Degenerate Whittaker functionals for real reductive groups

Dmitry Gourevitch & Siddhartha Sahi Conference on L-functions, Jeju

August 2012

Whittaker functionals

- \mathbb{F} : local field of char.0, G: reductive group over \mathbb{F} .
- $\mathcal{M}(G)$: smooth admissible representations (of moderate growth).
- Assume *G* quasisplit: fix Borel B = HN, $\mathfrak{n} := Lie_{\mathbb{F}}(N)$.

Define
$$\mathfrak{n}'=[\mathfrak{n},\mathfrak{n}]$$
 , $\mathfrak{v}=\mathfrak{n}/\mathfrak{n}'$, $\Psi=\mathfrak{v}^*\subset\mathfrak{n}^*$

- ullet $\Psi\longleftrightarrow$ Lie algebra characters of $\mathfrak{n}\longleftrightarrow$ unitary group characters of N
- $\Psi \supset \Psi^{\times} :=$ non-degenerate characters.
- ullet For $\psi\in\Psi$, $\pi\in\mathcal{M}(\mathit{G})$ define

$$Wh_{\psi}^*(\pi) := \operatorname{Hom}_{\mathcal{N}}^{cts}(\pi, \psi), \Psi(\pi) := \{ \psi \in \Psi : Wh_{\psi}^*(\pi) \neq 0 \}$$

ullet (Casselman) For any $\psi \in \Psi^{ imes}$, $\pi \mapsto Wh_{\psi}^*(\pi)$ is an exact functor.

Theorem (Gelfand-Kazhdan, Shalika)

For $\pi \in Irr(G)$, $\psi \in \Psi^{\times}$, $\dim Wh_{\psi}^{*}(\pi) \leq 1$.

Kostant's theorem

• We say π is generic if $\exists \psi \in \Psi^{\times}$ s.t. $Wh_{\psi}(\pi) \neq 0$.

Theorem (Kostant, Rodier)

 π is generic iff it is large.

Theorem (Harish-Chandra, Howe)

Near $e \in G$, the character distribution (asymptotically) equals to a linear combination of Fourier transforms of Haar measures of nilpotent coadjoint orbits.

$$\chi_{\pi} pprox \sum a_{\mathcal{O}} \mathcal{F}(\mu_{\mathcal{O}})$$

- Define WF $(\pi) = \cup \{\overline{\mathcal{O}} \mid a_{\mathcal{O}} \neq 0\} \subset \mathcal{N}$, where $\mathcal{N} \subset \mathfrak{g}^*$ denotes the nilpotent cone.
- π is called *large* if WF(π) = \mathcal{N} .

Case of non-generic representations

- In the p-adic case, Moeglin and Waldspurger give a very general definition of degenerate Whittaker models and give a precise connection between their existence and the wave-front set $WF(\pi)$. In the real case there is no full analog currently.
- Several authors (Matumoto, Yamashita, ...) consider generalized Whittaker functionals \sim generic characters for *smaller* nilradicals
- We consider degenerate functionals \sim arbitrary characters of \mathfrak{n} .

Main results

- From now on, let $\mathbb{F} = \mathbb{R}$.
- The finite group $F_G = Norm_{G_{\mathbb{C}}}(G) / (Z_{G_{\mathbb{C}}} \cdot G)$ acts on $\mathcal{M}(G)$.
- For $\pi \in \mathcal{M}(G)$, define $\tilde{\pi} = \bigoplus \{\pi^{a} : a \in F_{G}\}$.

Theorem (1)

For $\pi \in \mathcal{M}(G)$ we have

$$\Psi(\pi) \subset \mathsf{WF}(\pi) \cap \Psi \subset \Psi\left(\widetilde{\pi}\right) \tag{1}$$

Moreover if $G=GL_{n}\left(\mathbb{R}\right)$ or if G is a complex group then $\widetilde{\pi}=\pi$ and

$$\Psi(\pi) = \mathsf{WF}(\pi) \cap \Psi \tag{2}$$

Main results

Theorem (2)

The sets $\Psi(\pi)$ and WF (π) determine one another if

- **1** $G = GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$ or $SL_n(\mathbb{C})$ and $\pi \in \mathcal{M}(G)$
- ② $G = Sp_{2n}(\mathbb{C})$ or $O_n(\mathbb{C})$ or $SO_n(\mathbb{C})$ and π is irreducible

Key observation for the second statement:

Theorem (3)

Let $\mathcal O$ be a nilpotent orbit for a complex classical Lie algebra then $\mathcal O$ is uniquely determined by $\overline{\mathcal O}\cap \Psi$.

