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1. The space of generalized functions on Rn

1.1. Motivation. One of the most basic and important examples of a generalized

function is the Dirac delta function. The Dirac delta function on R at point t is

usually denoted by δt, and while it is not a function, it can be intuitively described

by δt(x) :=






∞ x = t

0 x 6= t
, and by satisfying the equality

∞́

−∞
δt(x)dx = 1. Notice

that it also satisfies:
∞̂

−∞

δt(x)f(x)dx = f(t)

∞̂

−∞

δt(x)dx = f(t).

The following are possible motivations for generalized functions:

• Many natural analytic operations, e.g. derivation and Fourier transform,

are not defined for arbitrary functions. In many cases, the reason is that

the result of the operation is in fact a generalized function.

• Every real function f : R → R can be constructed as an (ill-defined) sum

of continuum indicator functions f :=
∑

t∈R
f(t)δt.

• In general, solutions to differential equations, and even just derivatives of

functions are not functions, but rather generalized function. Using the

language of generalized functions allows one to rigorize such notions.

• Generalized functions are useful in physics. For example, the density of a

point mass can be described by the Dirac delta function. This allows to

give a mathematical formulation to physical theories that unify both mass

distribution and point masses, by using mass distributions that are allowed

to be generalized functions.

• As a mathematical manifestation of the previous point, distributions can

be used in series theory, since sequences can be replaced by discrete com-

binations of δ-functions, and thus summation of series is integration of the

corresponding generalized function, and one can unify techniques of inte-

gration with techniques for series summation. For example, summation

by parts becomes a special case of integration by parts, and Fourier series

become a special case of Fourier Transform.

1.2. Basic definitions. In this book we will consider various spaces of functions

and functionals. Unless specified otherwise, all the functions and functionals will be

real-valued. All the statements below are also valid for complex-valued functions.

In order to define what is a generalized function we first need to introduce some

standard notation.

Definition 1.2.1 (Smooth functions of compact support).
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(i) Denote by C∞(R) the space of smooth functions f : R → R, i.e. functions

that can be differentiated infinitely many times.

(ii) Define the support of a function f : R→ R by

supp(f) := {x ∈ R : f(x) 6= 0},

the closure of the set in which it does not vanish.

(iii) Denote by C∞c (R) ⊂ C∞(R) the space of smooth functions with compact sup-

port.

Definition 1.2.2 (Convergence in C∞c (R)). Given f ∈ C∞c (R) and a sequence

{fn}∞n=1 of smooth functions with compact support we say that {fn}∞n=1 converges

to f in C∞c (R) if:

(i) There exists a compact set K ⊂ R for which
⋃

n∈N
supp(fn) ⊆ K.

(ii) For every order k ∈ N0, the derivatives (f (k)
n )∞n=1 converge uniformly to the

derivative f (k).

Exercise 1.2.3. Fix a non-zero ρ ∈ C∞c (R). Show that

(i) the sequence

fn(x) := ρ(x)
(
1 +

x

n

)n

converges in C∞c (R) to ρ(x)ex.

(ii) the sequence

gn(x) :=
ρ(x + n)

n
does not converge in C∞c (R), even though it satisfies condition (ii) of the

definition.

(iii) the sequence

hn(x) := ρ(x)
sin(2nx)

n
does not converge in C∞c (R), even though it satisfies condition (i) of the def-

inition, and converges uniformly to zero.

We can now define the notion of distributions (cf. [?, ??] and [Kan04, Section 2.3].

Definition 1.2.4 (Distributions). A linear functional ξ : C∞c (R) → R is con-

tinuous if for every convergent sequence {fm}∞m=1 of functions fm ∈ C∞c (R) we

have

lim
m→∞

〈ξ, fm〉 = 〈ξ, lim
m→∞

fm〉.

We will usually use the notation 〈ξ, f〉 instead of ξ(f). We call a continuous linear

functional a distribution or a generalized function. The space of all generalized

functions on R is denoted by C−∞(R) := (C∞c (R))∗.

Remark 1.2.5. In §?? below we will define a natural topology on the space C∞c (R).

The convergence in this topology will be as in Definition 1.2.2, but this does not
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define the topology uniquely since this topology is not first countable. We will show

that a linear functional on this topological space is continuous if and only if it

satisfies the condition in Definition 1.2.4.

Remark 1.2.6. For now the names generalized functions and distributions are

synonymous as there is no difference for R. We will discuss the difference in a

later part of the manuscript, when it will be relevant.

Example 1.2.7. For any a ∈ R, define δa ∈ C−∞(R) by 〈δa, f〉 := f(a).

Recall that a function f is locally-L1 if the restriction to any compact subset in its

domain is an L1 function. We denote the space of such functions L1
Loc. Given a

real-valued function f ∈ L1
Loc(R) we define ξf : C∞c (R) → R to be the generalized

function

〈ξf , φ〉 :=

∞̂

−∞

f(x) ∙ φ(x)dx.

Note that this integral converges as φ vanishes outside of some compact set K, and

(fφ)|K ∈ L1(K). These are sometimes called regular generalized functions.

Exercise 1.2.8. For any f ∈ L1
Loc(R), show that ξf is a well defined distribution.

Note that we have

C∞(R) ⊂ C(R) ⊂ L1
Loc(R) ⊂ C−∞(R),

where the last embedding is given by f 7→ ξf . This embedding motivates the name

generalized function.

Exercise 1.2.9. Prove that there exists a function f ∈ C∞c (R) which is not the

zero function. Hint: Use functions such as e−1/(1−x)2 .

Definition 1.2.10. We say that a sequence of generalized functions {ξn}∞n=1 weakly

converges to ξ ∈ C−∞(R) if for every f ∈ C∞c (R) we have

lim
n→∞

〈ξn, f〉 = 〈ξ, f〉.

Note that in particular this definition applies to locally-L1 functions, since as we

have seen above they are contained in the space of generalized functions. Now

we can give an equivalent definition of the space of generalized functions - as the

sequential completion of C∞c (R) with respect to the weak convergence. For this we

need the notion of a weakly Cauchy sequence:

Definition 1.2.11. (i) A sequence {fn} in L1
Loc(R) is called a weakly Cauchy

sequence if for every g ∈ C∞c (R) and ε > 0 there exists a number N ∈ N such

that for all m,n > N we have that

∣
∣
∣
∣
∣

∞́

−∞
(fn(x)− fm(x))g(x)dx

∣
∣
∣
∣
∣
< ε.
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(ii) Two weakly Cauchy sequences are called equivalent if their difference weakly

converges to zero.

One can similarly define these notions for sequences of distributions.

Exercise 1.2.12. A sequence {fn} in C−∞(R) is a weakly Cauchy sequence if and

only if for any g ∈ C∞c (R), the sequence 〈fn, g〉 converges.

