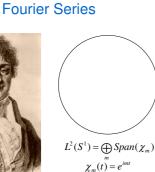


Gelfand Pairs

A. Aizenbud and D. Gourevitch

www.wisdom.weizmann.ac.il/~aizenr www.wisdom.weizmann.ac.il/~dimagur

the compact case



Spherical Harmonics

 H_0 $H_1 \bigoplus \P$ H₂ $H_3 = 6$ н_ 🚍 🎒 🔿 🔕 🌔

 $S^2 = O_3 / O_2$ $L^2(S^2) = \bigoplus H_m$ $H_{m} = Span(Y_{n}^{i})$ $\pi(\alpha)\chi_m = e^{im\alpha}\chi_m$

are irreducible representations of O₃

Gelfand Pairs A pair of compact topological groups $G \supset H$ is called a Gelfand pair if the following equivalent conditions hold:

• $L^2(G/H)$ decomposes to direct sum of **distinct** irreducible representations of G

• for any irreducible representation ρ of G, dim $\rho^{H} \leq 1$

- for any irreducible representation ρ of G, dim Hom $(\rho|_{H}, \mathbb{C}) \leq 1$
- the algebra of bi-H-invariant functions on G, C(H\G/H) is commutative w.r.t.

Strong Gelfand Pairs

A pair of compact topological groups $(G \supset H)$ is called a strong Gelfand pair if the following equivalent conditions

• the pair $(G \times H \supset \Delta H)$ is a Gelfand pair

hold:

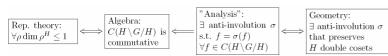
• for any irreducible representations ρ of G and τ of H, dim Hom $(\rho|_{_{H}}, \tau) \leq 1$.

convolution.

• the algebra of Ad(H) - invariant functions on G is commutative w.r.t. convolution.

Gelfand Trick

Let σ be an involutive anti-automorphism of G (i.e. $\sigma(g_1g_2) = \sigma(g_2)\sigma(g_1)$ and $\sigma^2 = \text{Id}$) and assume $\sigma(H) = H$. Suppose that $\sigma(f) = f$ for all bi-*H*-invariant functions $f \in C(H \setminus G/H)$. Then (G, H) is a Gelfand pair. An analogous criterion works for strong Gelfand pairs



Classical Examples

Pair	Anti-involution
$(G \times G, \Delta G)$	$(g,h)\mapsto (h^{-1},g^{-1})$
$(O(n+k), O(n) \times O(k))$	
$(U(n+k), U(n) \times U(k))$	$g \mapsto g^{-1}$
$(GL(n, \mathbb{R}), O(n))$	$g \mapsto g^t$
(G, G^{θ}) , where	
G - Lie group, θ - involution,	$g \mapsto \theta(g^{-1})$
G^{θ} is compact	
(G, K), where	
G - is a reductive group,	Cartan anti-involution
K - maximal compact subgroup	

Classical Applications

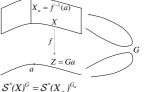
Gelfand-Zeitlin basis:

 (S_n, S_{n-1}) is a strong Gelfand pair \rightarrow basis for irreducible representations of S_n. The same for $O(n,\mathbb{R})$ and $U(n,\mathbb{R})$

Classification of representations: $(GL(n,\mathbb{R}),O(n,\mathbb{R}))$ is a Gelfand pair \rightarrow

the irreducible representations of $GL(n,\mathbb{R})$ which have an $O(n,\mathbb{R})$ - invariant vector are the same as characters of the algebra $C(O(n \mathbb{R}) \setminus GI(n \mathbb{R}) / O(n \mathbb{R}))$

The same for the pair $(GL(n, \mathbb{C}), U(n))$



Fourier transform - uncertainty princip

 $\mathcal{F}(\delta_0) = 1$

 \mathcal{F}

Wave front set

Symmetric Pairs

We call the property (2) regularity. We conjecture that all symmetric pairs are regular. This will imply the conjecture that every good symmetric pair is a Gelfand pair

