LECTURE 5 IN D-MODULES II - PROPERTIES OF ALGEBRAIC-RS MODULES

Let U be a smooth quasi-projective algebraic variety, and X be its good compactification. This means that X is projective and $S := X \setminus U$ is a divisor with strict normal crossings.

Definition 1. Let $\mathcal{D}_{X,S} \subset \mathcal{D}_X$ denote the sheaf of subalgebras generated by \mathcal{O}_X and by vector fields tangent to S.

A coherent \mathcal{D}_X-module \mathcal{F} is called algebraic RS (with respect to U) if its restriction $\mathcal{F}|_U$ is smooth, and \mathcal{F} is a union of \mathcal{O}_X-coherent $\mathcal{D}_{X,S}$-submodules.

In this lecture we will prove several claims on algebraic RS-modules that were left from before.

Exercise 2. The category of algebraic RS-modules is closed w.r. to subquotients.

Proposition 3. Let \mathcal{E} be a smooth RS \mathcal{D}_U-module. Then $j_* \mathcal{E}$ is algebraic RS (with respect to U).

In the proof we will use the following statements.

Exercise 4. \mathcal{F} is algebraic RS if and only if every coherent \mathcal{O}_X-submodule of \mathcal{F} generates an \mathcal{O}_X-coherent $\mathcal{D}_{X,S}$-submodule.

Lemma 5. The proposition holds if S is smooth, and without the assumption that X is projective.

This lemma will be proven in later weeks.

Exercise 6. Let Y be an algebraic variety, and $V \subset Y$ and open subset such that $\dim Y \setminus V \leq \dim Y - 2$. Let \mathcal{H} be an \mathcal{O}_Y-module without torsion.

(i) If $\mathcal{H}|_V$ is coherent then \mathcal{H} is coherent.

(ii) Let $\mathcal{H}_1 \subset \ldots \mathcal{H}_i \subset \mathcal{H}_{i+1} \subset \ldots \subset \mathcal{H}$ be an increasing sequence of coherent submodules. If the sequence of restrictions $\mathcal{H}_i|_V$ stabilizes then so does the original sequence \mathcal{H}_i.

Proof of Proposition 3. Let Z denote the singular locus of S, and let $V := X \setminus Z$. Let $\mathcal{F}' \subset \mathcal{F} := j_* \mathcal{E}$ be an \mathcal{O}_X-coherent submodule, and let $\mathcal{H} \subset \mathcal{F}$ be the $\mathcal{D}_{X,S}$-submodule generated by \mathcal{F}'. Then $\mathcal{H}|_V$ is \mathcal{O}_V-coherent by the smooth case - Lemma 5. Thus by Exercise 6 \mathcal{H} is \mathcal{O}_X-coherent. □

Corollary 7. Let $\nu : j_! \mathcal{E} \to j_* \mathcal{E}$ be the natural morphism. Then the modules $L(S, \mathcal{E}) := \text{Im}(\nu)$, and $\text{Coker} \nu$ are algebraic RS.

Proposition 8. Let Z be a smooth affine curve, $Y = Z \times \mathbb{A}^1$, $V \subset Y$ open dense, $p : V \to Z$ the natural projection. Let \mathcal{E} be a smooth RS \mathcal{D}_V-module. Then $p_* \mathcal{E}$ is RS on Z.

To prove this we may restrict to an open subset \(Z' \) of \(Z \), and its preimage \(U \) in \(V \). We can find a good compactification \(X \) of \(U \), mapping onto the completion \(C \) of \(Z' \), such that the inverse image of \(T = C \setminus Z' \) is contained in \(S = X \setminus U \), and that \(T \) contains the image of the singular locus of \(S \). By adding some points of \(C \) to \(T \), and their preimages to \(S \), if needed, we may further arrange that any component of \(S \) which maps onto \(C \) is an unramified covering outside its intersection with the singular set of \(S \). Now let \(j : U \to X \) denote the inclusion and \(\pi : X \to C \) denote the projection. Let \(\mathcal{F} := j_* \mathcal{E} \). We know that \(\mathcal{F} \) is algebraic RS. Thus it is enough to prove the following proposition.

Proposition 9. Let \(\mathcal{F} \) be a \(\mathcal{D}_X \)-module that is algebraic RS (with respect to \(U \)). Then \(\pi_* \mathcal{F} \) is algebraic RS on \(C \) (with respect to \(Z \)).

To prove this proposition we need to construct lattices on the cohomologies of \(\pi_* \mathcal{F} \). We do so by constructing pushforward for \(\mathcal{D}_{X,S} \)-modules. We will show that this construction will preserve \(\mathcal{O} \)-coherence since \(\pi \) is projective.

Let \(\theta_{X,S} \) denote the vector fields on \(X \) that at points of \(S \) are tangent to \(S \). Similarly, let \(\theta_{C,T} \) denote vector fields on \(C \) that vanish at the points of \(T \). At each point \(x \in X \), the differential \(\pi* \) maps \(T(X)_x \) into \(T(C)_x \). Thus we have a canonical morphism of \(\mathcal{O}_X \)-modules \(\nu : \theta_{X,S} \to \pi* \theta_{C,T} \).

Lemma 10. \(\nu \) is onto and its kernel is the module \(\theta_{X/C} \) consisting of germs of vector fields tangent to the fibers of \(\pi \).

