Degenerate Whittaker functionals for real reductive groups

Dmitry Gourevitch & Siddhartha Sahi Conference on L-functions, Jeju

August 2012

Gourevitch-Sahi

Degenerate Whittaker functionals

August 2012 1 / 14

• \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume *G* quasisplit: fix Borel B = HN, $\mathfrak{n} := Lie_{\mathbb{F}}(N)$.

Define
$$\mathfrak{n}' = [\mathfrak{n}, \mathfrak{n}]$$
, $\mathfrak{v} = \mathfrak{n}/\mathfrak{n}'$, $\Psi = \mathfrak{v}^* \subset \mathfrak{n}^*$

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel B = HN, $\mathfrak{n} := Lie_{\mathbb{F}}(N)$.

Define
$$\mathfrak{n}' = [\mathfrak{n}, \mathfrak{n}]$$
, $\mathfrak{v} = \mathfrak{n}/\mathfrak{n}'$, $\Psi = \mathfrak{v}^* \subset \mathfrak{n}^*$

• $\Psi \longleftrightarrow$ Lie algebra characters of $\mathfrak{n} \longleftrightarrow$ unitary group characters of N

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel B = HN, $\mathfrak{n} := Lie_{\mathbb{F}}(N)$.

Define
$$\mathfrak{n}' = [\mathfrak{n}, \mathfrak{n}]$$
, $\mathfrak{v} = \mathfrak{n}/\mathfrak{n}'$, $\Psi = \mathfrak{v}^* \subset \mathfrak{n}^*$

Ψ → Lie algebra characters of n ↔ unitary group characters of N
 Ψ ⊃ Ψ[×] := non-degenerate characters.

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel B = HN, $\mathfrak{n} := Lie_{\mathbb{F}}(N)$.

Define
$$\mathfrak{n}' = [\mathfrak{n}, \mathfrak{n}]$$
, $\mathfrak{v} = \mathfrak{n}/\mathfrak{n}'$, $\Psi = \mathfrak{v}^* \subset \mathfrak{n}^*$

- Ψ ↔ Lie algebra characters of n ↔ unitary group characters of N
 Ψ ⊃ Ψ[×] := non-degenerate characters.
- For $\psi \in \Psi$, $\pi \in \mathcal{M}(G)$ define

 $Wh_{\psi}^{*}(\pi) := \operatorname{Hom}_{N}^{cts}(\pi, \psi), \Psi(\pi) := \{ \psi \in \Psi : Wh_{\psi}^{*}(\pi) \neq 0 \}$

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel B = HN, $\mathfrak{n} := Lie_{\mathbb{F}}(N)$.

Define
$$\mathfrak{n}' = [\mathfrak{n}, \mathfrak{n}]$$
, $\mathfrak{v} = \mathfrak{n}/\mathfrak{n}'$, $\Psi = \mathfrak{v}^* \subset \mathfrak{n}^*$

- Ψ ↔ Lie algebra characters of n ↔ unitary group characters of N
 Ψ ⊃ Ψ[×] := non-degenerate characters.
- For $\psi \in \Psi$, $\pi \in \mathcal{M}(\mathcal{G})$ define

 $Wh_{\psi}^{*}(\pi) := \operatorname{Hom}_{N}^{cts}(\pi, \psi), \Psi(\pi) := \{ \psi \in \Psi : Wh_{\psi}^{*}(\pi) \neq 0 \}$

• (Casselman) For any $\psi \in \Psi^{\times}$, $\pi \mapsto Wh^*_{\psi}(\pi)$ is an exact functor.

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume G quasisplit: fix Borel B = HN, $\mathfrak{n} := Lie_{\mathbb{F}}(N)$.

Define
$$\mathfrak{n}' = [\mathfrak{n}, \mathfrak{n}]$$
, $\mathfrak{v} = \mathfrak{n}/\mathfrak{n}'$, $\Psi = \mathfrak{v}^* \subset \mathfrak{n}^*$

- Ψ ↔ Lie algebra characters of n ↔ unitary group characters of N
 Ψ ⊃ Ψ[×] := non-degenerate characters.
- For $\psi \in \Psi$, $\pi \in \mathcal{M}(\mathcal{G})$ define

 $Wh_{\psi}^{*}(\pi) := \operatorname{Hom}_{N}^{cts}(\pi, \psi), \Psi(\pi) := \{ \psi \in \Psi : Wh_{\psi}^{*}(\pi) \neq 0 \}$

• (Casselman) For any $\psi \in \Psi^{\times}$, $\pi \mapsto Wh^*_{\psi}(\pi)$ is an exact functor.

