Representation theory and Gelfand pairs

Dmitry Gourevitch FUN seminar, WIS

http://www.wisdom.weizmann.ac.il/~dimagur/

December 2013

Representation theory

- Advanced Linear Algebra
- Linear Algebra in presence of symmetries

Definition

A representation π of a group G on a (complex) vector space V is an assignment to every element $g \in G$ of an invertible linear operator $\pi(g)$ such that $\pi(g h)$ is the composition of $\pi(g)$ and $\pi(h)$.

Example

An action of G on a set X defines a representation on the space $\mathbb{C}[X]$ of functions on X by $(\pi(g) f)(x):=f\left(g^{-1} x\right)$.

One-dimensional representations and Fourier series

- For the cyclic finite group $\mathbb{Z} / n \mathbb{Z}$, the space $\mathbb{C}[G]$ has a basis consisting of joint eigenvectors for the whole representation. The basis vectors are

$$
f_{k}(m)=\exp (2 \pi i k m / n)
$$

The decomposition of a function with respect to this basis is called discrete Fourier transform.

- The same holds for the compact group S^{1}. The basis vectors are

$$
f_{k}(\theta)=\exp (i k \theta)
$$

The decomposition of a function with respect to this basis is called Fourier series.

- For the group $S O(3)$ of rotations in the space this does not hold, neither for $\mathbb{C}[S O(3)]$ nor for $\mathbb{C}\left[S^{2}\right]$ (functions on the sphere)

Definition

A representation is called irreducible if the space does not have invariant subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \rightarrow W$ s. t. $T \circ \pi(g)=\tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.
- Any morphism of an irreducible finite-dimensional representation into itself is scalar.

Proof.

- Ker $T, \operatorname{Im} T$ are subrepresentations.
- T has an eigenvalue λ, thus $T-\lambda$ Id is not invertible, thus $T-\lambda$ ld $=0$.

Spherical harmonics

$H_{n}:=$ the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}$.

Theorem

- H_{n} is an irreducible representation of $\mathrm{SO}(3)$
- $L^{2}\left(S^{2}\right)=\widehat{\bigoplus}_{n=0}^{\infty} H_{n}$,
- Every irreducible representation of $\mathrm{SO}(3)$ is isomorphic to H_{n} for some n.

Gelfand pairs

Let G be a (finite) group and $H \subset G$ be a subgroup.

Lemma

The following conditions are equivalent

- The representation $\mathbb{C}[G / H]$ is multiplicity free, i.e. includes each irreducible representation of G with multiplicity at most one.
- For any irreducible representation (π, V) of G, the space V^{H} of H-invariant vectors is at most one-dimensional.
- The algebra $\mathbb{C}[G]^{H \times H}$ of functions on G that are invariant under the action of H on both sides is commutative with respect to convolution.

The convolution is defined on the basis of δ-functions by $\delta_{g} * \delta_{g^{\prime}}=\delta_{g g^{\prime}}$, or explicitly by

$$
f * h(x)=\sum_{y \in G} f(y) g\left(y^{-1} x\right)
$$

If the above conditions are satisfied, the pair (G, H) is called a Gelfand pair.
Example: $G=S O(3), H=S O(2), G / H=S^{2}$.

Lemma (Gelfand-Selberg trick)

Suppose that there exists $\sigma: G \rightarrow G$ such that
(1) $\sigma\left(g g^{\prime}\right)=\sigma\left(g^{\prime}\right) \sigma(g)$
(2) $\sigma(g) \in \mathrm{HgH}$

Then the pair (G, H) is a Gelfand pair.

Proof.

Define σ on $\mathbb{C}[G]$ by $\delta_{g}^{\sigma}=\delta_{\sigma(g)}$. From (1) we see that $(a * b)^{\sigma}=b^{\sigma} * a^{\sigma}$. On the other hand, for any $a \in \mathbb{C}[G]^{H \times H}$ we have

$$
a^{\sigma}(x)=a(\sigma(x))=a\left(h x h^{\prime}\right)=a(x)
$$

and thus $a * b=(a * b)^{\sigma}=b^{\sigma} * a^{\sigma}=b * a$
Using the anti-involution $\sigma(g)=g^{t}=g^{-1}$ one can show that $(S O(n+1), S O(n))$ is a Gelfand pair, and thus $L^{2}\left(S^{n}\right)$ is a multiplicity-free representation of $S O(n+1)$.

