3. Lecture 3. RS in high dimension

We have discussed the notion of RS in dimensions ≤ 1. How to define the notion of RS in higher dimensions?

Recall, that in case of holonomic modules and complexes we could give a definition using restrictions to points. So we can define RS using restrictions to curves. Later we will discuss other approaches.

Let X be an algebraic variety. A test curve on X is a morphism \(\nu : C \to X \), where C is a smooth curve.

Definition. A \(\mathcal{D} \)-complex \(F \) on \(X \) is called **RS** if it is holonomic and for any test curve \((C, \nu)\) the restriction \(\nu'(F) \) is RS on the curve \(C \).

We denote by \(\mathcal{D}_{RS}(\mathcal{D}_X) \) the category of RS-complexes (a full subcategory of \(\mathcal{D}(\mathcal{D}_X) \)).

A \(\mathcal{D}_X \)-module is called RS if it is RS as a \(\mathcal{D}_X \)-complex. These modules form a full subcategory \(RS(\mathcal{D}_X) \) of \(M(\mathcal{D}_X) \).

Discussion – Pro and contra of this definition.
Our goal is to show the following

Theorem 3.1.

1. Subcategory D_{RS} is a triangulated subcategory closed under extensions.
2. Categories of RS complexes are preserved by all functors
 \[\pi^1, \pi^*_1, \pi^*, \Pi, \mathcal{D}. \]
3. A D_X-complex F is RS iff all its cohomology modules are RS.
4. The subcategory $RS(D_X) \subset M(D_X)$ is an abelian subcategory closed with respect to subquotients and extensions.

3.2. RS for smooth modules. We know that holonomic complexes can be generated by images of smooth D-modules. So it is natural to study the notion RS first for smooth D-modules.

Let X be a smooth variety, E a smooth D-module on X. We can think about E as a vector bundle with a flat connection ∇.

For any test curve $\nu : C \to X$ we see that D_C-complex $\nu^!(E)$ up to cohomological shift coincides with the vector bundle $\nu^*(E)$ with induced connection. Hence E is RS iff it satisfies the following condition

(1) $\nu^!(E)$ for any test curve (ν, C) the bundle $\nu^!(E)$ on C.
For any test curve (ν, C) the bundle $\nu^*(E)$ on C is RS.

Let us consider slightly more general situation.

3.2.1. Regular singularity along a closed subset S. Let X be a smooth algebraic variety of dimension n, $S \subset X$ a closed subset (usually it will be a divisor).

Set $U = X \setminus S$ and denote by $j : U \to X$ the open imbedding.

Let E be a smooth \mathcal{D}_U-module. We would like to define a notion that E is RS along the subset S.

In this situation we consider pointed test curves. Namely, this is a pointed smooth curve (C, s) equipped with a morphism $\nu : C \to X$ such that $\nu(s) \in S$ and $\nu(C \setminus s) \subset U$.

We say that E is RS along S if it satisfies the following condition:

(RS) For any pointed test curve (ν, C, s) the bundle $\nu^*(E)$ on $C \setminus s$ is RS at the point s.

In the study of smooth RS-modules important role is played by the following informal principle:

Principle. If the condition RS holds for many pointed test curves then it holds for all pointed test curves.
3.2.2. *RS along smooth divisor S*. Let us consider the important case when X is smooth and $S \subset X$ is a smooth divisor. We denote by $\mathcal{D}_{X,S}$ the sheaf of subalgebras in \mathcal{D}_X generated by \mathcal{O}_X and by vector fields tangent to S.

Locally we can choose coordinate system x_1, \ldots, x_n on X such that S is defined by equation $t = 0$, where $t = x_n$. Then the algebra $\mathcal{D}_{X,S}$ is generated by \mathcal{O}_X and vector fields ∂_i for $i = 1, \ldots, n-1$ and $d = t \partial_n$.

Let E be a smooth \mathcal{D}_U-module, where $U = X \setminus S$. We set $F := j_*(E)$.

Definition. 1. We call an *S-lattice in F* a coherent \mathcal{O}_X-submodule E' such that the restriction of E' to U coincides with E.

2. We say that the S-lattice E' is **admissible** if is $\mathcal{D}_{X,S}$-invariant.

3. We say that the smooth \mathcal{D}-module E is *algebraically RS along S* if the sheaf F has an admissible S-lattice.

It is easy to prove the following

Lemma 3.2.3. (i) Any two S-lattices E', E'' are (locally) t-equivalent, i.e. there exists a number N such that $E'' \subset t^{-N}E'$ and $E' \subset t^{-N}E''$.