Theorem (Gelfand-Kazhdan, Shalika)

For $\pi \in Irr(G)$, $\psi \in \Psi^{\times}$, dim $Wh_{\psi}^{*}(\pi) \leq 1$.

• We say π is generic if $\exists \psi \in \Psi^{\times}$ s.t. $Wh_{\psi}(\pi) \neq 0$.

• We say π is generic if $\exists \psi \in \Psi^{\times}$ s.t. $Wh_{\psi}(\pi) \neq 0$.

Theorem (Kostant, Rodier)

 π is generic iff it is large.

• We say π is generic if $\exists \psi \in \Psi^{\times}$ s.t. $Wh_{\psi}(\pi) \neq 0$.

Theorem (Kostant, Rodier)

 π is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

 $\chi_{\pi} \approx \sum a_{\mathcal{O}} \mathcal{F}(\mu_{\mathcal{O}})$

• We say π is generic if $\exists \psi \in \Psi^{\times}$ s.t. $Wh_{\psi}(\pi) \neq 0$.

Theorem (Kostant, Rodier)

 π is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\chi_{\pi} \approx \sum a_{\mathcal{O}} \mathcal{F}(\mu_{\mathcal{O}})$$

• Define $WF(\pi) = \bigcup \{\overline{\mathcal{O}} \mid a_{\mathcal{O}} \neq 0\} \subset \mathcal{N}$, where $\mathcal{N} \subset \mathfrak{g}^*$ denotes the nilpotent cone.

• We say π is generic if $\exists \psi \in \Psi^{\times}$ s.t. $Wh_{\psi}(\pi) \neq 0$.

Theorem (Kostant, Rodier)

 π is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\chi_{\pi} \approx \sum \mathbf{a}_{\mathcal{O}} \mathcal{F}(\mu_{\mathcal{O}})$$

- Define $WF(\pi) = \bigcup \{\overline{\mathcal{O}} \mid a_{\mathcal{O}} \neq 0\} \subset \mathcal{N}$, where $\mathcal{N} \subset \mathfrak{g}^*$ denotes the nilpotent cone.
- π is called *large* if WF(π) = \mathcal{N} .

 In the p-adic case, Moeglin and Waldspurger give a very general definition of degenerate Whittaker models and give a precise connection between their existence and the wave-front set WF(π). In the real case there is no full analog currently.

- In the p-adic case, Moeglin and Waldspurger give a very general definition of degenerate Whittaker models and give a precise connection between their existence and the wave-front set WF(π). In the real case there is no full analog currently.
- Several authors (Matumoto, Yamashita, ...) consider generalized Whittaker functionals \sim generic characters for *smaller* nilradicals

- In the p-adic case, Moeglin and Waldspurger give a very general definition of degenerate Whittaker models and give a precise connection between their existence and the wave-front set WF(π). In the real case there is no full analog currently.
- Several authors (Matumoto, Yamashita, ...) consider *generalized* Whittaker functionals \sim generic characters for *smaller* nilradicals
- We consider *degenerate* functionals ~ *arbitrary* characters of n.

Main results

• From now on, let $\mathbb{F} = \mathbb{R}$.

Main results

- From now on, let $\mathbb{F} = \mathbb{R}$.
- The finite group $F_{G} = Norm_{G_{\mathbb{C}}}(G) / (Z_{G_{\mathbb{C}}} \cdot G)$ acts on $\mathcal{M}(G)$.

Main results

- From now on, let $\mathbb{F} = \mathbb{R}$.
- The finite group $F_{G} = Norm_{G_{\mathbb{C}}}(G) / (Z_{G_{\mathbb{C}}} \cdot G)$ acts on $\mathcal{M}(G)$.
- For $\pi \in \mathcal{M}(G)$, define $\tilde{\pi} = \bigoplus \{\pi^{a} : a \in F_{G}\}.$

- From now on, let $\mathbb{F} = \mathbb{R}$.
- The finite group $F_{G} = Norm_{G_{\mathbb{C}}}(G) / (Z_{G_{\mathbb{C}}} \cdot G)$ acts on $\mathcal{M}(G)$.
- For $\pi \in \mathcal{M}(G)$, define $\tilde{\pi} = \bigoplus \{\pi^{a} : a \in F_{G}\}.$

For $\pi \in \mathcal{M}\left(\mathsf{G}
ight)$ we have

$$\Psi(\pi) \subset \mathsf{WF}(\pi) \cap \Psi \subset \Psi(\widetilde{\pi}) \tag{1}$$

