pi \in \mathcal{M}(G)$ define

$\text{Wh}^* \psi(\pi) = \text{Hom}_{cts} N(\pi, \psi), \Psi(\pi) = \{ \psi \in \Psi: \text{Wh}^* \psi(\pi) \neq 0 \}$

(Casselman) For any $\psi \in \Psi \times$, $\pi \mapsto \text{Wh}^* \psi(\pi)$ is an exact functor.

Theorem (Gelfand-Kazhdan, Shalika) For $\pi \in \text{Irr}(G)$, $\psi \in \Psi \times$, $\dim \text{Wh}^* \psi(\pi) \leq 1$.

Gourevitch-Sahi
Degenerate Whittaker functionals
August 2012
Whittaker functionals

- \mathbb{F}: local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel $B = HN$, $n := \text{Lie}_\mathbb{F}(N)$.

Define $n' = [n, n], v = n/n', \Psi = v^* \subset n^*$
Whittaker functionals

- \mathbb{F}: local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel $B = HN$, $\mathfrak{n} := \text{Lie}_\mathbb{F}(N)$.

Define $\mathfrak{n}' = [\mathfrak{n}, \mathfrak{n}], \mathfrak{v} = \mathfrak{n}/\mathfrak{n}', \Psi = \mathfrak{v}^* \subset \mathfrak{n}^*$

- $\Psi \longleftrightarrow$ Lie algebra characters of $\mathfrak{n} \longleftrightarrow$ unitary group characters of N
Whittaker functionals

- \mathbb{F}: local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel $B = HN$, $n := \text{Lie}_\mathbb{F}(N)$.

Define $n' = [n, n], v = n/n', \Psi = v^* \subset n^*$

- $\Psi \leftrightarrow$ Lie algebra characters of $n \leftrightarrow$ unitary group characters of N
- $\Psi \supset \Psi^\times :=$ non-degenerate characters.
Whittaker functionals

- \(\mathbb{F} \): local field of char.0, \(G \): reductive group over \(\mathbb{F} \).
- \(\mathcal{M}(G) \): smooth admissible representations (of moderate growth).
- Assume \(G \) quasisplit: fix Borel \(B = HN, n := \text{Lie}_F(N) \).

Define \(n' = [n, n], v = n/n', \Psi = v^* \subset n^* \)

- \(\Psi \leftrightarrow \) Lie algebra characters of \(n \leftrightarrow \) unitary group characters of \(N \)
- \(\Psi \supset \Psi^\times := \) non-degenerate characters.
- For \(\psi \in \Psi, \pi \in \mathcal{M}(G) \) define

\[
\text{Wh}^*_\psi(\pi) := \text{Hom}^\text{cts}_N(\pi, \psi), \Psi(\pi) := \{\psi \in \Psi : \text{Wh}^*_\psi(\pi) \neq 0\}
\]
Whittaker functionals

- \(\mathbb{F} \): local field of char.0, \(G \): reductive group over \(\mathbb{F} \).
- \(\mathcal{M}(G) \): smooth admissible representations (of moderate growth).
- Assume \(G \) quasisplit: fix Borel \(B = HN \), \(n := \text{Lie}_\mathbb{F}(N) \).

Define \(n' = [n, n], v = n/n', \Psi = v^* \subset n^* \)

- \(\Psi \leftrightarrow \) Lie algebra characters of \(n \leftrightarrow \) unitary group characters of \(N \)
- \(\Psi \supset \Psi^\times := \) non-degenerate characters.
- For \(\psi \in \Psi \), \(\pi \in \mathcal{M}(G) \) define

\[
Wh^*_\psi(\pi) := \text{Hom}^\text{cts}_N(\pi, \psi), \Psi(\pi) := \{\psi \in \Psi : Wh^*_\psi(\pi) \neq 0\}
\]

(Casselman) For any \(\psi \in \Psi^\times \), \(\pi \mapsto Wh^*_\psi(\pi) \) is an exact functor.
Whittaker functionals

- \mathbb{F}: local field of char.0, G: reductive group over \mathbb{F}.
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel $B = \text{HN}$, $n := \text{Lie}_F(N)$.

Define $n' = [n, n], v = n/n', \Psi = v^* \subset n^*$

- $\Psi \leftrightarrow$ Lie algebra characters of $n \leftrightarrow$ unitary group characters of N
- $\Psi \supset \Psi^\times :=$ non-degenerate characters.

For $\psi \in \Psi$, $\pi \in \mathcal{M}(G)$ define

$$Wh^*_\psi(\pi) := \text{Hom}^{cts}_N(\pi, \psi), \Psi(\pi) := \{\psi \in \Psi : Wh^*_\psi(\pi) \neq 0\}$$

(Casselman) For any $\psi \in \Psi^\times$, $\pi \mapsto Wh^*_\psi(\pi)$ is an exact functor.