(ii) If F has an admissible S-lattice, then any \mathcal{O}_X-coherent subsheaf $E' \subset F$ is contained in an admissible S-lattice.

\[
\mathcal{X} = \mathcal{A}^1, \quad \mathcal{S} = \{0\}. \quad \mathcal{U} = \mathcal{A}^1.0
\]

E corresponds to function $f = e^{1/t}$ not regular at $t=0$. f
We will prove the following key criterion of RS.

Proposition 3.2.4. E is algebraically RS along S iff it is RS along S, i.e. its restriction to any test curve is RS.

Corollary 3.2.5. Let S be a smooth divisor.

Suppose there exists an open dense subset $S' \subset S$ and its open neighborhood W in X such that the restriction of the smooth \mathcal{D}_X module E to W is RS along S'. Then E is RS along S.

Proof
\(H = \mathfrak{H}(E) \)

\[\mathcal{H} \subset \mathcal{E} \]

\(i : V \to X \)

\(F = i^*(E) \)

Claim. (i) \(H \) is \(D_{\text{sh}} \)-linear

(ii) \(\mathcal{H} \) is \(\mathcal{D}_{\text{sh}} \)-coherent

(iii) \(\mathcal{H} \) is an admissible

\[\mathcal{H} \Rightarrow E \in \mathcal{A}_{\text{sh}} \]

Proof of i.

(i) \(\mathcal{H} \) does not have torsion.

(ii) \(\mathcal{H} \) is coherent on \(V \) and on \(W \)

\[\mathcal{X} \cap (V \cup W) \text{ has dim} > 1 \]

Lemma: Let \(V \) be a subspace.

\(D_{\text{sh}} \)-module \(V \)-twisted.

Suppose \(\mathcal{H} \) is without torsion

and \(\mathcal{H} \) is coherent

outside of a closed subset \(T \) of \(\mathcal{H} \)?

Then \(\mathcal{H} \) is coherent

\[V = X \setminus T \quad \mathcal{V} : V \to X \]

\[\mathcal{H} \quad (\mathcal{H} \subset \mathcal{V}^*(\mathcal{A}_V)) \]

Sublemma: \(V \subset X \)-open.

\(R \) is \(D_{\text{sh}} \)-coherent \(\mathcal{A}_V \)-module without torsion

\[V = X \setminus T \quad \text{closed} \]

Then \(\mathcal{V}^*(R) \) is coherent

(i) \(\text{case } R = \mathcal{O}_V \)

\[\mathcal{O}_X \subset \mathcal{O}_V \]

\(\text{Functions } f : R \to \mathcal{O}_V \)

\(\text{separate elements } \mathcal{R} \)

\(\text{Finite number of } f \)

\(R \subset \mathcal{O}_V \).
3.2.6. **Divisor with normal crossings.**

\[S \subset X \]

A divisor with normal crossings is defined in a coordinate system \(\mathbb{K}^n \) such that \(S \) is given by the equation \(x_1 x_2 \cdots x_n = 0 \).

Claim: Convexity holds in this case.

Example: \(S \subset \mathbb{K}^1 \)

\[S \]

Proof:

\(D_{x_1} \) is a divisor of codimension \(n \) generated by \(\partial x_1 \) and vector fields tangent to \(S \).

Locally, it is generated by \(\partial x_1, \partial x_2, \ldots, \partial x_n, \)

\[\partial z_i = \partial x_i \partial z_i \quad i = 1, 2, \ldots, n \]

Property: \(E \) is contractible.
\(RS \) along \(s \) is equivalent to \(RS \) along \(s \).

Proof.

We have an admissible lattice \(E' \subset T \).

Consider curve \((C, \gamma)\) with parameter \(t \in T \).

\[x_i = \gamma_i(t) \text{ for } i = 1, \ldots, n. \]

Define vector field \(\mathcal{E}_C \) on \(C \) such that it is extended to a vector field \(E' \mid_C \) on \(C \subset E' \).

This implies that if \(E' \mid_C \) is an admissible lattice in \(E' \),

Deligne’s criterion

\(\mathcal{E} \subseteq E' \) where \(E' \) is a vector field.