Moreover if $G = GL_n(\mathbb{R})$ or if G is a complex group then $\tilde{\pi} = \pi$ and

$$\Psi(\pi) = \mathsf{WF}(\pi) \cap \Psi \tag{2}$$

The sets $\Psi\left(\pi\right)$ and WF $\left(\pi\right)$ determine one another if

• $G = GL_{n}(\mathbb{R})$ or $GL_{n}(\mathbb{C})$ or $SL_{n}(\mathbb{C})$ and $\pi \in \mathcal{M}(G)$

The sets $\Psi\left(\pi\right)$ and WF $\left(\pi\right)$ determine one another if

- $\mathbf{O} \ \ \mathbf{G} = \mathbf{GL}_{n}\left(\mathbb{R}\right) \text{ or } \mathbf{GL}_{n}\left(\mathbb{C}\right) \text{ or } \mathbf{SL}_{n}\left(\mathbb{C}\right) \text{ and } \pi \in \mathcal{M}\left(\mathbf{G}\right)$
- **2** $G = Sp_{2n}(\mathbb{C})$ or $O_n(\mathbb{C})$ or $SO_n(\mathbb{C})$ and π is irreducible

The sets $\Psi\left(\pi\right)$ and WF $\left(\pi\right)$ determine one another if

- $\mathbf{O} \ \ \mathbf{G} = \mathbf{GL}_{n}\left(\mathbb{R}\right) \text{ or } \mathbf{GL}_{n}\left(\mathbb{C}\right) \text{ or } \mathbf{SL}_{n}\left(\mathbb{C}\right) \text{ and } \pi \in \mathcal{M}\left(\mathbf{G}\right)$
- **2** $G = Sp_{2n}(\mathbb{C})$ or $O_n(\mathbb{C})$ or $SO_n(\mathbb{C})$ and π is irreducible

The sets $\Psi\left(\pi\right)$ and WF $\left(\pi\right)$ determine one another if

- $\mathbf{O} \ \ \mathbf{G} = \mathbf{GL}_{n}\left(\mathbb{R}\right) \text{ or } \mathbf{GL}_{n}\left(\mathbb{C}\right) \text{ or } \mathbf{SL}_{n}\left(\mathbb{C}\right) \text{ and } \pi \in \mathcal{M}\left(\mathbf{G}\right)$
- **2** $G = Sp_{2n}(\mathbb{C})$ or $O_n(\mathbb{C})$ or $SO_n(\mathbb{C})$ and π is irreducible

Key observation for the second statement:

Theorem (3)

Let \mathcal{O} be a nilpotent orbit for a complex classical Lie algebra then \mathcal{O} is uniquely determined by $\overline{\mathcal{O}} \cap \Psi$.

• An analog of Shalika's result would be uniqueness of "minimally degenerate" Whittaker models. So far it is known only for *GL_n*, both in real and p-adic cases.

- An analog of Shalika's result would be uniqueness of "minimally degenerate" Whittaker models. So far it is known only for *GL_n*, both in real and p-adic cases.
- Let G be $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$. For a partition λ of n let \mathcal{O}_{λ} denote the corresponding nilpotent orbit and ψ_{λ} denote the corresponding character of N.

- An analog of Shalika's result would be uniqueness of "minimally degenerate" Whittaker models. So far it is known only for *GL_n*, both in real and p-adic cases.
- Let G be $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$. For a partition λ of n let \mathcal{O}_{λ} denote the corresponding nilpotent orbit and ψ_{λ} denote the corresponding character of N.

Theorem (Aizenbud-G-Sahi)

Let $\pi \in \hat{G}$ be an irreducible unitary representation. Let λ be such that $WF(\pi) = \overline{\mathcal{O}_{\lambda}}$. Then dim $Wh_{\psi_{\lambda}}(\pi) = 1$.

- An analog of Shalika's result would be uniqueness of "minimally degenerate" Whittaker models. So far it is known only for *GL_n*, both in real and p-adic cases.
- Let G be GL_n(ℝ) or GL_n(ℂ). For a partition λ of n let O_λ denote the corresponding nilpotent orbit and ψ_λ denote the corresponding character of N.

Theorem (Aizenbud-G-Sahi)

Let $\pi \in \hat{G}$ be an irreducible unitary representation. Let λ be such that $WF(\pi) = \overline{\mathcal{O}_{\lambda}}$. Then dim $Wh_{\psi_{\lambda}}(\pi) = 1$.

• In the *p*-adic case the analogous theorem was proven by Zelevinsky without the assumption that π is unitary. The proofs in both cases use "derivatives".

• From now on, we let n, g, etc. denote *complexified* Lie algebras.