Theorem (Gelfand-Kazhdan, Shalika)

For $\pi \in \text{Irr}(G)$, $\psi \in \Psi^\times$, $\dim Wh^*_\psi(\pi) \leq 1$.

- Ψ^\times Degenerate Whittaker functionals
- August 2012 2 / 14
Kostant’s theorem

- We say \(\pi \) is **generic** if \(\exists \psi \in \Psi^\times \) s.t. \(Wh_\psi(\pi) \neq 0 \).
Kostant’s theorem

- We say \(\pi \) is generic if \(\exists \psi \in \Psi^\times \) s.t. \(\text{Wh}_\psi(\pi) \neq 0 \).

Theorem (Kostant, Rodier)

\(\pi \) is generic iff it is large.
We say π is generic if $\exists \psi \in \Psi^\times$ s.t. $\text{Wh}_\psi(\pi) \neq 0$.

Theorem (Kostant, Rodier)

π is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\chi_\pi \approx \sum a_\mathcal{O} \mathcal{F}(\mu_\mathcal{O})$$
We say π is generic if $\exists \psi \in \Psi^\times$ s.t. $Wh_\psi(\pi) \neq 0$.

Theorem (Kostant, Rodier)

π is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\chi_\pi \approx \sum a_\mathcal{O} \mathcal{F}(\mu_\mathcal{O})$$

- Define $WF(\pi) = \cup \{ \overline{\mathcal{O}} \ | \ a_\mathcal{O} \neq 0 \} \subset \mathcal{N}$, where $\mathcal{N} \subset g^*$ denotes the nilpotent cone.
Kostant’s theorem

- We say \(\pi \) is generic if \(\exists \psi \in \Psi^\times \) s.t. \(\text{Wh}_\psi(\pi) \neq 0 \).

Theorem (Kostant, Rodier)

\(\pi \) is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near \(e \in G \), the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

\[
\chi_\pi \approx \sum a_O F(\mu_O)
\]

- Define \(\text{WF}(\pi) = \bigcup \{ O | a_O \neq 0 \} \subset \mathcal{N} \), where \(\mathcal{N} \subset g^* \) denotes the nilpotent cone.
- \(\pi \) is called large if \(\text{WF}(\pi) = \mathcal{N} \).
In the p-adic case, Moeglin and Waldspurger give a very general definition of degenerate Whittaker models and give a precise connection between their existence and the wave-front set $WF(\pi)$. In the real case there is no full analog currently.
In the p-adic case, Moeglin and Waldspurger give a very general definition of degenerate Whittaker models and give a precise connection between their existence and the wave-front set $WF(\pi)$. In the real case there is no full analog currently.

Several authors (Matumoto, Yamashita, ...) consider generalized Whittaker functionals \sim generic characters for smaller nilradicals.
In the p-adic case, Moeglin and Waldspurger give a very general definition of degenerate Whittaker models and give a precise connection between their existence and the wave-front set $WF(\pi)$. In the real case there is no full analog currently.

Several authors (Matumoto, Yamashita, ...) consider generalized Whittaker functionals \sim generic characters for smaller nilradicals.

We consider degenerate functionals \sim arbitrary characters of n.
Main results

- From now on, let $\mathcal{F} = \mathbb{R}$.
Main results

- From now on, let \(\mathbb{F} = \mathbb{R} \).
- The finite group \(F_G = \text{Norm}_{G_C}(G) / (Z_{G_C} \cdot G) \) acts on \(\mathcal{M}(G) \).

Theorem (1)

For \(\pi \in \mathcal{M}(G) \) we have
\[
\Psi(\pi) \subset WF(\pi) \subset \Psi(\tilde{\pi})
\]

Moreover if \(G = \text{GL}_n(\mathbb{R}) \) or if \(G \) is a complex group then
\[
\tilde{\pi} = \pi \quad \text{and} \quad \Psi(\pi) = WF(\pi) \cap \Psi(\tilde{\pi})
\]
Main results

- From now on, let $\mathbb{F} = \mathbb{R}$.
- The finite group $F_G = \text{Norm}_{G_C}(G) / (Z_{G_C} \cdot G)$ acts on $\mathcal{M}(G)$.
- For $\pi \in \mathcal{M}(G)$, define $\tilde{\pi} = \bigoplus \{\pi^a : a \in F_G\}$.
Main results

- From now on, let $\mathbb{F} = \mathbb{R}$.
- The finite group $F_G = \text{Norm}_{G_{C}}(G) / (Z_{G_{C}} \cdot G)$ acts on $\mathcal{M}(G)$.
- For $\pi \in \mathcal{M}(G)$, define $\tilde{\pi} = \bigoplus \{ \pi^a : a \in F_G \}$.

