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Representation theory

Advanced Linear Algebra

Linear Algebra in presence of symmetries

Definition

A representation π of a group G on a (complex) vector space V is an
assignment to every element g ∈ G of an invertible linear operator π(g)
such that π(gh) is the composition of π(g) and π(h).

Example

An action of G on a set X defines a representation on the space C[X ] of
functions on X by (π(g)f )(x) := f (g−1x).
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One-dimensional representations and Fourier series

For the cyclic finite group Z/nZ, the space C[G ] has a basis
consisting of joint eigenvectors for the whole representation. The
basis vectors are

fk(m) = exp(2πikm/n).

The decomposition of a function with respect to this basis is called
discrete Fourier transform.

The same holds for the compact group S1. The basis vectors are

fk(θ) = exp(ikθ).

The decomposition of a function with respect to this basis is called
Fourier series.

For the group SO(3) of rotations in the space this does not hold,
neither for C[SO(3)] nor for C[S2] (functions on the sphere)
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Definition

A representation is called irreducible if the space does not have invariant
subspaces.

Definition

A morphism between representations (π, V ) and (τ, W ) of a group G is a
linear operator T : V → W s. t. T ◦ π(g) = τ(g) ◦ T for any g ∈ G .

Lemma (Schur)

Any non-zero morphism of irreducible representations is invertible.

Any morphism of an irreducible finite-dimensional representation into
itself is scalar.

Proof.

Ker T , Im T are subrepresentations.

T has an eigenvalue λ, thus T − λ Id is not invertible, thus
T − λ Id = 0.
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Spherical harmonics
Hn :=the space of homogeneous harmonic polynomials of degree n in
three variables. Harmonic means that they vanish under the Laplace
operator ∆ = ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
.

Theorem

Hn is an irreducible representation of SO(3)

L2(S2) =
⊕̂∞

n=0Hn,

Every irreducible representation of SO(3) is isomorphic to Hn for
some n.
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Gelfand pairs

Let G be a (finite) group and H ⊂ G be a subgroup.

Lemma

The following conditions are equivalent

The representation C[G /H ] is multiplicity free, i.e. includes each
irreducible representation of G with multiplicity at most one.

For any irreducible representation (π, V ) of G , the space V H of
H-invariant vectors is at most one-dimensional.

The algebra C[G ]H×H of functions on G that are invariant under the
action of H on both sides is commutative with respect to convolution.

The convolution is defined on the basis of δ-functions by δg ∗ δg ′ = δgg ′ ,
or explicitly by

f ∗ h(x) = ∑
y∈G

f (y)g(y−1x)

If the above conditions are satisfied, the pair (G , H) is called a Gelfand
pair.
Example: G = SO(3), H = SO(2), G /H = S2.
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Lemma (Gelfand-Selberg trick)

Suppose that there exists σ : G → G such that

1 σ(gg ′) = σ(g ′)σ(g)

2 σ(g) ∈ HgH

Then the pair (G , H) is a Gelfand pair.

Proof.

Define σ on C[G ] by δσ
g = δσ(g ).From (1) we see that (a ∗ b)σ = bσ ∗ aσ.

On the other hand, for any a ∈ C[G ]H×H we have

aσ(x) = a(σ(x)) = a(hxh′) = a(x),

and thus a ∗ b = (a ∗ b)σ = bσ ∗ aσ = b ∗ a

Using the anti-involution σ(g) = g t = g−1 one can show that
(SO(n + 1), SO(n)) is a Gelfand pair, and thus L2(Sn) is a
multiplicity-free representation of SO(n + 1).
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