- From now on, we let n, g, etc. denote *complexified* Lie algebras.
- Let K ⊂ G be maximal compact subgroup. A (g, K)-module is a complex vector space with compatible actions of g and K such that every vector is K-finite.

- From now on, we let n, g, etc. denote *complexified* Lie algebras.
- Let K ⊂ G be maximal compact subgroup. A (g, K)-module is a complex vector space with compatible actions of g and K such that every vector is K-finite.
- Let $\mathcal{HC}(G)$ denote the category of $(\mathfrak{g}, \mathcal{K})$ -modules of finite length

- From now on, we let n, g, etc. denote *complexified* Lie algebras.
- Let K ⊂ G be maximal compact subgroup. A (g, K)-module is a complex vector space with compatible actions of g and K such that every vector is K-finite.
- Let $\mathcal{HC}(G)$ denote the category of (\mathfrak{g}, K) -modules of finite length

Theorem (Casselman-Wallach)

The functor $\pi \mapsto \pi^{K-finite}$ is an equivalence of categories $\mathcal{M}(G) \cong \mathcal{HC}(G)$

- From now on, we let n, g, etc. denote *complexified* Lie algebras.
- Let K ⊂ G be maximal compact subgroup. A (g, K)-module is a complex vector space with compatible actions of g and K such that every vector is K-finite.
- Let $\mathcal{HC}(G)$ denote the category of (\mathfrak{g}, K) -modules of finite length

Theorem (Casselman-Wallach)

The functor $\pi \mapsto \pi^{K-finite}$ is an equivalence of categories $\mathcal{M}(G) \cong \mathcal{HC}(G)$

• For $M \in \mathcal{HC}(G)$ and $\psi \in \Psi_{\mathbb{C}}$ we define

 $Wh'_{\psi}(M) := \operatorname{Hom}_{\mathfrak{n}}(M, \psi), \quad \Psi(M) := \{\psi \in \Psi_{\mathbb{C}} \mid Wh'_{\psi}(M) \neq 0\}$

イロト イヨト イヨト イヨト

- From now on, we let n, g, etc. denote *complexified* Lie algebras.
- Let K ⊂ G be maximal compact subgroup. A (g, K)-module is a complex vector space with compatible actions of g and K such that every vector is K-finite.
- Let $\mathcal{HC}(G)$ denote the category of (\mathfrak{g}, K) -modules of finite length

Theorem (Casselman-Wallach)

The functor $\pi \mapsto \pi^{K-finite}$ is an equivalence of categories $\mathcal{M}(G) \cong \mathcal{HC}(G)$

• For $M \in \mathcal{HC}(G)$ and $\psi \in \Psi_{\mathbb{C}}$ we define

 $Wh'_{\psi}(M) := \operatorname{Hom}_{\mathfrak{n}}(M, \psi), \quad \Psi(M) := \{\psi \in \Psi_{\mathbb{C}} \mid Wh'_{\psi}(M) \neq 0\}$

• Kostant showed that π is generic iff $\pi^{K-\text{finite}}$ is generic, though dimensions of Whittaker spaces differ considerably.

Associated varieties and our algebraic theorem

 \bullet Using PBW filtration, $\operatorname{gr} \mathcal{U}(\mathfrak{g}) = \operatorname{Sym}(\mathfrak{g}) = \operatorname{Pol}(\mathfrak{g}^*)$

- $\bullet~{\sf Using}~{\sf PBW}~{\sf filtration},~{\sf gr}~{\mathcal U}(\mathfrak{g})={\sf Sym}(\mathfrak{g})={\sf Pol}(\mathfrak{g}^*)$
- Using this, one can define

 $\mathrm{As}\mathcal{V}(M)\subset\mathrm{An}\mathcal{V}(M)\subset\mathcal{N}$

- Using PBW filtration, $\operatorname{gr} \mathcal{U}(\mathfrak{g}) = \operatorname{Sym}(\mathfrak{g}) = \operatorname{Pol}(\mathfrak{g}^*)$
- Using this, one can define

$$\operatorname{As}\mathcal{V}(M)\subset\operatorname{An}\mathcal{V}(M)\subset\mathcal{N}$$

• Schmid and Vilonen proved that ${\rm WF}(\pi)$ and ${\rm As}\mathcal{V}(\pi^{{\rm K-finite}})$ determine each other.