However, weakly Cauchy sequences in C∞c (R) do not necessarily converge in C∞c (R).

Remark 1.2.13. One can define the space of generalized functions C−∞(R) as the

space of equivalence classes of weakly Cauchy sequences in C∞c (R). As we will show

in ??, this definition is equivalent to Definition 1.2.4. It is important that we take

weakly Cauchy sequences rather than weakly Cauchy nets, since otherwise we would

get the full completion of C∞c (R), which is larger than C−∞(R), as we will see in

??.

Exercise 1.2.14. Find a sequence of functions (fn)∞n=1 in C∞c (R) converging

weakly to 0 that does not converge point-wise.

One can find a weakly Cauchy sequence that converges to the Dirac’s delta.

Definition 1.2.15. A sequence φn ∈ Cc(R) of continuous, non-negative, compactly

supported functions is said to be an approximation of identity if:

(1) φn satisfy
∞́

−∞
φn(x) ∙ dx = 1 (that is have total mass 1), and

(2) for any fixed ε > 0, the functions φn are supported on [−ε, ε] for n suffi-

ciently large.

Exercise 1.2.16. An approximation of identity weakly converges to δ0.

The reason for the name “approximation of identity” is that δ0 is the identity for

the convolution operation that we will define later.

Such sequences can be generated, for example, by starting with a non-negative,

continuous, compactly supported function φ1 of total integral 1, and by then setting

φn(x) = nφ1(nx).

Exercise 1.2.17. Find an approximation of identity.

Note that given η ∈ C−∞(R) of the form η = ξf , we can recover the value of f at

t via lim
n→∞

〈ξf , φn(x− t)〉 = lim
n→∞

∞́

−∞
f(x)φn(x− t)dx = f(t).

1.3. Remarks on operations on distributions. In general, many spaces of func-

tions can be defined as completions of C∞c with respect to various topologies. From

this point of view, in order to define an operation on functions such a space, it is

enough to define this operation for functions in C∞c and prove that it is continuous

with respect to the relevant topology.
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For defining operations on distributions we will often use a different approach.

Suppose that we have an operation α on C∞c (R), and we would like to extend it to

generalized functions. We can try to do it in the following way. Given φ ∈ C∞c (R),

we can try to express 〈ξα(f), ϕ〉 in terms of the pairing of ξf with various functions in

C∞c (R). If we succeed, we can apply the same procedure to an arbitrary distribution

ξ in place of ξf . Let us now apply this approach to the notion of derivative.

1.4. Translations of generalized functions. For a function f ∈ C∞(R) and

t ∈ R denote by Rtf the translated function Rtf(x) = f(x − t). The motivation

behind the formula, including the minus sign, is that the graph of the translated

function is the translation of the graph by t.

This operation can be naturaly extended to generalized functions. For this purpose

observe that 〈ξRtf , φ〉 = 〈ξf , R−tφ〉. This motivates the following definition.

Definition 1.4.1. Given a generalized function ξ, we define its translation Rtξ by

〈Rtξ, φ〉 := 〈ξ,R−tφ〉

Exercise 1.4.2. Define the notion of translation of a generalized function using

approximation by C∞c (R). In other words, prove that if {fn} is a weakly Cauchy

sequence in C∞c (R) then so is {Rtfn}.

1.5. Derivatives of generalized functions. Let f, φ ∈ C∞c (R). Since 〈ξf ′ , φ〉 =
∞́

−∞
f ′(x) ∙ φ(x)dx we can use integration by parts to deduce that

〈ξf ′ , φ〉 = f(x) ∙ φ(x)|∞−∞ −

∞̂

−∞

f(x) ∙ φ′(x)dx.

However, since φ and f have compact support, we know that f(x) ∙ φ(x)|∞−∞ = 0.

Thus, 〈ξf ′ , φ〉 = −〈f, φ′〉. This motivates the following definition.

Definition 1.5.1. For any ξ ∈ C−∞(R), define its derivative ξ′ ∈ C−∞(R) by

〈ξ′, φ〉 := −〈ξ, φ′〉

for any φ ∈ C∞c (R).

For example, the derivative of δ0 can be intuitively described as

δ′0(x) :=






∞ x→ 0−

−∞ x→ 0+

0 otherwise.

Example 1.5.2. We have

〈δ(n)
0 , φ〉 = (−1)n〈δ0, φ

(n)〉 = (−1)nφ(n)(0).
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Exercise 1.5.3. Find a function F ∈ L1
Loc for which F ′ = δ0 as generalized func-

tions.

Exercise 1.5.4. Define the notion of derivative of a generalized function using

approximation by C∞c (R). In other words, prove that if {fn} is a weakly Cauchy

sequence in C∞c (R) then so is {f ′n}.

The following exercise enables to define the notion of derivative of a generalized

function using translations.

Exercise 1.5.5. Prove that ξ−Rtξ
t weakly converges to ξ′ when t→ 0. By this we

mean that for any test function φ ∈ C∞c (R) we have 〈ξ′, φ〉 = limt→0〈
ξ−Rtξ

t , φ〉.

1.6. The support of generalized functions. Let U ⊂ R be an open set and let

C∞c (U) be the space of smooth functions f : U → R supported in some compact

subset of U . Given a compact subset K ⊂ R, we denote by C∞K (R) the space of

smooth functions f : R → R with supp(f) ⊆ K. In particular C∞K (X) ⊆ C∞c (R)

for every compact K ⊆ R.

We cannot evaluate a generalized function at a point. Therefore, we cannot just

define its support as we did before for a function by supp(f) := {x ∈ R | f(x) 6= 0}.

However, if for some neighborhood U ⊂ R we have for every f ∈ C∞c (U) that

〈ξ, f〉 = 0, then it is natural to say that supp(ξ) ⊆ R r U . This leads us to the

following definition:

Definition 1.6.1. Let ξ ∈ C−∞(R).

(i) For an open subset U ⊂ R we say that ξ vanishes on U if for any f ∈ C∞c (U)

we have 〈ξ, f〉 = 0.

(ii) For ξ ∈ C−∞(R) we define

supp(ξ) = Rr
⋃
{open U ⊂ R | ξ vanishes on U}

(iii) Denote by C−∞c (R) the space of distributions with compact support.

The following (difficult) exercise shows that the definition is meaningful.

Exercise 1.6.2 (*). Let ξ ∈ C−∞(R).

(i) Let U1, U2 be two open segments in R. Show that if ξ vanishes on U1 and U2

then ξ vanishes on U1 ∪ U2. Hint: Use partition of unity.

(ii) Show that if I is a set of arbitrary cardinality and {Uα}α∈I is a collection of

open subsets of R with compact closures and ξ|Uα ≡ 0 for any α ∈ I then

ξ|⋃
α∈I Uα

≡ 0.

We will discuss this in more details and in larger generality in ?? below.

