14. Lecture 14. Correction about Verdier specialization functor

14.1. Deformation to the normal cone. Let X be a smooth variety, $Y \subset X$ a closed smooth subvariety. Consider a normal bundle N_Y to the subvariety Y and denote by $N_Y X$ the total space of this bundle.

Informal remark. Consider Y as a subvariety in X and in $N_Y X$ (zero section). Then tubular neighborhoods of Y in these two spaces are very close.

Formally this means that there exists a deformation of the space $N_Y X$ to X.

Claim. There exists a smooth algebraic variety Z with the action of G_m and a morphism $p : Z \to \mathbb{A} = \mathbb{A}^1$ such that

(i) p is G_m equivariant.

(ii) $Z_0 = p^{-1}(0)$ is isomorphic to $N_Y X$ compatible with the action of G_m.

(iii) The complement $Z^* = p^{-1}(\mathbb{A}^*)$ is isomorphic to $G_m \times X$ compatible with the action of G_m.
Construction of the deformation Z.

Consider the variety $W = \mathbb{A} \times X$ and a subvariety $Y = Y \times 0 \subset W$. The variety W has natural G_m action.

We define Z' to be a blow-up of W at Y, $p : Z' \to Y$ the natural projection.

We get Z by removing from Z' closed subset that is blow-up of $0 \times X$ at Y.

14.1.1. Nearby cycles. Let $p : Z \to \mathbb{A}$ be a projection. denote by t the corresponding function on Z.

We define the functor $\Psi : \text{Hol}(Z^*) \to \text{Hol}(Z_0)$

Starting with a holonomic module M consider the module $M' = M \cdot t^*$ over the ring $k[[s]]$.

Then we set $\psi(M) = \text{Conc}(j_!(M')) \to j_*(M')$.

This functor is also defined on the category $D_h(D_X)$. It is an exact functor.
Definition. Let X be a smooth variety and $Y \subset X$ a smooth subvariety. We define the **Specialization** functor

$$Sp : D_h(X) \to D_h(N_Y X \mathfrak{a})$$

as $Sp(M) = \Psi \circ q^1(M)$, where $q : Z^* \to X$ is the projection.

Let G_W act on variety W by D_W-modules. Suppose G_W acts on W as a D_W-module and acts with order as a D_W.

$D_W; M \to M$ is G_W-equivariant if D_W-module is called weakly G_W-equivariant.

Let G_W be the standard generator.

The action of G_W is

1. $(f)\text{-derivatives of the}$
 - action of G_W
2. $\xi \mapsto \text{action of variety}$

$\text{def} = \tau(f) - q(f) : V^* \to M$ is a map of D-modules.

Cospecialization

$$\text{cospecialization}$$

$$\text{cospecialization} : \text{D}_h(D(W)) \to \text{D}_h(N^\alpha_Y X).$$

Fourier:

$$D(N^\alpha_Y X) \to D(R^\alpha_Y X).$$

Let $V \to X$ be a vector bundle.

Fourier:

$$D(TV) \to D(TV^*)$$

\cdots \cdots \cdots

**veeb \mathfrak{a}, $X \to X^*$

$T^* \cong \text{cotangent bundle}$

$D(V) = k[x_1, \ldots, x_n]$

$\text{D}(\mathfrak{a}) = k[x_1, y_1]$

$x = 0$.
Consider the line ℓ, a vector \mathbf{v}, and a function $f : \ell \to \mathbb{R}$.

Let $L = \{ v | \theta \in \ell \}$.

Set $V = \mathbb{R}^3$.

For L, $L^* = \mathbb{R}^3$.

For V, $V^* = \mathbb{R}^3$.

For L, $L^* = \mathbb{R}^3$.

For V, $V^* = \mathbb{R}^3$.

Claim: On weekly semi-modules, modules form non-abelian.

Consider $D(\mathbf{x}) \to D^*_{\mathbf{v}}(\mathbf{u}^*, \mathbf{x})$

Suppose $\mathbf{v} = \mathbf{u}^* (\mathbf{v}, \mathbf{x})$

Then for any $\mathbf{y} \in \mathbf{v}$

$\mathbf{y} \notin (\mathbf{v}) \subseteq D^*_{\mathbf{v}}(\mathbf{u}^*, \mathbf{x})$.

Or $M(\mathbf{u}^*, \mathbf{x}) \ni (\mathbf{v}^*, \mathbf{x})$.

(i) $\mathbf{v} \notin (\mathbf{v}^*)$ for any \mathbf{y}.

These values are equal.
Colom's theorem

Definition. An s-algebra is an s-algebra A with 1 and c in s.