Theorem (1)

For $\pi \in \mathcal{M}(G)$ we have

$$\Psi(\pi) \subset \text{WF}(\pi) \cap \Psi \subset \Psi(\tilde{\pi}) \quad (1)$$

Moreover if $G = \text{GL}_n(\mathbb{R})$ or if G is a complex group then $\tilde{\pi} = \pi$ and

$$\Psi(\pi) = \text{WF}(\pi) \cap \Psi \quad (2)$$
Main results

Theorem (2)

The sets $\Psi(\pi)$ and $WF(\pi)$ determine one another if

1. $G = \text{GL}_n(\mathbb{R})$ or $\text{GL}_n(\mathbb{C})$ or $\text{SL}_n(\mathbb{C})$ and $\pi \in \mathcal{M}(G)$
Main results

Theorem (2)

The sets $\Psi(\pi)$ and $WF(\pi)$ determine one another if

1. $G = GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$ or $SL_n(\mathbb{C})$ and $\pi \in \mathcal{M}(G)$
2. $G = Sp_{2n}(\mathbb{C})$ or $O_n(\mathbb{C})$ or $SO_n(\mathbb{C})$ and π is irreducible
Theorem (2)

The sets $\Psi(\pi)$ and $WF(\pi)$ determine one another if

1. $G = GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$ or $SL_n(\mathbb{C})$ and $\pi \in \mathcal{M}(G)$
2. $G = Sp_{2n}(\mathbb{C})$ or $O_n(\mathbb{C})$ or $SO_n(\mathbb{C})$ and π is irreducible
Main results

Theorem (2)

The sets $\Psi(\pi)$ and $\text{WF}(\pi)$ determine one another if

1. $G = \text{GL}_n(\mathbb{R})$ or $\text{GL}_n(\mathbb{C})$ or $\text{SL}_n(\mathbb{C})$ and $\pi \in \mathcal{M}(G)$
2. $G = \text{Sp}_{2n}(\mathbb{C})$ or $\text{O}_n(\mathbb{C})$ or $\text{SO}_n(\mathbb{C})$ and π is irreducible

Key observation for the second statement:

Theorem (3)

Let \mathcal{O} be a nilpotent orbit for a complex classical Lie algebra then \mathcal{O} is uniquely determined by $\overline{\mathcal{O}} \cap \Psi$.

An analog of Shalika’s result would be uniqueness of ”minimally degenerate” Whittaker models. So far it is known only for GL_n, both in real and p-adic cases.
Uniqueness

- An analog of Shalika’s result would be uniqueness of "minimally degenerate" Whittaker models. So far it is known only for GL_n, both in real and p-adic cases.

- Let G be $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$. For a partition λ of n let O_λ denote the corresponding nilpotent orbit and ψ_λ denote the corresponding character of N.

Theorem (Aizenbud-G-Sahi) Let $\pi \in \hat{G}$ be an irreducible unitary representation. Let λ be such that $WF(\pi) = O_\lambda$. Then $\dim Wh(\psi_\lambda)(\pi) = 1$.

In the p-adic case the analogous theorem was proven by Zelevinsky without the assumption that π is unitary. The proofs in both cases use "derivatives".
An analog of Shalika’s result would be uniqueness of “minimally degenerate” Whittaker models. So far it is known only for GL_n, both in real and p-adic cases.

Let G be $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$. For a partition λ of n let O_λ denote the corresponding nilpotent orbit and ψ_λ denote the corresponding character of N.

Theorem (Aizenbud-G-Sahi)

Let $\pi \in \hat{G}$ be an irreducible unitary representation. Let λ be such that $WF(\pi) = \overline{O_\lambda}$. Then $\dim Wh_{\psi_\lambda}(\pi) = 1$.

In the p-adic case the analogous theorem was proven by Zelevinsky without the assumption that π is unitary. The proofs in both cases use “derivatives.”
Uniqueness

- An analog of Shalika’s result would be uniqueness of "minimally degenerate" Whittaker models. So far it is known only for GL_n, both in real and p-adic cases.
- Let G be $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$. For a partition λ of n let O_λ denote the corresponding nilpotent orbit and ψ_λ denote the corresponding character of N.

Theorem (Aizenbud-G-Sahi)

Let $\pi \in \hat{G}$ be an irreducible unitary representation. Let λ be such that $WF(\pi) = \overline{O_\lambda}$. Then $\dim Wh_{\psi_\lambda}(\pi) = 1$.