Remark 1.6.3. Note that supp(ξ) is always a closed set.

Example 1.6.4. The support of δ0 is {0}.
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Remark 1.6.5. While the support of δ′0 is also {0}, given some f ∈ C∞(R) for

which f(0) = 0 but f ′(0) 6= 0, we get that 〈δ′0, f〉 = −〈δ0, f
′〉 = −f ′(0) 6= 0. In

other words, having f(0) = 0 is not enough to get 〈ξ, f〉 = 0, for a distribution ξ

supported at {0}. However, if f vanishes at 0 with all its derivatives, it will imply

〈ξ, f〉 = 0 for any ξ supported at {0}, as follows from Exercise 1.6.7 below.

Exercise 1.6.6. Let ξ1, ξ2 ∈ C−∞(R) and a, b ∈ R. Show that:

(1) supp(aξ1 + bξ2) ⊆ supp(ξ1) ∪ supp(ξ2).

(2) supp(ξ)− supp(ξ)◦ ⊆ supp(ξ′) ⊆ supp(ξ).

Exercise 1.6.7. Show that all the generalized functions ξ ∈ C−∞(R) which are

supported on {0} are of the form
n∑

i=0

ciδ
(i) for some n ∈ N and ci ∈ R.

Hint: prove this in three steps.

(i) Show that there exists n such that ξ is bounded on the set {f | f (i)(x) < 1∀x ∈

R, ∀i < n}.

(ii) Show that there exists k ∈ N such that ξxk = 0, that is 〈ξxk, f〉 = 〈ξ, xkf〉 = 0

for every f ∈ C∞c (R).

(iii) From ξxk = 0 deduce that ξ =
k−1∑

i=0

ciδ
(i)
0 for some ci ∈ R.

1.7. Products and convolutions of generalized functions.

Definition 1.7.1. Let f ∈ C∞(R) and ξ ∈ C−∞(R). We would like to have

(f ∙ ξ)(φ) =
∞́

−∞
ξ(x) ∙ f(x) ∙ φ(x)dx. Thus, we define (f ∙ ξ)(φ) := ξ(f ∙ φ).

While we can multiply every smooth function f by any generalized function ξ, the

product of two generalized functions is not always defined. Notice that indeed the

product of two weakly Cauchy sequences is not always a weakly Cauchy sequence,

so we might not be able to approximate the product of two generalized functions

by the product of their approximations.

Recall that given two functions f, g, their convolution is defined by

(f ∗ g)(x) :=

∞̂

−∞

f(t) ∙ g(x− t)dt.

The convolution of two smooth functions is always smooth, if it exists. In addition,

if f and g have compact support, then so does f ∗ g:

Exercise 1.7.2.

(1) Show that supp(f ∗ g) ⊆ supp(f) + supp(g), where supp(f) + supp(g) is

the Minkowski sum of supp(f) and supp(g). Thus f, g ∈ C∞c (R) implies

f ∗ g ∈ C∞c (R).

(2) Find an example in which the left hand side is strictly contained in the right

hand side.
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Given f, g ∈ C∞c (R) we can write (f ∗ g)(x) = 〈ξf , g̃x〉, where g̃x(t) := g(x − t).

This motivates us to define the convolution ξ ∗g as the function (ξ ∗g)(x) = 〈ξ, g̃x〉.

Note that the convolution of a smooth function and a generalized function is always

a smooth function:

Exercise 1.7.3. Show that for φ ∈ C∞c (R) and ξ ∈ C−∞(R) we get that ξ ∗ φ is a

smooth function.

Let us now define the convolution of two generalized functions. This will not be

defined for every pair of generalized functions, but for pairs such that at least one

of the generalized functions have compact support. Firstly, for f, g ∈ C∞c (R) we

would like to have ξf ∗ ξg = ξf∗g. This means

〈ξf ∗ ξg, φ〉 =

∞̂

−∞

(f ∗ g)(x) ∙ φ(x)dx =

∞̂

−∞

∞̂

−∞

f(t) ∙ g(x− t) ∙ φ(x)dtdx.

We would like like to express the right-hand side in terms of convolutions of dis-

tributions with functions. For this purpose, for a function h ∈ C∞(R) denote

h := h(−x). In these terms we have
∞̂

−∞

∞̂

−∞

f(t)∙g(x−t)∙φ(x)dtdx =

∞̂

−∞

f(t)

∞̂

−∞

g(x−t)∙φ̄(−x)dxdt =

∞̂

−∞

f(t)∙(ξg∗φ̄)(−t)dt = ξf (ξg ∗ φ̄).

Definition 1.7.4. We define 〈ξf ∗ ξg, φ〉 := 〈ξf , ξg ∗ φ̄〉.

However, some formal justification is required. Given a compact K ⊂ R, we say ρ

is a cutoff function of K if ρ|K ≡ 1 and ρ|V ≡ 0, where R\V has compact closure.

Exercise 1.7.5. Let K and V be as above. Show that there exists a continuous

cutoff function. Hint: use Urysohn’s Lemma.

Thus, given some ξ ∈ C−∞c (R) with supp(ξ) ⊂ K we have that ξ(φ) = ξ(ρK ∙ φ).

This enables us to define ξ as a functional over all C∞(R) and not only on C∞c (R).

For every φ ∈ C∞(R) we define ξ(φ) = ξ(ρK ∙ φ) where K := supp(ξ) ⊂ R.

Exercise 1.7.6. Let ξ ∈ C−∞(R). In an exercise above we showed: if φ ∈ C∞c (R)

then the convolution ξ ∗ φ is smooth. Show that if φ is smooth, and supp(ξ) is

compact, then ξ ∗ φ is still smooth.

To summarize, the convolution of two compactly supported distributions is well

defined and compactly supported, while the convolution of a compactly supported

distribution with an arbitrary distribution is well defined, but usually not compactly

supported.

Exercise 1.7.7. Show the following identities for any compactly supported distri-

butions ξ1, ξ2 and ξ3 in C−∞(R).
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(1) δ0 ∗ ξ1 = ξ1.

(2) δ′0 ∗ ξ1 = ξ′1.

(3) ξ1 ∗ ξ2 = ξ2 ∗ ξ1.

(4) ξ1 ∗ (ξ2 ∗ ξ3) = (ξ1 ∗ ξ2) ∗ ξ3.

(5) (ξ1 ∗ ξ2)′ = ξ1 ∗ ξ′2 = ξ′1 ∗ ξ2.

Exercise 1.7.8. Let K ⊂ R be a compact set. Construct a function f ∈ C∞c (R)

such that f|K ≡ 1 and f|U ≡ 0 for some neighborhood K ⊂ U (Hint: convolve a

suitable approximation of identity with the indicator function of K).