Regular pairs

Pair	p-adic case by	real case by
$(G \times G, \Delta G)$	Aizenbud-Gourevitch	
$(GL_n(E), GL_n(F))$	Flicker	
$(GL_{n+k}, GL_n \times GL_k)$	Jacquet-Rallis	Aizenbud-
$(O_{n+k}, O_n \times O_k)$	Aizenbud-Gourevitch	Gourevitch
(GL_n, O_n)		
(GL_{2n}, Sp_{2n})	Heumos - Rallis	Aizenbud-Sayag
(Sp_{2m}, GL_m)		
(E_6, Sp_8)		
$(E_6, SL_6 \times SL_2)$		Sayag
(E_7, SL_8)	Aizenbud	(based on
(E_8, SO_{16})		work of Sekiguchi)
$(F_4, Sp_6 \times SL_2)$		
$(G_2, SL_2 \times SL_2)$		

▶ A pair ($G \supset H$) is called a symmetric pair if $H = G^{\theta}$ for some involution θ . > We de\note $\sigma(g) \coloneqq \theta(g^{-1})$.

- Question: What symmetric pairs are Gelfand pairs?
- > We call a symmetric pair (G,H,θ) good if σ preserves all closed H double cosets. Any connected symmetric pair over $\mathbb C$ is good.

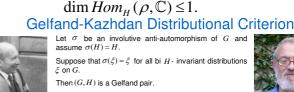
Conjecture: Any good symmetric pair is a Gelfand pair. Conjecture: Any symmetric pair over C is a Gelfand pair.

How to check that a symmetric pair is a Gelfand pair?

1. Prove that it is good

2. Prove that any H-invariant distribution on g^{σ} is σ -invariant provided that this holds outside the cone of nilpotent elements.

3. Compute all the "descendants" of the pair and prove (2) for them



Let σ be an involutive anti-automorphism of G and assume $\sigma(H) = H$.

the non compact case In the non compact case we consider complex smooth (admissible) representations of algebraic reductive (e.g. GL_n , O_n , Sp_n) groups over local fields (e.g. \mathbb{R} , \mathbb{Q}_p).

Gelfand Pairs

A pair of groups $(G \supset H)$ is called a Gelfand pair if for any irreducible (admissible) representation ρ of G

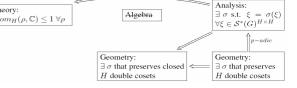
dim $Hom_{H}(\rho, \mathbb{C}) \cdot \dim Hom_{H}(\tilde{\rho}, \mathbb{C}) \leq 1.$

For most pairs, this implies that

Suppose that $\sigma(\xi) = \xi$ for all bi *H* - invariant distributions

An analogous criterion works for strong Gelfand pairs

 $\lambda(x, y) = (\lambda x, \lambda^{-1} y)$



p-adic case Aizenbud-Gourevitch-Rallis-) Schiffmann real case Aizenbud-Gourevitch $\begin{array}{c} \text{Pair} \\ (GL_n(E), GL_n(F)) \\ (GL_{n+k}, GL_n \times GL_k) \\ (O_{n+k}, O_n \times O_k) \text{ over } \mathbb{C} \\ (GL_n, O_n) \text{ over } \mathbb{C} \end{array}$ p-adic ca Flicker (GL_{n+1}, GL_n) Jacquet-Rallis Aizenbud- $(O(V \oplus F), O(V))$ $(U(V \oplus F), U(V))$ Gourevite Sun-Zh Heumos-Rallis Aizenbud-Sayag $(GL_{2n}$ Jacquet-Rallis Aizenbud-Gourevitch-Jacquet

Example

Any F^{x -} invariant distribution on the plain F² is invariant with respect to the flip o.

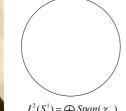
This example implies that (GL₂, GL₁) is a strong Gelfand pair. More generally,

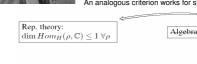
Any distribution on GL_{n+1} which is invariant w.r.t. conjugation by GL_n is invariant w.r.t. transposition. $\sigma(x, y) = (y, x)$

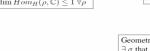
Tools to Work with Invariant Distributions



Geometry







Results Strong Gelfand pairs