- Using PBW filtration, $\operatorname{gr} \mathcal{U}(\mathfrak{g}) = \operatorname{Sym}(\mathfrak{g}) = \operatorname{Pol}(\mathfrak{g}^*)$
- Using this, one can define

$$\operatorname{As}\mathcal{V}(M)\subset\operatorname{An}\mathcal{V}(M)\subset\mathcal{N}$$

- Schmid and Vilonen proved that ${\rm WF}(\pi)$ and ${\rm As}\mathcal{V}(\pi^{{\rm K-finite}})$ determine each other.
- Let $pr_{\mathfrak{n}^*}:\mathfrak{g}^* \to \mathfrak{n}^*$ denote the natural projection (restriction to \mathfrak{n}).

- $\bullet~\mathsf{Using}~\mathsf{PBW}~\mathsf{filtration},~\mathsf{gr}~\mathcal{U}(\mathfrak{g})=\mathsf{Sym}(\mathfrak{g})=\mathsf{Pol}(\mathfrak{g}^*)$
- Using this, one can define

$$\operatorname{As}\mathcal{V}(M)\subset\operatorname{An}\mathcal{V}(M)\subset\mathcal{N}$$

- Schmid and Vilonen proved that ${\rm WF}(\pi)$ and ${\rm As}\mathcal{V}(\pi^{{\rm K-finite}})$ determine each other.
- Let $pr_{\mathfrak{n}^*}:\mathfrak{g}^* \to \mathfrak{n}^*$ denote the natural projection (restriction to \mathfrak{n}).

Theorem (0)

For
$$M \in \mathcal{HC}$$
 we have $\Psi(M) = pr_{\mathfrak{n}^*}(\operatorname{As}\mathcal{V}(M)) \cap \Psi$.

 Since n/[n, n] is commutative, from Nakayama's lemma we have Ψ(M) = Supp(M/[n, n]M). Now, restriction to n corresponds to projection on n* and quotient by [n, n] corresponds to intersection with Ψ = [n, n][⊥].

- Since n/[n, n] is commutative, from Nakayama's lemma we have Ψ(M) = Supp(M/[n, n]M). Now, restriction to n corresponds to projection on n* and quotient by [n, n] corresponds to intersection with Ψ = [n, n][⊥].
- However, in non-commutative situation one could even have $V = [\mathfrak{n}, \mathfrak{n}] V$. For example, let $G = GL(3, \mathbb{R})$ and consider the identification of \mathfrak{n} with the Heisenberg Lie algebra $\langle x, \frac{d}{dx}, 1 \rangle$ acting on $V = \mathbb{C} [x]$.

- Since n/[n, n] is commutative, from Nakayama's lemma we have Ψ(M) = Supp(M/[n, n]M). Now, restriction to n corresponds to projection on n* and quotient by [n, n] corresponds to intersection with Ψ = [n, n][⊥].
- However, in non-commutative situation one could even have $V = [\mathfrak{n}, \mathfrak{n}] V$. For example, let $G = GL(3, \mathbb{R})$ and consider the identification of \mathfrak{n} with the Heisenberg Lie algebra $\langle x, \frac{d}{dx}, 1 \rangle$ acting on $V = \mathbb{C} [x]$.
- Let $\mathfrak{b} = \mathfrak{h} + \mathfrak{n}$ be the Borel subalgebra of \mathfrak{g} , let V be a \mathfrak{b} -module. We define the *n*-adic completion and Jacquet module as follows: $\widehat{V} = \widehat{V}_{\mathfrak{n}} = \lim_{\longleftarrow} V/\mathfrak{n}^{i}V, \quad J(V) = J_{\mathfrak{b}}(V) = (\widehat{V}_{\mathfrak{n}})^{\mathfrak{h}\text{-finite}}$

• Define
$$n' = [\mathfrak{n}, \mathfrak{n}]$$
 and $CV = H_0(\mathfrak{n}', V) = V/\mathfrak{n}' V$.

Image: A mathematical states and a mathem

- Define n' = [n, n] and $CV = H_0(n', V) = V/n'V$.
- (Nakayama) $\Psi(M) = \operatorname{Supp}_{v}(CM) = \operatorname{An}\mathcal{V}_{v}(CM)$

- Define n' = [n, n] and $CV = H_0(n', V) = V/n'V$.
- (Nakayama) $\Psi(M) = \operatorname{Supp}_{v}(CM) = \operatorname{An}\mathcal{V}_{v}(CM)$
- (Joseph+Gabber) $\operatorname{An}\mathcal{V}_{\mathfrak{v}}(CM) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}\left(\widehat{CM}\right) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}(J(CM))$

- Define n' = [n, n] and $CV = H_0(n', V) = V/n'V$.
- (Nakayama) $\Psi(M) = \operatorname{Supp}_{v}(CM) = \operatorname{An}\mathcal{V}_{v}(CM)$
- (Joseph+Gabber) $\operatorname{An}\mathcal{V}_{\mathfrak{v}}(\mathcal{CM}) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}\left(\widehat{\mathcal{CM}}\right) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}(J(\mathcal{CM}))$
- (Easy) $J(CM) \approx C(JM)$ as b-modules.