1.8. Generalized functions on Rn. All the notions above make sense for func-

tions and generalized functions in several variables. The definitions and the state-

ments literally generalize to this case. For example, let us restate the definition of

convergence in C∞c (Rn).

Definition 1.8.1 (Convergence in C∞c (Rn)). Given f ∈ C∞c (R) and a sequence

{fn}∞n=1 of smooth functions with compact support, we say that {fn}∞n=1 converges

to f in C∞c (Rn) if:

(1) There exists a compact set K ⊂ Rn for which
⋃

n∈N
supp(fn) ⊆ K.

(2) For every multi-index α, the partial derivatives (f (α)
n )∞n=1 converge uni-

formly to the partial derivative f (α).

1.9. Generalized functions and differential operators. A differential equa-

tion is given by the equality Af = g, where A is a differential operator. Assume A

is a linear differential operator which is invariant under translations, i.e. we have

that ARt(f) = Rt(Af). Equivalently, we assume that A has constant coefficients,

e.g. Af := f ′′ + 5f ′ + 6f .

Though classically one was interested in solutions in smooth functions, one can also

look for solutions in generalized functions. In this case, the right-hand side can also

be a generalized function. As we shall see, this approach is useful even if eventually

we are interested only in smooth functions.

An important special case is the equation Af = δ0. Given a solution f = G, using

the invariance of A under translations, we get that AGx = δx, for Gx := RxG.

Exercise 1.7.7 implies that A(f ∗ h) = (Af) ∗ h for any two functions f, h and thus

A(G ∗ g) = AG ∗ g = δ0 ∗ g = g. Hence, we can find a general solution f for Af = g

by solving a single simpler equation AG = δ0. The solution G is called Green’s

function of the operator.

Exercise 1.9.1. Let A be a differential operator with constant coefficients (i.e. as

above).

(1) Choose any solution for the equation AG = δ0, and describe the conditions

G has to meet without using generalized functions.
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(2) Without using generalized functions, explain the equation A(G ∗ g) = g we

got for the solution G.

(3) Solve the equation Δf = δ0 (where Δ = ∂2

∂x2 is the Laplacian).

1.10. Regularization of generalized functions.

Definition 1.10.1. Let {ξλ}λ∈C be a family of generalized functions. We say

that the family is analytic if 〈ξλ, f〉 is analytic as a function of λ ∈ C for every

f ∈ C∞c (R).

Example 1.10.2. We denote

xλ
+ :=






xλ x > 0

0 x ≤ 0
,

and define the family by ξλ := xλ
+ for Re(λ) > −1. The behavior of the function

changes as λ changes: When Re(λ) > 0 we have a continuous function; if Re(λ) = 0

we get a step function and for Re(λ) ∈ (−1, 0), the function xλ
+ will not be locally

bounded. However, for any λ with Re(λ) > −1, ξλ ∈ L1
loc(R).

We would like to extend the definition analytically to the entire complex plane. To

do that we will have to leave the world of locally L1 functions.

Deriving xλ
+ (both as a complex function or as we defined for generalized function)

we obtain ξ′λ = λ ∙ ξλ−1. This is a functional equation which enables us to define

ξλ :=
ξ′

λ+1

λ+1 , and in this way extend ξλ to every λ ∈ C with Re(λ) > −2, except

λ = −1. We can use this procedure interatively to extend ξλ to the entire complex

plane. This extension is not analytic, but it is meromorphic: it has a pole in

λ = −1, and by the extension formula, in λ = −2,−3, . . ..

This is an example of a meromorphic family of generalized functions.

Definition 1.10.3. A family {ξλ}λ∈C of generalized functions is called meromor-

phic if there exists an entire function f on C such that the family f(λ)ξλ is analytic

(possibly after redefining it in a discrete set of points in C). In fact, the family ξλ

can be undefined in a discrete set of points, as in the case of meromorphic functions.

Exercise 1.10.4. Show that any meromorphic family of generalized functions can

be expanded into Laurent series in a punctured neighborhood of every pole, with

coefficients being generalized functions.

Exercise 1.10.5. Find the order and the leading coefficient of every pole of ξλ :=

xλ
+.

Example 1.10.6. For a given p ∈ C[x1, . . . xn], similarly to before set,

p+(x1, . . . xn)λ :=






p(x1, . . . xn)λ x > 0

0 x ≤ 0
.
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The problem of finding the meromorphic continuation of a general polynomial was

open for some time. It was solved by J. Bernstein (see [?]) by proving that there

exists a differential operator Dpλ
+ := b(λ) ∙pλ−1

+ , where b(λ) is a polynomial pointing

on the location of the poles. 1

Exercise 1.10.7. Solve the problem of finding an analytic continuation for p+(x1, . . . xn)λ

in the following cases:

(1) p(x, y, z) := x2 + y2 + z2 − a and a ∈ R.

(2) p(x, y, z) := x2 + y2 − z2.

1There was a slightly earlier proof in [?, ?], using resolution of singularities.
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2. Topological properties of C∞c (Rn)

We want to analyze the space of distributions C−∞(Rn). For this aim, we want to

introduce a topology on this space.

2.1. Normed spaces.

Definition 2.1.1. A normed space over R is a vector space V over R with a

function || ∙ || : V → R≥0 satisfying

(i) ||λv|| = |λ| ∙ ||v||

(ii) ||v + w|| ≤ ||v||+ ||w||

(iii) ||v|| = 0 ⇐⇒ v = 0

If we weaken (iii) to state only ||0|| = 0 we will get the definition of a semi-norm.

The norm defines a Hausdorff topology on V be letting the basis for open sets be

the open balls B(x, ε) := {v ∈ V | ||v − x|| < ε} for all x ∈ V , ε ∈ R>0.

Example 2.1.2. (i) lp := {sequences xn in R |
∑
|xn|p <∞}

(ii) Lp(R) := {measurable f : R→ R | |f |p is integrable on R}.

(iii) Ck(R) := functions with k continuous bounded derivatives,

||f || :=
k∑

i=1

sup
x∈R
|f (i)(x)|.

There are several facts that we are used to in the Euclidean space Rn. For example,

the closed bounded sets are compact, linear subspaces are always closed, and linear

operators are always continuous. These properties still hold for finite-dimensional

normed spaces, but fail for infinite-dimensional ones.

Let us now discuss this in more detail. Fix a normed space V .

Exercise 2.1.3. If dim V is finite then the closed unit ball B := {v ∈ V | ||v|| ≤ 1}

is compact.

Corollary 2.1.4. Any finite-dimensional subspace of V is closed.

Proof. Let W ⊂ V be a finite-dimensional subspace. Let v ∈ W , and let K be the

ball in W with center at 0 and radius 2||v||. Then v lies in the closure of K. On

the other hand, K is compact and thus closed in V . Thus v ∈ K ⊂W . �

Exercise 2.1.5. Show that C1(R) ⊂ C0(R) is dense (and thus not closed).