- In the p-adic case the analogous theorem was proven by Zelevinsky without the assumption that π is unitary. The proofs in both cases use "derivatives".
Algebraic setting

- From now on, we let \(n, g, \) etc. denote \textit{complexified} Lie algebras.
Algebraic setting

- From now on, we let \(\mathfrak{n}, \mathfrak{g}, \) etc. denote *complexified* Lie algebras.
- Let \(K \subset G \) be maximal compact subgroup. A \((\mathfrak{g}, K)\)-module is a complex vector space with compatible actions of \(\mathfrak{g} \) and \(K \) such that every vector is \(K \)-finite.
Algebraic setting

- From now on, we let \(n, g, \) etc. denote complexified Lie algebras.
- Let \(K \subset G \) be maximal compact subgroup. A \((g, K)\)-module is a complex vector space with compatible actions of \(g \) and \(K \) such that every vector is \(K \)-finite.
- Let \(\mathcal{HC}(G) \) denote the category of \((g, K)\)-modules of finite length.

Theorem (Casselman-Wallach)

The functor \(\pi \mapsto \pi_{\mathcal{K} - \text{finite}} \) is an equivalence of categories \(M(G) \cong \mathcal{HC}(G) \).

For \(M \in \mathcal{HC}(G) \) and \(\psi \in \Psi \), we define \(Wh'_{\psi}(M) := \text{Hom}(M, \psi) \), \(\Psi(M) := \{ \psi \in \Psi | Wh'_{\psi}(M) \neq 0 \} \).

Kostant showed that \(\pi \) is generic iff \(\pi_{\mathcal{K} - \text{finite}} \) is generic, though dimensions of Whittaker spaces differ considerably.
Algebraic setting

- From now on, we let $\mathfrak{n}, \mathfrak{g}$, etc. denote complexified Lie algebras.
- Let $K \subset G$ be maximal compact subgroup. A (\mathfrak{g}, K)-module is a complex vector space with compatible actions of \mathfrak{g} and K such that every vector is K-finite.
- Let $\mathcal{HC}(G)$ denote the category of (\mathfrak{g}, K)-modules of finite length.

Theorem (Casselman-Wallach)

The functor $\pi \mapsto \pi^{K-\text{finite}}$ is an equivalence of categories $\mathcal{M}(G) \cong \mathcal{HC}(G)$.
Algebraic setting

- From now on, we let \(\mathfrak{n}, \mathfrak{g}, \) etc. denote complexified Lie algebras.
- Let \(K \subset G \) be maximal compact subgroup. A \((\mathfrak{g}, K)\)-module is a complex vector space with compatible actions of \(\mathfrak{g} \) and \(K \) such that every vector is \(K \)-finite.
- Let \(\mathcal{HC}(G) \) denote the category of \((\mathfrak{g}, K)\)-modules of finite length.

Theorem (Casselman-Wallach)

The functor \(\pi \mapsto \pi^{K\text{-finite}} \) is an equivalence of categories \(\mathcal{M}(G) \cong \mathcal{HC}(G) \).

- For \(M \in \mathcal{HC}(G) \) and \(\psi \in \Psi_C \) we define

\[
\text{Wh}_{\psi}'(M) := \text{Hom}_n(M, \psi), \quad \Psi(M) := \{ \psi \in \Psi_C \mid \text{Wh}_{\psi}'(M) \neq 0 \}
\]
Algebraic setting

- From now on, we let \(\mathfrak{n}, \mathfrak{g} \), etc. denote complexified Lie algebras.
- Let \(K \subset G \) be maximal compact subgroup. A \((\mathfrak{g}, K)\)-module is a complex vector space with compatible actions of \(\mathfrak{g} \) and \(K \) such that every vector is \(K \)-finite.
- Let \(\mathcal{HC}(G) \) denote the category of \((\mathfrak{g}, K)\)-modules of finite length.

Theorem (Casselman-Wallach)

The functor \(\pi \mapsto \pi^{K-\text{finite}} \) is an equivalence of categories \(\mathcal{M}(G) \cong \mathcal{HC}(G) \).

- For \(M \in \mathcal{HC}(G) \) and \(\psi \in \Psi_C \) we define
 \[
 Wh'_\psi(M) := \text{Hom}_n(M, \psi), \quad \Psi(M) := \{ \psi \in \Psi_C \mid Wh'_\psi(M) \neq 0 \}
 \]
- Kostant showed that \(\pi \) is generic iff \(\pi^{K-\text{finite}} \) is generic, though dimensions of Whittaker spaces differ considerably.
Using PBW filtration, $\text{gr} \mathcal{U}(g) = \text{Sym}(g) = \text{Pol}(g^*)$
Using PBW filtration, $\text{gr}\ U(g) = \text{Sym}(g) = \text{Pol}(g^*)$

Using this, one can define

$$\text{As}\mathcal{V}(M) \subset \text{An}\mathcal{V}(M) \subset \mathcal{N}$$
Using PBW filtration, \(\text{gr} \, \mathcal{U}(g) = \text{Sym}(g) = \text{Pol}(g^*)\)

