Representation theory and non-commutative harmonic analysis on G-spaces

Dmitry Gourevitch FUN seminar, WIS

http://www.wisdom.weizmann.ac.il/~dimagur/

February 2020

Representation theory

- Advanced Linear Algebra
- Study of linear symmetries

Representation theory

- Advanced Linear Algebra
- Study of linear symmetries

Definition

A representation π of a group G on a (complex) vector space V is an assignment to every element $g \in G$ of an invertible linear operator $\pi(g)$ such that $\pi(g h)$ is the composition of $\pi(g)$ and $\pi(h)$.

Representation theory

- Advanced Linear Algebra
- Study of linear symmetries

Definition

A representation π of a group G on a (complex) vector space V is an assignment to every element $g \in G$ of an invertible linear operator $\pi(g)$ such that $\pi(g h)$ is the composition of $\pi(g)$ and $\pi(h)$.

Example

An action of G on a set X defines a representation on the space $\mathbb{C}[X]$ of functions on X by $(\pi(g) f)(x):=f\left(g^{-1} x\right)$.

One-dimensional representations and Fourier series

- For the cyclic finite group $\mathbb{Z} / n \mathbb{Z}$, the space $\mathbb{C}[G]$ has a basis consisting of joint eigenvectors for the whole representation. The basis vectors are

$$
f_{k}(m)=\exp (2 \pi i k m / n)
$$

The decomposition of a function with respect to this basis is called discrete Fourier transform.

One-dimensional representations and Fourier series

- For the cyclic finite group $\mathbb{Z} / n \mathbb{Z}$, the space $\mathbb{C}[G]$ has a basis consisting of joint eigenvectors for the whole representation. The basis vectors are

$$
f_{k}(m)=\exp (2 \pi i k m / n)
$$

The decomposition of a function with respect to this basis is called discrete Fourier transform.

- The same holds for the compact group S^{1}. The basis vectors are

$$
f_{k}(\theta)=\exp (i k \theta) .
$$

The decomposition of a function with respect to this basis is called Fourier series.

One-dimensional representations and Fourier series

- For the cyclic finite group $\mathbb{Z} / n \mathbb{Z}$, the space $\mathbb{C}[G]$ has a basis consisting of joint eigenvectors for the whole representation. The basis vectors are

$$
f_{k}(m)=\exp (2 \pi i k m / n)
$$

The decomposition of a function with respect to this basis is called discrete Fourier transform.

- The same holds for the compact group S^{1}. The basis vectors are

$$
f_{k}(\theta)=\exp (i k \theta) .
$$

The decomposition of a function with respect to this basis is called Fourier series.

- In general, this works for any locally compact commutative group Pontryagin duality.

One-dimensional representations and Fourier series

- For the cyclic finite group $\mathbb{Z} / n \mathbb{Z}$, the space $\mathbb{C}[G]$ has a basis consisting of joint eigenvectors for the whole representation. The basis vectors are

$$
f_{k}(m)=\exp (2 \pi i k m / n)
$$

The decomposition of a function with respect to this basis is called discrete Fourier transform.

- The same holds for the compact group S^{1}. The basis vectors are

$$
f_{k}(\theta)=\exp (i k \theta) .
$$

The decomposition of a function with respect to this basis is called Fourier series.

- In general, this works for any locally compact commutative group Pontryagin duality.
- For the group $S O$ (3) of rotations in the space this does not hold, neither for $\mathbb{C}[S O(3)]$ nor for $\mathbb{C}\left[S^{2}\right]$ (functions on the sphere)

Definition

A representation is called irreducible if the space does not have non－zero invariant proper subspaces．

Definition

A representation is called irreducible if the space does not have non－zero invariant proper subspaces．

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \rightarrow W$ s．t．$T \circ \pi(g)=\tau(g) \circ T$ for any $g \in G$ ．

Definition

A representation is called irreducible if the space does not have non-zero invariant proper subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \rightarrow W$ s. t. $T \circ \pi(g)=\tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.

Definition

A representation is called irreducible if the space does not have non-zero invariant proper subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \rightarrow W$ s. t. $T \circ \pi(g)=\tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.
- Any morphism of an irreducible finite-dimensional representation into itself is scalar.

Definition

A representation is called irreducible if the space does not have non-zero invariant proper subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \rightarrow W$ s. t. $T \circ \pi(g)=\tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.
- Any morphism of an irreducible finite-dimensional representation into itself is scalar.

Definition

A representation is called irreducible if the space does not have non-zero invariant proper subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \rightarrow W$ s. t. $T \circ \pi(g)=\tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.
- Any morphism of an irreducible finite-dimensional representation into itself is scalar.

Proof.

- Ker $T, \operatorname{lm} T$ are subrepresentations.

Definition

A representation is called irreducible if the space does not have non-zero invariant proper subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \rightarrow W$ s. t. $T \circ \pi(g)=\tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.
- Any morphism of an irreducible finite-dimensional representation into itself is scalar.

Proof.

- Ker $T, \operatorname{lm} T$ are subrepresentations.
- T has an eigenvalue λ, thus $T-\lambda$ Id is not invertible, thus $T-\lambda I d=0$.

Spherical harmonics

$H_{n}:=$ the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}$.

Spherical harmonics

$H_{n}:=$ the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}$.