Exercise 2.1.6. Find a non-continuous linear functional on C0(R). Hint: Show,

using Zorn’s lemma, that any linear functional on a subspace can be extended. Then,

use the embedding C1(R) ⊂ C0(R).

Exercise 2.1.7. Show that for any two normed spaces of the same finite dimension

there exists a linear homeomorphism between them.
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Proposition 2.1.8. If the closed unit ball B ⊂ V is compact then dim V is finite.

Proof. Note that B can be covered by open balls of radius 1/2: B ⊂
⋃

x∈B B(x, 1/2).

If B is compact then this cover has a finite subcover. Denote the centers of the

subcover by {xi}ni=1, and let W := Span({xi}ni=1). Then

B ⊂
n⋃

i=1

B(xi, 1/2) ⊂W + 1/2B ⊂W + 1/4B ⊂ . . .

Thus, for any k ∈ N, any v ∈ B can be presented as wk + zk where wk ∈ W and

||zk|| < 2−k. Thus, v = lim wk. This shows that W is dense in V . Since W is

finite-dimensional, Corollary 2.1.4 implies that it is closed. Thus V = W and thus

dim V = n. �

2.2. Topological vector spaces.

Definition 2.2.1. A topological vector space (or linear topological space) is a linear

space with a topology such that multiplication by scalar and vectors addition are

continuous. More precisely, the addition and the multiplication define continuous

maps:

(i) + : V × V → V ,

(ii) ∙ : R× V → V .

Remark 2.2.2. In this definition V is a vector space over R, but in the same way

one defines topological vector spaces over any topological field, e.g. over C or over

the field of p-adic numbers that we will define later.

Since addition is continuous, so is translation by a constant vector. This makes all

points of a topological vector space similar - the open neighborhoods of every point

x are, roughly speaking, the same as those of 0. Thus, in order to define a topology

on a vector space it is enough to give a basis for the topology at zero.

We assume the topological vectors spaces we consider are Hausdorff. Note that

given a non-Hausdorff space V , we can quotient V by the closure of {0} and get a

Hausdorff space.

Definition 2.2.3. Let V be a topological vector space over R.

(i) We say that a set A ⊆ V is convex if for every a, b ∈ A the linear combination

ta + (1− t)b ∈ A for any t ∈ [0, 1].

(ii) We say that V is locally convex if it has a basis of its topology which consists

of convex sets.

(iii) We say that a set W ⊆ V is balanced if λW ⊆ W for all λ ∈ R satisfying

|λ| ≤ 1. Note that a convex set C is balanced ⇐⇒ it is symmetric (C = −C).

(iv) For every open convex balanced set C in V and x ∈ V we define a function

NC(x) = inf{α ∈ R>0 :
x

α
∈ C}.
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Exercise 2.2.4. Let V be a topological vector space over R.

(i) Show that for every neighborhood U of 0 there exists an open balanced set W

such that 0 ∈W ⊆ U .

(ii) (*)Find a topological vector space which is not locally convex (not necessarily

of finite dimension).

(iii) Prove that V is Hausdorff ⇐⇒ {0} is a closed set.

(iv) Show that if V is finite dimensional and Hausdorff then it is isomorphic to

Rn (as a topological vector space).

Remark 2.2.5. Note that the previous exercise shows that a linear topological space

satisfies the T1 separation axiom ⇐⇒ it satisfies T2.

Exercise 2.2.6. Let C be an balanced open convex set in a topological vector space

V . Show that

(i) NC(x) <∞ for all x ∈ V .

(ii) NC(x) is a semi-norm.

In a locally convex space we have a basis for the topology consisting of convex sets.

By Exercise 2.2.4(i) we can assume that all the sets in this basis are balanced.

Thus we obtain the next corollary.

Corollary 2.2.7 (Proof - exercise). The following are equivalent.

(i) V is locally convex.

(ii) There exists a collection of semi-norms nα on V such that the following sets

form a basis for the topology at zero:

Bα(r) := {x ∈ V |nα(x) < r}

(iii) There exists a collection of semi-norms nα on V such that the topology on V is

the weakest topology such that all the semi-norms nα are continuous functions

V → R≥0.

Exercise 2.2.8. Find a locally convex (Hausdorff) topological vector space V such

that V has no continuous norm on it. That is, every convex open set C contains a

line span{v}, so NC(v) = 0.

Note however that by Hausdorffness and Corollary 2.2.7, for every vector v ∈ V

there exists a semi-norm n on V such that n(v) > 0.

Generalizing the proof of Proposition 2.1.8, one can prove the following theorem.

Theorem 2.2.9 ([Rud06, Theorem 1.22]). Every locally compact topological vector

space has finite dimension.

2.3. Defining completeness. Recall that one can define the notion of Cauchy

sequence for a metric space, but not for a general topological space. However, one

can define it for any topological vector space V , in the following way.
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Definition 2.3.1. A sequence (xn)∞n=1 ⊂ V is called a Cauchy sequence, if for

every neighborhood U of 0 ∈ V there is n0 ∈ N such that m,n > n0 implies

xn − xm ∈ U .

Remark 2.3.2. More generally, if X has a uniform topology, then we can define a

notion of a Cauchy sequence. We will not give the definition of a uniform topology,

but we note that any topological group possesses a uniform topology, and indeed one

can define a notion of a left (resp. right) Cauchy sequence as follows: (xn)∞n=1 is

a Cauchy sequence if for every neighborhood U of e ∈ G there is an index n0 ∈ N

such that m,n > n0 implies x−1
m xn ∈ U (resp. xnx−1

m ∈ U).

Definition 2.3.3. Let V be a topological vector space. V is called sequentially

complete if every Cauchy sequence in it converges.

The notion of sequentially complete is well suited for topological vector spaces in

which the topology can be defined by sequences. Such are all the first-countable

(Hausdorff) topological spaces, but not all Hausdorff topological spaces, as we will

see from the following discussion.

Definition 2.3.4. A subset Y of a Hausdorff topological space X is called sequentially closed

if for every convergent sequence {yn}∞n=1 in Y , the limit lies in Y .

Example 2.3.5. (i) Show that in a first-countable (Hausdorff) topological space,

a set is sequentially closed if and only if it is closed.

(ii) Give an example of a first-countable (Hausdorff) topological space, and a se-

quentially closed subset that is not closed. Hint. Take X be the real interval

[0, 1] with the co-countable topology on X, and Y := [0, 1).

Let us now define the general notion of a complete topological space.

Definition 2.3.6. Let V be a topological vector space.

(i) An embedding i : V ↪→ W is called a strict embedding if i : V ↪→ i(V ) is an

isomorphism of topological vector spaces.

(ii) V is called complete if for every strict embedding φ : V ↪→ W , the image

φ(V ) is closed.