Using this, one can define

\[\text{As}_V(M) \subset \text{An}_V(M) \subset \mathcal{N}\]

Schmid and Vilonen proved that \(\text{WF}(\pi)\) and \(\text{As}_V(\pi^{K-\text{finite}})\) determine each other.
Associated varieties and our algebraic theorem

- Using PBW filtration, $\text{gr } \mathcal{U}(\mathfrak{g}) = \text{Sym}(\mathfrak{g}) = \text{Pol}(\mathfrak{g}^*)$
- Using this, one can define

\[
\text{As}\mathcal{V}(M) \subset \text{An}\mathcal{V}(M) \subset \mathcal{N}
\]

- Schmid and Vilonen proved that $\text{WF}(\pi)$ and $\text{As}\mathcal{V}(\pi^K - \text{finite})$ determine each other.
- Let $\text{pr}_n^* : \mathfrak{g}^* \to \mathfrak{n}^*$ denote the natural projection (restriction to \mathfrak{n}).
Using PBW filtration, \(gr \mathcal{U}(g) = \text{Sym}(g) = \text{Pol}(g^*) \)

Using this, one can define

\[
\text{As}\mathcal{V}(M) \subset \text{An}\mathcal{V}(M) \subset \mathcal{N}
\]

Schmid and Vilonen proved that \(\text{WF}(\pi) \) and \(\text{As}\mathcal{V}(\pi^{K-\text{finite}}) \) determine each other.

Let \(\text{pr}_{n^*} : g^* \to n^* \) denote the natural projection (restriction to \(n \)).

Theorem (0)

For \(M \in \mathcal{HC} \) we have \(\Psi(M) = \text{pr}_{n^*}(\text{As}\mathcal{V}(M)) \cap \Psi \).
Idea of the proof

Since $\mathfrak{n}/[\mathfrak{n}, \mathfrak{n}]$ is commutative, from Nakayama’s lemma we have $\Psi(M) = \text{Supp}(M/[\mathfrak{n}, \mathfrak{n}]M)$. Now, restriction to \mathfrak{n} corresponds to projection on \mathfrak{n}^* and quotient by $[\mathfrak{n}, \mathfrak{n}]$ corresponds to intersection with $\Psi = [\mathfrak{n}, \mathfrak{n}]^\perp$.

However, in non-commutative situation one could even have $\mathcal{V} = [\mathfrak{n}, \mathfrak{n}]\mathcal{V}$. For example, let $G = \text{GL}(3, \mathbb{R})$ and consider the identification of \mathfrak{n} with the Heisenberg Lie algebra $\langle x, dx, 1 \rangle$ acting on $\mathcal{V} = \mathbb{C}[x]$. Let $\mathfrak{b} = h + \mathfrak{n}$ be the Borel subalgebra of \mathfrak{g}, let \mathcal{V} be a \mathfrak{b}-module. We define the \mathfrak{n}-adic completion and Jacquet module as follows: $\hat{\mathcal{V}} = \hat{\mathcal{V}}^\mathfrak{n} = \lim_{\leftarrow} \mathcal{V}/n_i \mathcal{V}$, $J(\mathcal{V}) = J_\mathfrak{b}(\mathcal{V}) = (\hat{\mathcal{V}}^\mathfrak{n})_h$-finite.

August 2012 10 / 14
Idea of the proof

- Since $\mathfrak{n}/[\mathfrak{n}, \mathfrak{n}]$ is commutative, from Nakayama’s lemma we have $\Psi(M) = \text{Supp}(M/[\mathfrak{n}, \mathfrak{n}]M)$. Now, restriction to \mathfrak{n} corresponds to projection on \mathfrak{n}^* and quotient by $[\mathfrak{n}, \mathfrak{n}]$ corresponds to intersection with $\Psi = [\mathfrak{n}, \mathfrak{n}]^\perp$.

- However, in non-commutative situation one could even have $V = [\mathfrak{n}, \mathfrak{n}]V$. For example, let $G = GL(3, \mathbb{R})$ and consider the identification of \mathfrak{n} with the Heisenberg Lie algebra $\langle x, \frac{d}{dx}, 1 \rangle$ acting on $V = \mathbb{C}[x]$.

Let $b = h + \mathfrak{n}$ be the Borel subalgebra of \mathfrak{g}, let V be a b-module. We define the \mathfrak{n}-adic completion and Jacquet module as follows: $\hat{V} = \hat{V}_{\mathfrak{n}} = \lim_{\leftarrow} V/\mathfrak{n}^iV$, $J(V) = J_b(V) = (\hat{V}_{\mathfrak{n}})_h$-finite.