- Define n' = [n, n] and $CV = H_0(n', V) = V/n'V$.
- (Nakayama) $\Psi(M) = \operatorname{Supp}_{v}(CM) = \operatorname{An}\mathcal{V}_{v}(CM)$
- (Joseph+Gabber) $\operatorname{An}\mathcal{V}_{\mathfrak{v}}(CM) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}(\widehat{CM}) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}(J(CM))$
- (Easy) $J(CM) \approx C(JM)$ as b-modules.
- (Bernstein+Joseph) An $\mathcal{V}_{\mathfrak{v}}(J(CM)) = \operatorname{As}\mathcal{V}_{\mathfrak{v}}(C(JM)) = \operatorname{As}\mathcal{V}_{\mathfrak{n}}(JM) \cap \Psi.$

- Define $n' = [\mathfrak{n}, \mathfrak{n}]$ and $CV = H_0(\mathfrak{n}', V) = V/\mathfrak{n}' V$.
- (Nakayama) $\Psi(M) = \operatorname{Supp}_{v}(CM) = \operatorname{An}\mathcal{V}_{v}(CM)$
- (Joseph+Gabber) $\operatorname{An}\mathcal{V}_{\mathfrak{v}}(CM) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}\left(\widehat{CM}\right) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}(J(CM))$
- (Easy) $J(CM) \approx C(JM)$ as b-modules.
- (Bernstein+Joseph) An $\mathcal{V}_{\mathfrak{v}}(J(CM)) = As\mathcal{V}_{\mathfrak{v}}(C(JM)) = As\mathcal{V}_{\mathfrak{n}}(JM) \cap \Psi.$
- (Ginzburg+ENV) $\operatorname{As}\mathcal{V}_{\mathfrak{n}}(JM) \supset \operatorname{As}\mathcal{V}_{\mathfrak{n}}(M) \cap \Psi$.

- Define $n' = [\mathfrak{n}, \mathfrak{n}]$ and $CV = H_0(\mathfrak{n}', V) = V/\mathfrak{n}' V$.
- (Nakayama) $\Psi(M) = \operatorname{Supp}_{v}(CM) = \operatorname{An}\mathcal{V}_{v}(CM)$
- (Joseph+Gabber) $\operatorname{An}\mathcal{V}_{\mathfrak{v}}(CM) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}\left(\widehat{CM}\right) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}(J(CM))$
- (Easy) $J(CM) \approx C(JM)$ as b-modules.
- (Bernstein+Joseph) An $\mathcal{V}_{\mathfrak{v}}(J(CM)) = \operatorname{As}\mathcal{V}_{\mathfrak{v}}(C(JM)) = \operatorname{As}\mathcal{V}_{\mathfrak{n}}(JM) \cap \Psi.$
- (Ginzburg+ENV) $\operatorname{As}\mathcal{V}_{\mathfrak{n}}(JM) \supset \operatorname{As}\mathcal{V}_{\mathfrak{n}}(M) \cap \Psi$.
- (Casselman-Osborne+Gabber) $As\mathcal{V}_{\mathfrak{n}}(M) = pr_{\mathfrak{n}^*}(As\mathcal{V}_{\mathfrak{g}}(M)).$

- Define $n' = [\mathfrak{n}, \mathfrak{n}]$ and $CV = H_0(\mathfrak{n}', V) = V/\mathfrak{n}' V$.
- (Nakayama) $\Psi(M) = \operatorname{Supp}_{v}(CM) = \operatorname{An}\mathcal{V}_{v}(CM)$
- (Joseph+Gabber) $\operatorname{An}\mathcal{V}_{\mathfrak{v}}(CM) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}(\widehat{CM}) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}(J(CM))$
- (Easy) $J(CM) \approx C(JM)$ as b-modules.
- (Bernstein+Joseph) An $\mathcal{V}_{\mathfrak{v}}(J(CM)) = \operatorname{As}\mathcal{V}_{\mathfrak{v}}(C(JM)) = \operatorname{As}\mathcal{V}_{\mathfrak{n}}(JM) \cap \Psi.$
- (Ginzburg+ENV) $\operatorname{As}\mathcal{V}_{\mathfrak{n}}(JM) \supset \operatorname{As}\mathcal{V}_{\mathfrak{n}}(M) \cap \Psi$.
- (Casselman-Osborne+Gabber) $\operatorname{As}\mathcal{V}_{\mathfrak{n}}(M) = \operatorname{\textit{pr}}_{\mathfrak{n}^*}(\operatorname{As}\mathcal{V}_{\mathfrak{g}}(M)).$
- Thus $\Psi(M) \supset pr_{\mathfrak{n}^*}(\operatorname{As}\mathcal{V}_{\mathfrak{g}}(M)) \cap \Psi$; other inclusion is easy.