Exercise 2.3.7 (*). (i) Show that a complete topological vector space is always

sequentially complete.

(ii) Show that a first countable topological vector space V is complete if and only

if it is sequentially complete.

??Solution: (i) Let V
sec

be the sequential completion of V . The map V → V
sec

is

a strict embedding ?? check how to define the topology on it.

(ii): Suppose that V is sequentially complete. Let κ be an ordered filtered set and

ϕ : κ → V s.t. for every neighborhood of zero U ⊂ V there exists α ∈ κ s.t. the
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Minkowsky difference ϕ(κ≥α)− ϕ(κ≥α) lies in U . We want to prove that any such

?? converges. This means that there exists y ∈ V for any open neighborhood U 3 y

there exists β ∈ κ with ϕ(κ≥β) ⊂ U . Indeed, choose a descending basis Ui of the

topology around zero. Let αi ∈ κ be such that ϕ(κ≥αi)− ϕ(κ≥αi) ⊂ h(Ui), where

h(Ui) is an open neighborhood of zero such that h(Ui) + h(Ui) ⊂ Ui. On the other

hand, ϕ(αi) is a Cauchy sequence. Let y be its limit. Let us show that y satisfies

the condition. For that purpose, let U be a neighborhood of y. Let i be such that

ϕ(αi) ∈ h(U) and Ui ⊂ h(U). We set β = αi. It is easy to see that it satisfies the

conditions above.

Now let ι : V → W be a strict embedding. We have to show that the image is

closed. Let y ∈ Imι. Let {Uα |α ∈ I} be a basis for topology at y. Let F (I) be

the set of all finite subsets of I, and for any f ∈ F (I) denote Vf := ∩α∈fUα. For

any f ∈ F (I) choose xf ∈ f ∩ Imι. By the discussion above there exists z ∈ Imι

such that xf converges to z in the sense we discussed above. This implies (??) that

z = y.

Remark 2.3.8.

(i) Equivalently, we can define that a space V is complete if every Cauchy net is

convergent. From this definition it can be easily seen that any complete space

X is also sequentially complete.

(ii) In the category of first countable topological vector spaces, completeness is

equivalent to sequentially completeness, and indeed, there the notion of a

Cauchy net is equivalent to the notion of a Cauchy sequence, and a set Y ⊆ X

is closed ⇐⇒ it is sequentially complete.

Exercise 2.3.9. Find a sequentially complete space which is not complete. Hint:

see the above example.

Definition 2.3.10. Let V be a topological vector space. A space V̄ is a completion

of V if V̄ is complete and there is a strict embedding i : V → V̄ and i(V ) is dense

in V̄ .

Remark 2.3.11. We can also use a universal property in order to define the

completion of V . A strict (?) embedding i : V → V̄ is a completion of V if:

(1) V̄ is complete.

(2) For every map ψ : V → W where W is complete, there is a unique map

φW : V̄ →W , such that ψ ≡ φW ◦ i.

Exercise 2.3.12 (*). Show that these two definitions of completeness are equiva-

lent.

It is often easier to show that a space is complete using the universal property. In

this way we avoid dealing with Cauchy nets or filters. However, in order to show

such completion exists one has to use these notions.
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Exercise 2.3.13.

(1) (∗) Show that every Hausdorff topological vector space has a completion.

(2) Show that in the category of first countable topological vector spaces both

definitions of completion are equivalent to being sequentially complete.

2.4. Fréchet spaces. Reminder: A Banach space is a normed space, which is

complete with respect to its norm. A Hilbert space is an inner product space which

is complete with respect to its inner product.

Theorem 2.4.1. (Hahn-Banach) Let V be a normed topological vector space, W ⊆

V a linear subspace, and C ∈ R>0. Let f : W → R be a linear functional such that

|f(x)| ≤ C ∙ ‖x‖ for all x ∈ W . Then there exists f̃ : V → R such that f̃ |W = f

and
∣
∣
∣f̃(x)

∣
∣
∣ ≤ C ∙ ‖x‖ for all x ∈ V .

Exercise 2.4.2. Let V be a locally convex topological vector space (i.e, not neces-

sarily normed), and let f : W → R be a continuous linear functional, where W ⊆ V

is a closed linear subspace of V . Show that f can be extended to V .

Definition 2.4.3. The space of all continuous functionals on a topological vector

space V is called the dual space and denoted by V ∗.

Exercise 2.4.4. Let W ⊆ V be infinite-dimensional vector spaces. Show that any

linear functional on W can be extended to a linear functional on V . (There is no

topology in this exercise).

Definition 2.4.5. A topological space (X, τ ) is said to be metrizable if there exists

a metric which induces the topology τ on X.

Remark 2.4.6. Every normed space is Hausdorff and locally convex, since there is

a basis of its topology consisting of open balls, which are convex. We also know that

every normed space is metric. However, metrizability does not force local convexity

and vice versa.

Definition: A topological space X is called a Fréchet space if it is a locally convex,

complete space which is metrizable.

Exercise 2.4.7. Show that for a locally convex topological vector space V the fol-

lowing three conditions are equivalent.

(1) V is metrizable.

(2) V is first countable (that is it has a countable basis of its topology at every

point).

(3) There is a countable collection of semi-norms {ni}i∈N that defines the basis

of the topology of V , i.e, Ui,ε = {x ∈ V |ni(x) < ε} is a basis of the topology

at 0.



GENERALIZED FUNCTIONS LECTURES 20

Hint: given a countable family of semi-norms define a metric by

d(x, y) :=
∞∑

k=1

||x− y||k
(1 + ||x− y||k)k2

Exercise 2.4.8. Let V be a locally convex metrizable space. Prove that V is com-

plete (and consequentially is a Fréchet space) ⇐⇒ it is sequentially complete.

Recall that the completion of a normed space V with respect to its norm is the

quotient space V̄ of all Cauchy sequences in X under the equivalence relation

(xn)∞n=1 ∼ (yn)∞n=1 ⇐⇒ lim
n→∞

‖xn − yn‖ = 0. In particular, V̄ is a Banach

space. Completing V with respect to a semi-norm N results in the elimination of

all elements {x ∈ V |n(x) = 0}. The quotient space equipped with the induced

norm on the quotient then yields a Banach space.

Example 2.4.9. Let V be the space of step functions on R, and consider the norm

‖f‖1 :=
´
R |f(x)|dx. The completion of V with respect to ‖ ∙ ‖1 is isomorphic to the

Banach space L1(R) (equipped with the norm on the quotient).

Let V be a Fréchet space, then we have a family of semi-norms {ni}i∈N on V . We

can form a new system of ascending semi-norms by replacing ni with max
j≤i
{nj}. Let

Vi be the completion of V with respect to ni.