Uniqueness

- An analog of Shalika's result would be uniqueness of "minimally degenerate" Whittaker models. So far it is known only for GL_n , both in real and p-adic cases.
- Let G be $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$. For a partition λ of n let \mathcal{O}_{λ} denote the corresponding nilpotent orbit and ψ_{λ} denote the corresponding character of N.

Theorem (Aizenbud-G-Sahi)

Let $\pi \in \hat{G}$ be an irreducible unitary representation. Let λ be such that $WF(\pi) = \overline{\mathcal{O}_{\lambda}}$. Then $\dim Wh_{\psi_{\lambda}}(\pi) = 1$.

• In the p-adic case the analogous theorem was proven by Zelevinsky without the assumption that π is unitary. The proofs in both cases use "derivatives".

Algebraic setting

- From now on, we let $\mathfrak{n}, \mathfrak{g}$, etc. denote *complexified* Lie algebras.
- Let $K \subset G$ be maximal compact subgroup. A (\mathfrak{g}, K) -module is a complex vector space with compatible actions of \mathfrak{g} and K such that every vector is K-finite.
- ullet Let $\mathcal{HC}(\mathcal{G})$ denote the category of $(\mathfrak{g},\mathcal{K})$ -modules of finite length

Theorem (Casselman-Wallach)

The functor $\pi \mapsto \pi^{K-finite}$ is an equivalence of categories $\mathcal{M}(G) \cong \mathcal{HC}(G)$

ullet For $M\in \mathcal{HC}(\mathcal{G})$ and $\psi\in \Psi_{\mathbb{C}}$ we define

$$Wh'_{\psi}(M) := \operatorname{Hom}_{\mathfrak{n}}(M, \psi), \quad \Psi(M) := \{ \psi \in \Psi_{\mathbb{C}} \mid Wh'_{\psi}(M) \neq 0 \}$$

• Kostant showed that π is generic iff $\pi^{K-\text{finite}}$ is generic, though dimensions of Whittaker spaces differ considerably.

Associated varieties and our algebraic theorem

- ullet Using PBW filtration, $\operatorname{gr} \mathcal{U}(\mathfrak{g}) = \operatorname{\mathsf{Sym}}(\mathfrak{g}) = \operatorname{\mathsf{Pol}}(\mathfrak{g}^*)$
- Using this, one can define

$$AsV(M) \subset AnV(M) \subset \mathcal{N}$$

- Schmid and Vilonen proved that WF(π) and As $\mathcal{V}(\pi^{K-\text{finite}})$ determine each other.
- Let $pr_{\mathfrak{n}^*}: \mathfrak{g}^* \to \mathfrak{n}^*$ denote the natural projection (restriction to \mathfrak{n}).

Theorem (0)

For $M \in \mathcal{HC}$ we have $\Psi(M) = pr_{n^*}(AsV(M)) \cap \Psi$.

Idea of the proof

- Since $\mathfrak{n}/[\mathfrak{n},\mathfrak{n}]$ is commutative, from Nakayama's lemma we have $\Psi(M) = \operatorname{Supp}(M/[\mathfrak{n},\mathfrak{n}]M)$. Now, restriction to \mathfrak{n} corresponds to projection on \mathfrak{n}^* and quotient by $[\mathfrak{n},\mathfrak{n}]$ corresponds to intersection with $\Psi = [\mathfrak{n},\mathfrak{n}]^{\perp}$.
- However, in non-commutative situation one could even have $V = [\mathfrak{n},\mathfrak{n}]\,V$. For example, let $G = GL(3,\mathbb{R})$ and consider the identification of \mathfrak{n} with the Heisenberg Lie algebra $\left\langle x,\frac{d}{dx},1\right\rangle$ acting on $V = \mathbb{C}\left[x\right]$.
- Let $\mathfrak{b} = \mathfrak{h} + \mathfrak{n}$ be the Borel subalgebra of \mathfrak{g} , let V be a \mathfrak{b} -module. We define the n-adic completion and Jacquet module as follows:

$$\widehat{V} = \widehat{V}_{\mathfrak{n}} = \lim_{\longleftarrow} V/\mathfrak{n}^{i}V, \quad J(V) = J_{\mathfrak{b}}(V) = \left(\widehat{V}_{\mathfrak{n}}\right)^{\mathfrak{h}\text{-finite}}$$

