Representation theory and Gelfand pairs

Dmitry Gourevitch FUN seminar, WIS

http://www.wisdom.weizmann.ac.il/~dimagur/

December 2013

- Advanced Linear Algebra
- Linear Algebra in presence of symmetries

Definition

A representation π of a group G on a (complex) vector space V is an assignment to every element $g \in G$ of an invertible linear operator $\pi(g)$ such that $\pi(gh)$ is the composition of $\pi(g)$ and $\pi(h)$.

Example

An action of G on a set X defines a representation on the space $\mathbb{C}[X]$ of functions on X by $(\pi(g)f)(x) := f(g^{-1}x)$.

One-dimensional representations and Fourier series

 For the cyclic finite group Z / nZ, the space C[G] has a basis consisting of joint eigenvectors for the whole representation. The basis vectors are

$$f_k(m) = \exp(2\pi i km/n).$$

The decomposition of a function with respect to this basis is called discrete Fourier transform.

• The same holds for the compact group S^1 . The basis vectors are

$$f_k(\theta) = \exp(ik\theta).$$

The decomposition of a function with respect to this basis is called Fourier series.

 For the group SO(3) of rotations in the space this does not hold, neither for ℂ[SO(3)] nor for ℂ[S²] (functions on the sphere)

Definition

A representation is called irreducible if the space does not have invariant subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \to W$ s. t. $T \circ \pi(g) = \tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.
- Any morphism of an irreducible finite-dimensional representation into itself is scalar.

Proof.

- Ker T, Im T are subrepresentations.
- T has an eigenvalue λ , thus $T \lambda \operatorname{Id}$ is not invertible, thus $T \lambda \operatorname{Id} = 0$.

Spherical harmonics

 $H_n :=$ the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$.

Theorem

• H_n is an irreducible representation of SO(3)

•
$$L^2(S^2) = \widehat{\bigoplus}_{n=0}^{\infty} H_n$$

• Every irreducible representation of SO(3) is isomorphic to H_n for some n.

Gelfand pairs

Let G be a (finite) group and $H \subset G$ be a subgroup.

Lemma

The following conditions are equivalent

- The representation $\mathbb{C}[G/H]$ is multiplicity free, i.e. includes each irreducible representation of G with multiplicity at most one.
- For any irreducible representation (π, V) of G, the space V^H of H-invariant vectors is at most one-dimensional.
- The algebra ℂ[G]^{H×H} of functions on G that are invariant under the action of H on both sides is commutative with respect to convolution.

The convolution is defined on the basis of δ -functions by $\delta_g * \delta_{g'} = \delta_{gg'}$, or explicitly by

$$f * h(x) = \sum_{y \in G} f(y)g(y^{-1}x)$$

If the above conditions are satisfied, the pair (G, H) is called a Gelfand pair.

Example: G = SO(3), H = SO(2), $G/H = S^2$.

Lemma (Gelfand-Selberg trick)

Suppose that there exists $\sigma: G \to G$ such that

$$\ \, \mathbf{\sigma}(\mathbf{g}\mathbf{g}') = \sigma(\mathbf{g}')\sigma(\mathbf{g})$$

2 $\sigma(g) \in HgH$

Then the pair (G, H) is a Gelfand pair.

Proof.

Define σ on $\mathbb{C}[G]$ by $\delta_g^{\sigma} = \delta_{\sigma(g)}$. From (1) we see that $(a * b)^{\sigma} = b^{\sigma} * a^{\sigma}$. On the other hand, for any $a \in \mathbb{C}[G]^{H \times H}$ we have

$$\mathbf{a}^{\sigma}(\mathbf{x}) = \mathbf{a}(\sigma(\mathbf{x})) = \mathbf{a}(\mathbf{h}\mathbf{x}\mathbf{h}') = \mathbf{a}(\mathbf{x}),$$

and thus $a * b = (a * b)^{\sigma} = b^{\sigma} * a^{\sigma} = b * a$

Using the anti-involution $\sigma(g) = g^t = g^{-1}$ one can show that (SO(n+1), SO(n)) is a Gelfand pair, and thus $L^2(S^n)$ is a multiplicity-free representation of SO(n+1).