Proof. The statement on the kernel is easy. Let us prove that \(\nu \) is onto. This statement is local on \(C \). Over \(Z \) it is clear, since on the preimage of \(Z \) \(\pi \) is a submersion. Now let \(x \in \pi^{-1}(T) \). We may choose a local coordinate \(t \) on \(C \) around \(\pi(x) \), and local coordinates \(u, v \) on \(X \) around \(x \) such that \(t \circ \pi = a(u,v)u^m v^n \), where \(a(u,v) \) is regular and invertible around \(x \), and \(m > 0, n \geq 0 \). Around \(x \), the \(\mathcal{O}_C \)-module \(\theta_{C,T} \) is spanned by \(t \partial_t \). Thus it suffices to lift \(t \partial_t \), i.e. to find \(\xi \in \theta_{X,S} \) such that \(\xi(t \circ \pi) = t \circ \pi \). Note that around \(x \), the \(\mathcal{O}_X \)-module \(\theta'_{X,S} \) contains \(u \partial_u \). Take
\[
\xi = (m + a^{-1}(u \partial_u a))^{-1} u \partial_u
\]
Since
\[
u \xi(t \circ \pi) = \xi(a(u,v)u^m v^n) = a(u,v)u^m v^n = t \circ \pi, \text{ so } \xi \text{ is a lift of } t \partial_t. \]

Proof of Proposition 9. For every \(\xi \in \theta_{X,S} \), there exist \(u_i \in \mathcal{O}_X \) and \(\xi_i \in \theta_{C,T} \) by
\[
\nu(\xi) = \sum_i u_i \otimes \pi^{-1} \xi_i
\]
For every left \(\mathcal{D}_{C,T} \)-module \(M \), let \(\pi^0(M) \) denote its pullback to \(X \) as an \(\mathcal{O} \)-module, with a \(\mathcal{D}_{X,S} \)-module structure given by
\[
\xi(f \otimes m) = \xi f \otimes m + \sum_i f \cdot u_i \otimes \pi^{-1}(\xi_i m)
\]
Let \(\mathcal{D}_{X,S-C,T} := \pi^0(\mathcal{D}_{C,T}) \), endowed with the natural left \(\mathcal{D}_{X,S} \)-module structure. For every right \(\mathcal{D}_{X,S} \)-module \(N \) define \(\pi_+ M := R\pi_+(N \otimes^L \mathcal{D}_{X,S-C,T}) \), where \(\pi_+ \) refers
to the morphism of ringed spaces \((X, \pi^{-1}D_{C,T}) \to (C, D_{C,T})\), and \(R\) denotes the right derived functor. It is enough to show that \(\pi_*\) maps \(\mathcal{O}_X\)-coherent \(D_{X,S}\)-modules to complexes with \(\mathcal{O}_C\)-coherent cohomologies. To do this note that the module \(D_{X,S} \to D_{X,S} \to D_{X,S} \to C, T \to 0\) admits a locally free resolution

\[0 \to \theta_{X/C} \otimes_C D_{X,S} \to D_{X,S} \to D_{X,S} \to C, T \to 0 \]

Thus

\[N \otimes_{D_{X,S}} D_{X,S} \to C, T = \{ N \otimes_C \theta_{X/C} \to N \}, \text{ with differential } u \otimes \xi \mapsto u\xi \]

Since it consists of \(\mathcal{O}_X\)-coherent modules and \(\pi\) is projective, the direct image of this complex has \(\mathcal{O}_C\)-coherent cohomologies. □

Proposition 11. Let \(U\) be a smooth (quasi-projective) algebraic variety, and \(X\) be a good completion of \(U\). Let \(\mathcal{F}\) be \(D_X\)-module. If \(\mathcal{F}\) is algebraic RS with respect to \(U\) then \(\mathcal{F}\) is RS.

Proof. We have to show that for every smooth projective curve \(C\), and every morphism \(\nu : C \to X\), the inverse image \(\nu^*\mathcal{F}\) is RS. For this we may assume that \(V := \nu^{-1}(U)\) is open dense in \(C\), and we have to construct a lattice around every point \(c \in C \setminus V\).

We construct the lattice by pulling back an \(D_X\)-coherent \(D_{X,S}\) submodule \(\mathcal{H} \subset \mathcal{F}\) that satisfies \(\mathcal{H}|_U = \mathcal{F}\). To show that it is a lattice, let \(t\) be a local coordinate at \(c\), and \(d = t\partial_t\). We have to show that \(d \in \nu^*D_{X,S}\).

If \(S\) is smooth at \(\nu(c)\), let \(x\) be a local coordinate at \(\nu(c)\) transversal to \(S\). Then \(x = a(t)t^n\), where \(n > 0\) and \(a(t)\) is invertible near 0, and \(d = \xi := (n + a^{-1}(t)(t\partial_t a(t)))x \partial_x\). Indeed, \(\xi x = (t\partial_t a(t) + na(t))t^n\), and thus \(\xi = d = t\partial_t\).

If \(S\) is not smooth at \(\nu(c)\), it still has normal crossings. Suppose it has 2 components near \(\nu(c)\), with local coordinates \(x\) and \(y\). Then \(x = a(t)t^n\), and \(y = b(t)t^m\). Take \(\xi := (n + a^{-1}(t)(t\partial_t a(t)))x \partial_x + (m + b^{-1}(t)(t\partial_t b(t)))y \partial_y\)

□