Sketch of the proof

- Define $n' = [\mathfrak{n}, \mathfrak{n}]$ and $CV = H_0(\mathfrak{n}', V) = V/\mathfrak{n}'V$.
- (Nakayama) $\Psi(M) = \operatorname{Supp}_{\mathfrak{v}}(CM) = \operatorname{An}\mathcal{V}_{\mathfrak{v}}(CM)$
- $\bullet \ \, (\mathsf{Joseph+Gabber}) \ \, \mathsf{An} \mathcal{V}_{\mathfrak{v}} \left(\mathit{CM} \right) = \mathsf{An} \mathcal{V}_{\mathfrak{v}} \left(\widehat{\mathit{CM}} \right) = \mathsf{An} \mathcal{V}_{\mathfrak{v}} \left(J \left(\mathit{CM} \right) \right)$
- (Easy) $J(CM) \approx C(JM)$ as b-modules.
- (Bernstein+Joseph) $\operatorname{An} \mathcal{V}_{\mathfrak{v}}\left(J\left(\mathit{CM}\right)\right) = \operatorname{As} \mathcal{V}_{\mathfrak{v}}(\mathit{C}\left(\mathit{JM}\right)) = \operatorname{As} \mathcal{V}_{\mathfrak{n}}(\mathit{JM}) \cap \Psi.$
- (Ginzburg+ENV) $AsV_n(JM) \supset AsV_n(M) \cap \Psi$.
- $\bullet \ \, (\mathsf{Casselman-Osborne} + \mathsf{Gabber}) \ \, \mathsf{As} \mathcal{V}_{\mathfrak{n}}(M) = \textit{pr}_{\mathfrak{n}^*}(\mathsf{As} \mathcal{V}_{\mathfrak{g}}(M)).$
- Thus $\Psi(M) \supset pr_{\mathfrak{n}^*}(\mathrm{As}\mathcal{V}_{\mathfrak{g}}(M)) \cap \Psi$; other inclusion is easy.

Proof of Theorem 3

Proof.

For $GL(n, \mathbb{R})$ and $SL(n, \mathbb{C}) \sim \text{Jordan form}$

- Orbits for $Sp_{2n}\left(\mathbb{C}\right)$ or $O_{n}\left(\mathbb{C}\right)\sim$ partitions satisfying certain conditions
- \bullet An orbit meets Ψ iff it has at most one part ≥ 2 with odd multiplicity
- For each partition λ and each k there is a partition $\mu \leq \lambda$, which meets Ψ and satisfies $\mu_1 + \cdots + \mu_k = \lambda_1 + \cdots + \lambda_k$
- Result for $SO_n(\mathbb{C})$ requires slight additional argument.

Counterexamples for exceptional groups

Fact

Theorem 3 is false for every exceptional group.

- ullet We list all orbits whose closures have the same intersection with $\Psi.$
- We follow Bala-Carter notation and we have underlined the special orbits.
- For $G = G_2$: $G_2(a_1)$ and $\widetilde{A_1}$
- For $G = F_4$:
 - **1** $F_4(a_1)$ and $F_4(a_2)$
- For $G = E_6$:

 - ② $D_4(a_1)$ and $A_3 + A_1$
- For $G = E_7$:
 - **1** $E_7(a_1)$ and $E_7(a_2)$
 - $\overline{E_7(a_3)}$ and $\overline{D_6}$
 - **3** $\overline{E_6(a_1)}$ and $E_7(a_4)$.

Counterexamples for exceptional groups

- For $G = E_8$:
 - **1** $E_8(a_1)$, $E_8(a_2)$, and $E_8(a_3)$
 - 2 $\overline{E_8(a_4)}$, $\overline{E_8(b_4)}$ and $\overline{E_8(a_5)}$
 - $\overline{E_7(a_1)}, \overline{E_8(b_5)} \text{ and } \overline{E_7(a_2)}$
 - $\underbrace{E_8(a_6)}_{F_1(a_1)} \text{ and } \underbrace{D_7(a_1)}_{F_1(a_1)}$
 - **5** $E_6(a_1)$ and $E_7(a_4)$
 - **6** $\underline{E_8(a_7)}$, $E_7(a_5)$, $E_6(a_3) + A_1$, and $D_6(a_2)$.