If ni and nj were norms (and not just semi-norms), which satisfy ∀x ∈ V, ni(x) ≥

nj(x), we would get a continuous inclusion Vi ↪→ Vj . A sequence of ascending

norms n1 ≤ n2 ≤ . . . thus gives rise to a descending chain of completions V1 ←↩

V2 ←↩ V3 ←↩ . . .. Our space V is then an inverse limit, V = lim
←

Vi, which in this case

has a very nice description: it is an intersection V =
⋂

i∈N
Vi of the Banach spaces

defined above.

If ni and nj are semi-norms, we get a continuous map Vi → Vj as every converging

sequence is mapped to a converging sequence which need not be injective. In this

case V will be the inverse limit lim
←

Vi where the topology on V is generated by all

the sets of the form ϕ−1
i (Ui) where Ui is an open set in Vi and ϕi : V = lim

←
Vi → Vi

is the natural projection map which is part of the data of lim
←

Vi.

Example 2.4.10. The following are examples of Fréchet spaces.

(1) V := C∞(S1) is a Fréchet space. Define the norms {ni}i∈N by ‖f‖ni :=

max
j≤i

sup
x∈S1
{
∣
∣f (j)(x)

∣
∣}. The completion with respect to nk is Vk = Ck(S1),

the space of k-times differentiable functions. This family of norms satisfies

∀x ∈ V we have that nj(x) ≤ ni(x) if j ≤ i, so by the argument above we

indeed have C∞(S1) =
⋂

k∈N
Ck(S1).

(2) V = C∞(R) is a Fréchet space. Define ni by ‖f‖ni
:= max

j≤i
sup

x∈Ki

{
∣
∣f (j)(x)

∣
∣}

where Ki = [−i, i]. Notice that this gives an ascending chain of seminorms
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so this defines a Fréchet space V = lim
←

Vi. A similar argument shows that

C∞(Rn) is a Fréchet space, as well as C∞(M) for every smooth manifold

M . In these cases we take the supremum over all the possible directional

derivatives.

(3) Let K be a compact set and n ∈ N0, then C∞K (Rn) is a Fréchet space.

Let k ∈ N0, Ck
K(Rn) is a Banach space and in particular a Fréchet space.

C∞c (Rn) is not Fréchet.

2.5. Sequence spaces. An important family of examples of Fréchet spaces are

sequence spaces.

Example 2.5.1. The space `p is the space of all sequences (xn)∞n=1 with values in

R, such that
∞∑

n=1
|xn|p < ∞. It is a Banach space, and for p = 2 it is a Hilbert

space.

Let SW(N) be the space of all the sequences which decay to zero faster than any

polynomial, i.e. ∀n ∈ N, lim
i→∞

xi ∙ in = 0. A family of norms one can consider when

analyzing these spaces is ||(xi)∞n=1||n = sup
i∈N
{|xi ∙ in|}. It is not hard to see that with

respect to these norms every Cauchy sequence converges. Define the topology on

SW(N) using by the family of norms || ∙ ||n, then SW(N) is a Fréchet space. This

is an example of a Fréchet space which is not a Banach space.

Remark 2.5.2. How can we see every Cauchy sequence converges? Why is not it

a Banach space?

The dual space SW(N)∗ is {(xi)∞i=1 | ∃n, c : |xi| < c ∙ in}. This is a union of Banach

spaces, as opposed to the intersection we had when defining the completion of a

Fréchet space (we will discuss the dual space more thoroughly next lecture). Note

that both SW(N) and SW(N)∗ contain the subspace of all sequences with compact

support (that is sequences with finitely many non-zero elements).

Example 2.5.3. Smooth functions on the unit circle, C∞(S1), correspond to se-

quences (xi)∞i=1 decaying faster than any polynomial. More precisely, we can view

f ∈ C∞(S1) as a periodic function in C∞(R) which can be written as f(x) =
∞∑

n=−∞
an ∙eint (for functions of period 1). We thus attach to f the sequence (an)∞n=1

where an decays faster then any polynomial.

Exercise 2.5.4.

(1) Show that the Fourier series map F : C∞(S1) → SW(Z) via f 7→ an

is an isomorphism of Fréchet spaces. In other words, show that it is a

bijection and that for any semi-norm Pi of SW(Z) there exists a semi-

norm Sj of C∞(S1) and C ∈ R such that for any f ∈ C∞(S1) we have

that ‖F(f)‖Pi
< C ∙ ‖f‖Sj

(and vice-versa, or use Banach’s open mapping

theorem for Fréchet spaces).
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(2) Define a Fréchet topology on

S(R) = {f ∈ C∞(R)| lim
x→±∞

f (n)(x) ∙ xk → 0 for all k}.

2.6. Direct limits of Fréchet spaces.

Definition 2.6.1. The direct limit of an ascending sequence of vector spaces is the

space V∞ :=
⋃

n∈N
Vn. This is not a Fréchet space, but a locally convex topological

vector space. A convex subset U ⊆ V∞ is open ⇐⇒ U
⋂

Vn is open in Vn for all

n.

Every space of the form C∞(K) can be given the induced topology from C∞(R).

Taking the union of the ascending chain

C∞([−1, 1]) ⊂ C∞([−2, 2]) ⊂ . . .

gives all smooth functions with compact support C∞c (R) = lim
n→∞

C∞([−n, n]) as a

direct limit. However, this is not a Fréchet space - it is a direct limit and not an

inverse limit. A basis of the topology of C∞c (R) at 0 is given by the sets:

U(εn,kn) :=
∑

n∈N

{f ∈ C∞(R) | supp(f) ⊆ [−n, n] and |f (kn)| < εn},

where εn ∈ R0>, kn ∈ N0 and Σ denotes Minkowski sum, that is A+B := {a+b|a ∈

A, b ∈ B}.

Exercise 2.6.2. Show that a sequence (fn)∞n=1 in C∞c (R) converges to f ∈ C∞c (R)

with respect to the topology defined above if and only if it converges as was defined

in the first lecture (Definition 1.2.2), i.e.,

(1) There exists a compact set K ⊆ R s.t.
∞⋃

n=1
supp(fn) ⊆ K.

(2) For every k ∈ N the derivatives f
(k)
n (x) converge uniformly to f (k)(x).

Remark 2.6.3. Notice that the topology on C∞c (R) is complicated- it is a direct

limit of an inverse limit of Banach spaces!

Exercise 2.6.4. Show that taking a convex hull instead of a Minkowski sum (i.e.,

defining U(εn,kn) := convn∈N{f ∈ C∞(R) | supp(f) ⊆ [−n, n], f (kn) < εn}) will

result in the same topology. This shows that C∞c (R) is a locally convex topological

vector space (Note that this follows since this is a direct limit of Fréchet spaces).

Finally, Fréchet spaces have several more nice properties:

• Every surjective map φ : V1 → V2 between Fréchet spaces is an open map

(it is enough to demand that V2 is Fréchet and V1 is complete).