For $\mathit{GL}\left(\mathit{n},\mathbb{R}
ight)$ and $\mathit{SL}\left(\mathit{n},\mathbb{C}
ight)\sim$ Jordan form

• Orbits for $Sp_{2n}\left(\mathbb{C}\right)$ or $O_{n}\left(\mathbb{C}\right)\sim$ partitions satisfying certain conditions

For $GL(n,\mathbb{R})$ and $SL(n,\mathbb{C})\sim$ Jordan form

- Orbits for $Sp_{2n}\left(\mathbb{C}
 ight)$ or $O_{n}\left(\mathbb{C}
 ight)\sim$ partitions satisfying certain conditions
- An orbit meets Ψ iff it has at most one part \geq 2 with odd multiplicity

For $GL(n,\mathbb{R})$ and $SL(n,\mathbb{C}) \sim$ Jordan form

- Orbits for $Sp_{2n}\left(\mathbb{C}
 ight)$ or $O_{n}\left(\mathbb{C}
 ight)\sim$ partitions satisfying certain conditions
- An orbit meets Ψ iff it has at most one part \geq 2 with odd multiplicity
- For each partition λ and each k there is a partition $\mu \leq \lambda$, which meets Ψ and satisfies $\mu_1 + \cdots + \mu_k = \lambda_1 + \cdots + \lambda_k$

For $GL(n,\mathbb{R})$ and $SL(n,\mathbb{C}) \sim$ Jordan form

- Orbits for $Sp_{2n}\left(\mathbb{C}\right)$ or $O_{n}\left(\mathbb{C}\right)\sim$ partitions satisfying certain conditions
- An orbit meets Ψ iff it has at most one part \geq 2 with odd multiplicity
- For each partition λ and each k there is a partition $\mu \leq \lambda$, which meets Ψ and satisfies $\mu_1 + \cdots + \mu_k = \lambda_1 + \cdots + \lambda_k$
- Result for $SO_{n}(\mathbb{C})$ requires slight additional argument.

Fact

Fact

Theorem 3 is false for every exceptional group.

 ${\ensuremath{\, \bullet }}$ We list all orbits whose closures have the same intersection with $\Psi.$

Fact

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.

Fact

- ${\ensuremath{\, \bullet }}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and A_1

Fact

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and $\widetilde{A_1}$
- For $G = F_4$:

Fact

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $\underline{G_2(a_1)}$ and $\widetilde{A_1}$
- For $G = F_4$:
 - $\bullet \quad \underline{F_4(a_1)} \text{ and } \underline{F_4(a_2)}$

Fact

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $\underline{G_2(a_1)}$ and $\widetilde{A_1}$
- For $G = F_4$:
 - $F_4(a_1)$ and $F_4(a_2)$ • $F_7(a_2)$ and $F_7(a_2)$
 - 2 $F_4(a_3)$ and $C_3(a_1)$

Fact

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $\underline{G_2(a_1)}$ and $\widetilde{A_1}$
- For $G = F_4$:
 - $\begin{array}{c} \bullet \\ \bullet \\ \hline F_4(a_1) \\ \bullet \\ \hline \hline F_4(a_3) \\ \hline F_4(a_3) \\ \hline F_4(a_2) \\ \hline F_3(a_1) \\ \hline \hline F_3(a_1) \\ \hline F_3(a_$
- For $G = E_6$:

Fact

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $\underline{G_2(a_1)}$ and $\widetilde{A_1}$
- For $G = F_4$:
 - $\begin{array}{c} \bullet \\ \bullet \\ \hline \bullet \\ \bullet \\ \hline \hline F_4(a_3) \\ \hline F_4(a_3) \\ \hline \bullet \\ \bullet \\ \hline \hline \hline F_4(a_2) \\ \hline \hline F_4(a_2) \\ \hline \hline \hline F_4(a_2) \\ \hline F_4(a_3) \\ \hline F$
- For $G = E_6$:

Fact

Theorem 3 is false for every exceptional group.