Gourevitch-Sahi
Degenerate Whittaker functionals
August 2012
10 / 14
Idea of the proof

- Since $n/\lbrack n, n \rbrack$ is commutative, from Nakayama’s lemma we have $\Psi(M) = \text{Supp}(M/\lbrack n, n \rbrack M)$. Now, restriction to n corresponds to projection on n^* and quotient by $\lbrack n, n \rbrack$ corresponds to intersection with $\Psi = [n, n]_\perp$.

- However, in non-commutative situation one could even have $V = \lbrack n, n \rbrack V$. For example, let $G = GL(3, \mathbb{R})$ and consider the identification of n with the Heisenberg Lie algebra $\langle x, \frac{d}{dx}, 1 \rangle$ acting on $V = \mathbb{C}[x]$.

- Let $\mathfrak{b} = \mathfrak{h} + n$ be the Borel subalgebra of \mathfrak{g}, let V be a \mathfrak{b}-module. We define the n-adic completion and Jacquet module as follows:

$$\hat{V} = \hat{V}_n = \lim_{\leftarrow} V/n^i V, \quad J(V) = J_{\mathfrak{b}}(V) = \left(\hat{V}_n\right)_{\mathfrak{h}}\text{-finite}$$
Sketch of the proof

- Define $n' = [n, n]$ and $CV = H_0(n', V) = V / n' V$.

Gourevitch-Sahi
Degenerate Whittaker functionals
August 2012
Define $n' = [n, n]$ and $CV = H_0(n', V) = V / n'V$.

(Nakayama) $\Psi(M) = \text{Supp}_v(CM) = \text{An}\mathcal{V}_v(CM)$
Sketch of the proof

- Define $n' = [n, n]$ and $CV = H_0(n', V) = V / n' V$.
- (Nakayama) $\Psi(M) = \text{Supp}_v(CM) = \text{An}\nu_v(CM)$
- (Joseph+Gabber) $\text{An}\nu_v(CM) = \text{An}\nu_v(\widehat{CM}) = \text{An}\nu_v(J(CM))$

(Nakayama) $\Psi(M) = \text{Supp}_v(CM) = \text{An}\nu_v(CM)$
- (Joseph+Gabber) $\text{An}\nu_v(CM) = \text{An}\nu_v(\widehat{CM}) = \text{An}\nu_v(J(CM))$
Define \(n' = [n, n] \) and \(CV = H_0(n', V) = V / n' V \).

(Nakayama) \(\Psi(M) = \text{Supp}_v(CM) = \text{An} \mathcal{V}_v(CM) \)

(Joseph+Gabber) \(\text{An} \mathcal{V}_v(CM) = \text{An} \mathcal{V}_v(\widehat{CM}) = \text{An} \mathcal{V}_v(J(CM)) \)

(Easy) \(J(CM) \approx C(JM) \) as \(\mathfrak{b} \)-modules.
Sketch of the proof

- Define \(n' = [n, n] \) and \(CV = H_0(n', V) = V / n' V \).
- (Nakayama) \(\Psi(M) = \text{Supp}_v(CM) = \text{An} \mathcal{V}_v(CM) \)
- (Joseph+Gabber) \(\text{An} \mathcal{V}_v(CM) = \text{An} \mathcal{V}_v(\hat{CM}) = \text{An} \mathcal{V}_v(J(CM)) \)
- (Easy) \(J(CM) \approx C(JM) \) as \(\mathfrak{b} \)-modules.
- (Bernstein+Joseph)
 \(\text{An} \mathcal{V}_v(J(CM)) = \text{As} \mathcal{V}_v(C(JM)) = \text{As} \mathcal{V}_n(JM) \cap \Psi. \)
Sketch of the proof

Define $n' = [n, n]$ and $CV = H_0(n', V) = V/n'V$.

(Nakayama) $\Psi(M) = \text{Supp}_v(CM) = \text{An}_v(CM)$

(Joseph+Gabber) $\text{An}_v(CM) = \text{An}_v(\widehat{CM}) = \text{An}_v(J(CM))$

(Easy) $J(CM) \approx C(JM)$ as \mathfrak{b}-modules.

(Bernstein+Joseph)
\[\text{An}_v(J(CM)) = \text{As}_v(C(JM)) = \text{As}_n(JM) \cap \Psi. \]

(Ginzburg+ENV) $\text{As}_n(JM) \supset \text{As}_n(M) \cap \Psi$.

(Gourevitch-Sahi) Degenerate Whittaker functionals
Define $n' = [n, n]$ and $CV = H_0(n', V) = V / n'V$.