Theorem

- H_{n} is an irreducible representation of $\mathrm{SO}(3)$

Spherical harmonics

$H_{n}:=$ the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}$.

Theorem

- H_{n} is an irreducible representation of $\mathrm{SO}(3)$
- $L^{2}\left(S^{2}\right)=\widehat{\bigoplus}_{n=0}^{\infty} H_{n}$,

Spherical harmonics

$H_{n}:=$ the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}$.

Theorem

- H_{n} is an irreducible representation of SO(3)
- $L^{2}\left(S^{2}\right)=\widehat{\bigoplus}_{n=0}^{\infty} H_{n}$,
- Every irreducible representation of $\mathrm{SO}(3)$ is isomorphic to H_{n} for some n.

Spherical harmonics

$H_{n}:=$ the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}$.

Theorem

- H_{n} is an irreducible representation of SO(3)
- $L^{2}\left(S^{2}\right)=\widehat{\bigoplus}_{n=0}^{\infty} H_{n}$,
- Every irreducible representation of $\mathrm{SO}(3)$ is isomorphic to H_{n} for some n.

Spherical harmonics

$H_{n}:=$ the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}$.

Theorem

- H_{n} is an irreducible representation of $\mathrm{SO}(3)$
- $L^{2}\left(S^{2}\right)=\widehat{\bigoplus}_{n=0}^{\infty} H_{n}$,
- Every irreducible representation of $\mathrm{SO}(3)$ is isomorphic to H_{n} for some n.

Goals of representation theory, and models

Theorem (Mashke, Schur, Peter-Weyl)

Any representation of a compact group decomposes into a direct sum of irreducible representations.

Goals of representation theory, and models

Theorem (Mashke, Schur, Peter-Weyl)

Any representation of a compact group decomposes into a direct sum of irreducible representations.

Goals:

(1) Classify all the irreducible representations of G.

Goals of representation theory, and models

Theorem (Mashke, Schur, Peter-Weyl)

Any representation of a compact group decomposes into a direct sum of irreducible representations.

Goals:

(1) Classify all the irreducible representations of G.
(2) Given a representation of G find its decomposition to irreducible ones.

Goals of representation theory, and models

Theorem (Mashke, Schur, Peter-Weyl)

Any representation of a compact group decomposes into a direct sum of irreducible representations.

Goals:

(1) Classify all the irreducible representations of G.
(2) Given a representation of G find its decomposition to irreducible ones.
(3) Given a group homomorphism $H \rightarrow G$, find the relation between the representation theories of G and H.

Goals of representation theory, and models

Theorem (Mashke, Schur, Peter-Weyl)

Any representation of a compact group decomposes into a direct sum of irreducible representations.

Goals:

(1) Classify all the irreducible representations of G.
(2) Given a representation of G find its decomposition to irreducible ones.
(3) Given a group homomorphism $H \rightarrow G$, find the relation between the representation theories of G and H.

Goals of representation theory, and models

Theorem (Mashke, Schur, Peter-Weyl)

Any representation of a compact group decomposes into a direct sum of irreducible representations.

Goals:
(1) Classify all the irreducible representations of G.
(2) Given a representation of G find its decomposition to irreducible ones.
(3) Given a group homomorphism $H \rightarrow G$, find the relation between the representation theories of G and H.

A model is an explicitly defined representation that includes all irreducible representations with a certain property, each with multiplicity one.

Example: $L^{2}\left(S^{2}\right)$ is a model for all irreducible representations of $S O(3)$.

Non-commutative harmonic analysis on G-spaces

Let a (finite) group G act on a set X.

- Goal: study $\mathbb{C}[X]$ as a representation of G.

Non-commutative harmonic analysis on G-spaces

Let a (finite) group G act on a set X.

- Goal: study $\mathbb{C}[X]$ as a representation of G.
- Equivalently: what irreducible representations are inside, and with what multiplicities?

Non-commutative harmonic analysis on G-spaces

Let a (finite) group G act on a set X.

- Goal: study $\mathbb{C}[X]$ as a representation of G.
- Equivalently: what irreducible representations are inside, and with what multiplicities?
- Actually, we study infinite non-compact groups like the group $\mathrm{GL}_{n}(\mathbb{R})$ of invertible matrices, or the Lorentz group $\mathrm{SO}(3,1)$, and their actions on algebraic varieties.

Non-commutative harmonic analysis on G-spaces

Let a (finite) group G act on a set X.

- Goal: study $\mathbb{C}[X]$ as a representation of G.
- Equivalently: what irreducible representations are inside, and with what multiplicities?
- Actually, we study infinite non-compact groups like the group $\mathrm{GL}_{n}(\mathbb{R})$ of invertible matrices, or the Lorentz group $\mathrm{SO}(3,1)$, and their actions on algebraic varieties.
- Applications: representation theory, integral geometry, physics, analytic number theory.

Non-commutative harmonic analysis on G-spaces

Let a (finite) group G act on a set X.

- Goal: study $\mathbb{C}[X]$ as a representation of G.
- Equivalently: what irreducible representations are inside, and with what multiplicities?
- Actually, we study infinite non-compact groups like the group $\mathrm{GL}_{n}(\mathbb{R})$ of invertible matrices, or the Lorentz group $\mathrm{SO}(3,1)$, and their actions on algebraic varieties.
- Applications: representation theory, integral geometry, physics, analytic number theory.
- We use algebraic geometry and functional analysis.