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $\underline{G_2(a_1)}$ and $\widetilde{A_1}$
- For $G = F_4$:
 - **1** $F_4(a_1)$ and $F_4(a_2)$ **2** $F_4(a_3)$ and $T_3(a_1)$
- For $G = E_6$:

$$\underline{E_6(a_1)} \text{ and } \underline{D_5}$$

2 $D_4(a_1)$ and $A_3 + A_1$

Fact

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $\underline{G_2(a_1)}$ and $\widetilde{A_1}$
- For $G = F_4$: • $F_4(a_1)$ and $F_4(a_2)$ • $F_4(a_3)$ and $\overline{C_3(a_1)}$

• For
$$G = E_6$$
:

• For
$$G = E_7$$
:

Fact

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $\underline{G_2(a_1)}$ and $\widetilde{A_1}$
- For $G = F_4$: • $F_4(a_1)$ and $F_4(a_2)$ • $F_4(a_3)$ and $\overline{C_3(a_1)}$
- For $G = E_6$:
 - (1) $E_6(a_1)$ and D_5 (2) $D_4(a_1)$ and $A_3 + A_1$
- For $\overline{G = E_7}$:
 - $\bullet \underline{E_7(a_1)} \text{ and } \underline{E_7(a_2)}$

Fact

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $\underline{G_2(a_1)}$ and $\widetilde{A_1}$
- For $G = F_4$: • $F_4(a_1)$ and $F_4(a_2)$ • $F_4(a_3)$ and $\overline{C_3(a_1)}$
- For $G = E_6$:
 - (1) $E_6(a_1)$ and D_5 (2) $D_4(a_1)$ and $A_3 + A_1$
- For $G = E_7$:
 - $\begin{array}{c|c} \bullet & E_7(a_1) \\ \bullet & \overline{E_7(a_3)} \text{ and } \overline{E_7(a_2)} \\ \hline & D_6 \end{array}$

Fact

- ${\ensuremath{\,\circ}}$ We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.

• For
$$G = G_2$$
: $\underline{G_2(a_1)}$ and $\widetilde{A_1}$

For
$$G = F_4$$
:
• $F_4(a_1)$ and $F_4(a_2)$
• $F_4(a_3)$ and $C_3(a_1)$

• For
$$G = E_6$$
:

$$\begin{array}{c} \bullet \quad \underline{E_6(a_1)} \text{ and } \underline{D_5} \\ \bullet \quad \overline{D_4(a_1)} \text{ and } \overline{A_3} + A_2 \end{array}$$

• For
$$G = E_7$$
:

$$\frac{E_7(a_1)}{E_7(a_2)} \text{ and } \frac{E_7(a_2)}{E_7(a_2)}$$

$$\frac{E_7(a_3)}{E_6(a_1)} \text{ and } E_7(a_4).$$

• For $G = E_8$:

For G = E₈:
 E₈(a₁), E₈(a₂), and E₈(a₃)

• For
$$G = E_8$$
:
• $E_8(a_1), E_8(a_2), \text{ and } E_8(a_3)$
• $E_8(a_4), E_8(b_4) \text{ and } E_8(a_5)$

• For
$$G = E_8$$
:
• $E_8(a_1), E_8(a_2), \text{ and } E_8(a_3)$
• $E_8(a_4), E_8(b_4) \text{ and } E_8(a_5)$
• $E_7(a_1), E_8(b_5) \text{ and } E_7(a_2)$

• For
$$G = E_8$$
:
• $E_8(a_1), E_8(a_2), \text{ and } E_8(a_3)$
• $E_8(a_4), E_8(b_4) \text{ and } E_8(a_5)$
• $E_7(a_1), E_8(b_5) \text{ and } E_7(a_2)$
• $E_8(a_6) \text{ and } D_7(a_1)$

• For
$$G = E_8$$
:
1 $E_8(a_1)$, $E_8(a_2)$, and $E_8(a_3)$
2 $E_8(a_4)$, $E_8(b_4)$ and $E_8(a_5)$
3 $E_7(a_1)$, $E_8(b_5)$ and $E_7(a_2)$
4 $E_8(a_6)$ and $D_7(a_1)$
5 $E_6(a_1)$ and $E_7(a_4)$

• For
$$G = E_8$$
:
• $E_8(a_1), E_8(a_2), \text{ and } E_8(a_3)$
• $E_8(a_4), E_8(b_4) \text{ and } E_8(a_5)$
• $E_7(a_1), E_8(b_5) \text{ and } E_7(a_2)$
• $E_8(a_6) \text{ and } D_7(a_1)$
• $E_6(a_1) \text{ and } E_7(a_4)$
• $E_8(a_7), E_7(a_5), E_6(a_3) + A_1, \text{ and } D_6(a_2).$