(Nakayama) $\Psi (M) = \text{Supp}_v(CM) = \text{An}\mathcal{V}_v (CM)$

(Joseph+Gabber) $\text{An}\mathcal{V}_v (CM) = \text{An}\mathcal{V}_v \left(\hat{CM} \right) = \text{An}\mathcal{V}_v (J(CM))$

(Easy) $J(CM) \approx C(JM)$ as \mathfrak{b}-modules.

(Bernstein+Joseph) $\text{An}\mathcal{V}_v (J(CM)) = \text{As}\mathcal{V}_v(C(JM)) = \text{As}\mathcal{V}_n(JM) \cap \Psi$.

(Ginzburg+ENV) $\text{As}\mathcal{V}_n(JM) \supset \text{As}\mathcal{V}_n(M) \cap \Psi$.

(Casselman-Osborne+Gabber) $\text{As}\mathcal{V}_n(M) = pr_n^* (\text{As}\mathcal{V}_g(M))$.
Sketch of the proof

- Define \(n' = [n, n] \) and \(CV = H_0(n', V) = V / n' V \).
- (Nakayama) \(\Psi(M) = \text{Supp}_v(CM) = \text{An}_v(CM) \)
- (Joseph+Gabber) \(\text{An}_v(CM) = \text{An}_v(\hat{CM}) = \text{An}_v(J(CM)) \)
- (Easy) \(J(CM) \approx C(JM) \) as \(\mathfrak{b} \)-modules.
- (Bernstein+Joseph)
 \[\text{An}_v(J(CM)) = \text{As}_v(C(JM)) = \text{As}_v(JM) \cap \Psi. \]
- (Ginzburg+ENV) \(\text{As}_n(JM) \supset \text{As}_n(M) \cap \Psi. \)
- (Casselman-Osborne+Gabber) \(\text{As}_n(M) = pr_n^*(\text{As}_g(M)). \)
- Thus \(\Psi(M) \supset pr_n^*(\text{As}_g(M)) \cap \Psi; \) other inclusion is easy.
Proof of Theorem 3

Proof.

For $GL(n, \mathbb{R})$ and $SL(n, \mathbb{C}) \sim$ Jordan form

- Orbits for $Sp_{2n}(\mathbb{C})$ or $O_n(\mathbb{C}) \sim$ partitions satisfying certain conditions
Proof of Theorem 3

Proof.

For $GL(n, \mathbb{R})$ and $SL(n, \mathbb{C}) \sim$ Jordan form

- Orbits for $Sp_{2n}(\mathbb{C})$ or $O_n(\mathbb{C}) \sim$ partitions satisfying certain conditions
- An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity
Proof of Theorem 3

Proof.

For $GL(n, \mathbb{R})$ and $SL(n, \mathbb{C}) \sim$ Jordan form

- Orbits for $Sp_{2n}(\mathbb{C})$ or $O_n(\mathbb{C}) \sim$ partitions satisfying certain conditions
- An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity
- For each partition λ and each k there is a partition $\mu \leq \lambda$, which meets Ψ and satisfies $\mu_1 + \cdots + \mu_k = \lambda_1 + \cdots + \lambda_k$

Result for $SO_n(\mathbb{C})$ requires slight additional argument.
Proof of Theorem 3

Proof.

For $\text{GL}(n, \mathbb{R})$ and $\text{SL}(n, \mathbb{C}) \sim$ Jordan form

- Orbits for $\text{Sp}_{2n}(\mathbb{C})$ or $\text{O}_n(\mathbb{C}) \sim$ partitions satisfying certain conditions
- An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity
- For each partition λ and each k there is a partition $\mu \leq \lambda$, which meets Ψ and satisfies $\mu_1 + \cdots + \mu_k = \lambda_1 + \cdots + \lambda_k$
- Result for $\text{SO}_n(\mathbb{C})$ requires slight additional argument.
Fact

Theorem 3 is false for every exceptional group.
Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and \widetilde{A}_1
Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: \[G_2(a_1) \text{ and } \widetilde{A}_1 \]
- For $G = F_4$:

Gourevitch-Sahi

Degenerate Whittaker functionals

August 2012 13 / 14
Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and \tilde{A}_1
- For $G = F_4$:
 - $F_4(a_1)$ and $F_4(a_2)$
Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with \(\Psi \).
- We follow Bala-Carter notation and we have underlined the special orbits.
- For \(G = G_2 \): \(G_2(a_1) \) and \(\tilde{A}_1 \)
- For \(G = F_4 \):
 1. \(F_4(a_1) \) and \(F_4(a_2) \)
 2. \(F_4(a_3) \) and \(C_3(a_1) \)
Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with \(\Psi \).
- We follow Bala-Carter notation and we have underlined the special orbits.
- For \(G = G_2 \): \(G_2(a_1) \) and \(\widetilde{A}_1 \)
- For \(G = F_4 \):
 1. \(F_4(a_1) \) and \(F_4(a_2) \)
 2. \(F_4(a_3) \) and \(C_3(a_1) \)
- For \(G = E_6 \):
Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and \widetilde{A}_1
- For $G = F_4$:
 1. $F_4(a_1)$ and $F_4(a_2)$
 2. $F_4(a_3)$ and $C_3(a_1)$
- For $G = E_6$:
 1. $E_6(a_1)$ and D_5
Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and $\widetilde{A_1}$
- For $G = F_4$:
 1. $F_4(a_1)$ and $F_4(a_2)$
 2. $F_4(a_3)$ and $C_3(a_1)$
- For $G = E_6$:
 1. $E_6(a_1)$ and D_5
 2. $D_4(a_1)$ and $A_3 + A_1$
Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and \tilde{A}_1
- For $G = F_4$:
 1. $F_4(a_1)$ and $F_4(a_2)$
 2. $F_4(a_3)$ and $C_3(a_1)$
- For $G = E_6$:
 1. $E_6(a_1)$ and D_5
 2. $D_4(a_1)$ and $A_3 + A_1$
- For $G = E_7$:
Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and \tilde{A}_1
- For $G = F_4$:
 1. $F_4(a_1)$ and $F_4(a_2)$
 2. $F_4(a_3)$ and $C_3(a_1)$
- For $G = E_6$:
 1. $E_6(a_1)$ and D_5
 2. $D_4(a_1)$ and $A_3 + A_1$
- For $G = E_7$:
 1. $E_7(a_1)$ and $E_7(a_2)$
Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and \tilde{A}_1
- For $G = F_4$:
 1. $F_4(a_1)$ and $F_4(a_2)$
 2. $F_4(a_3)$ and $C_3(a_1)$
- For $G = E_6$:
 1. $E_6(a_1)$ and D_5
 2. $D_4(a_1)$ and $A_3 + A_1$
- For $G = E_7$:
 1. $E_7(a_1)$ and $E_7(a_2)$
 2. $E_7(a_3)$ and D_6
Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- We list all orbits whose closures have the same intersection with Ψ.
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and \tilde{A}_1
- For $G = F_4$:
 1. $F_4(a_1)$ and $F_4(a_2)$
 2. $F_4(a_3)$ and $C_3(a_1)$
- For $G = E_6$:
 1. $E_6(a_1)$ and D_5
 2. $D_4(a_1)$ and $A_3 + A_1$
- For $G = E_7$:
 1. $E_7(a_1)$ and $E_7(a_2)$
 2. $E_7(a_3)$ and D_6
 3. $E_6(a_1)$ and $E_7(a_4)$.
Counterexamples for exceptional groups

For $G = E_8$:
Counterexamples for exceptional groups

For $G = E_8$:

- $E_8(a_1)$, $E_8(a_2)$, and $E_8(a_3)$
Counterexamples for exceptional groups

For $G = E_8$:

1. $E_8(a_1), E_8(a_2),$ and $E_8(a_3)$
2. $E_8(a_4), E_8(b_4),$ and $E_8(a_5)$
Counterexamples for exceptional groups

For $G = E_8$:

1. $E_8(a_1)$, $E_8(a_2)$, and $E_8(a_3)$
2. $E_8(a_4)$, $E_8(b_4)$ and $E_8(a_5)$
3. $E_7(a_1)$, $E_8(b_5)$ and $E_7(a_2)$
Counterexamples for exceptional groups

For $G = E_8$:

1. $E_8(a_1), E_8(a_2),$ and $E_8(a_3)$
2. $E_8(a_4), E_8(b_4)$ and $E_8(a_5)$
3. $E_7(a_1), E_8(b_5)$ and $E_7(a_2)$
4. $E_8(a_6)$ and $D_7(a_1)$
Counterexamples for exceptional groups

For $G = E_8$:

1. $E_8(a_1)$, $E_8(a_2)$, and $E_8(a_3)$
2. $E_8(a_4)$, $E_8(b_4)$ and $E_8(a_5)$
3. $E_7(a_1)$, $E_8(b_5)$ and $E_7(a_2)$
4. $E_8(a_6)$ and $D_7(a_1)$
5. $E_6(a_1)$ and $E_7(a_4)$
Counterexamples for exceptional groups

For $G = E_8$:

1. $E_8(a_1)$, $E_8(a_2)$, and $E_8(a_3)$
2. $E_8(a_4)$, $E_8(b_4)$ and $E_8(a_5)$
3. $E_7(a_1)$, $E_8(b_5)$ and $E_7(a_2)$
4. $E_8(a_6)$ and $D_7(a_1)$
5. $E_6(a_1)$ and $E_7(a_4)$
6. $E_8(a_7)$, $E_7(a_5)$, $E_6(a_3) + A_1$, and $D_6(a_2)$.