• In the previous item, defining K := ker φ, one can show that the quotient

V1/K is a Fréchet space, and φ factors through V1/K, that is φ : V1 →

V1/K → V2, where the map V1/K → V2 is an isomorphism.
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• Every closed map φ : V1 → V2 between Fréchet spaces can be similarly

decomposed. Firstly, by showing Im(φ) is a Fréchet space, and then by

writing V1 → Im(φ)→ V2.

2.7. Topologies on the space of distributions.

Remark 2.7.1. Let U ⊆ Rn be an open set, we define C−∞(U) to be the continuous

dual of C∞c (U).

Definition 2.7.2.

(1) Let V be a topological vector space. A subset B ⊆ V is called bounded if for

every open U ⊆ V there exists λ ∈ R such that B ⊆ λ ∙ U .

(2) Denote V ∗ = {f : V → R : f is linear and continuous}. There are many

topologies one can define on V ∗, we mention here two of those. Let ε > 0

and S ⊆ V , and set Uε,S = {f ∈ V ∗ : ∀x ∈ S, |f(x)| < ε}.

(a) The weak topology on V ∗, denoted V ∗w . The basis for the topology on

V ∗w at 0 is given by:

Bw := {Uε,S : ε > 0, S is finite} .

(b) The strong topology on V ∗, denoted V ∗S . The basis for the topology on

V ∗S at 0 is given by:

BS := {Uε,S : ε > 0, S is bounded} .

In particular, every open set in V ∗w is open in V ∗s .

By definition, a sequence {fn}∞n=1 in V ∗ converges to f ∈ V ∗ if and only if for every

Uε,S ∈ B there exists N ∈ N s.t. (fn−f) ∈ Uε,S for n > N . That is, ∀x ∈ S we have

that |fn(x)− f(x)| < ε. Therefore (fn)∞n=1 converges to f w.r.t the weak topology

⇐⇒ it converges point-wise, and it converges to f w.r.t the strong topology ⇐⇒

it converges uniformly on every bounded set.

Remark 2.7.3. If the topology on V is given by a collection of semi-norms (such

as in Fréchet spaces), a set is bounded if and only if it is bounded with respect to

every semi-norm.

Theorem 2.7.4. (Banach-Steinhaus) Let V be a Fréchet space, W be a normed

vector space, and let F be a family of bounded linear operators Tα : V →W . If for

all v ∈ V we have that sup
T∈F
‖T (v)‖W <∞ then there exists k such that

sup
T∈F,‖v‖k=1

‖T (v)‖W <∞.

(we assume that ||v||k ≤ ||v||k+1 ∀k).

Example 2.7.5 (Fleeing bump function). Let V = R and let ψ be a bump function.

Notice that gn(x) = ψ(x + n) converges pointwise to 0 (and hence also in the weak
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topology). Note that gn does not converge uniformly to 0, but it does converge

uniformly on bounded sets to 0, so it strongly converges to 0.

Assume V is a Fréchet space. Recall that we can define V as an inverse limit

of Banach spaces V =
∞⋂

i=1

Vi where Vi is the completion of V with respect to an

increasing sequence of semi-norms ni. If we dualize the system {Vi}∞n=1 we get an

increasing sequence V ∗1 ⊆ V ∗2 ⊆ . . . ⊆ V ∗S = lim
→

V ∗i , and get that V ∗S is a direct limit

of Banach spaces (as a topological vector space).

Exercise 2.7.6. Let S ⊆ C∞c (R) be a bounded set, then there exists a compact

K ⊂ R such that S ⊆ C∞K (R).

Exercise 2.7.7. Consider the embedding C∞c (R) ↪→ C−∞(R), defined by f 7→ ξf .

Show that:

1) This embedding is dense with respect to the weak topology on C−∞(R).

2) This embedding is dense with respect to the strong topology on C−∞(R).

3) C−∞(R) with the weak topology is sequentially complete but not complete.

4) C−∞(R)w = C∞c (R)# where the latter is the full dual space (that is all function-

als, not necessarily continuous).

5) C−∞(R)S is complete.

3. Geometric properties of C−∞(Rn)

3.1. Sheaf of distributions.

Definition 3.1.1. Let U1 ⊆ U2 ⊆ Rn be open sets. Every function f ∈ C∞c (U1)

can be extended to a function ext0f ∈ C∞c (U2) by defining ext0f |U2\U1≡ 0, hence

we have an embedding C∞c (U1) ↪→ C∞c (U2). This embedding defines a restriction

map C−∞(U2)→ C−∞(U1), mapping ξ 7→ ξ |U1 , with 〈ξ |U1 , f〉 = 〈ξ, ext0f〉.

Remark 3.1.2.

(1) For an open U ⊂ Rn, the topology we defined on C∞c (U) is generally not the

same as the induced topology when considering it as a subspace of C∞c (Rn).

(2) For every compact K ⊂ U , we have C∞K (U) ⊂ C∞c (U). Here the topology

on C∞K (U) is indeed the induced topology from C∞c (U).

Next we prove that with respect to the restriction operation for distributions defined

above, the space of distributions is equipped with a natural structure of a sheaf.

Lemma 3.1.3 (Locally finite partition of unity). Let I be an indexing set and

U =
⋃

i∈I

Ui be a union of open sets. Then there exist functions λi ∈ C∞c (U) such

that:

(i) supp(λi) ⊂ Ui

(ii) For every x ∈ U , there exists an open neighborhood Ux of x in U and a finite

set Sx of indices such that λi|Ux
≡ 0 for all i /∈ S.
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(iii) For every x ∈ U ,
∑

i∈I λi(x) = 1.

Proof. Since Rn is paracompact, we can choose a locally finite refinement Vj of

Ui, i.e. a set J , a function α : J → I and an open cover {Vj}j∈J of U such

that Vj ∈ Uα(j) for any j ∈ J and any x ∈ U has an open neighborhood Ux that

intersects only finitely many Vj . Furthermore, we can assume that Vj are open

balls B(xj , rj). Since the closures B(xj , rj) are compact, there exist εj such that

{B(xj , rj − εj)}j∈J still cover U . For any j, let ρj be smooth non-negative bump

functions satisfying ρj |B(xj ,rj−εj)
≡ 1 and ρj |B(xj ,rj)

c ≡ 0. For any i define

fi(x) =






ρi(x)∑
j∈J ρj(x) x ∈ Ui

0 x /∈ Ui

.

Note that the sum in the denominator is finite. Now, for every i define

λi(x) =
∑

j∈α−1(i)

fj(x).

�

Theorem 3.1.4. With respect to the restriction map defined above, distributions

form a sheaf, that is given an open U ⊆ Rn, and open cover U =
⋃

i∈I

Ui, we have:

(1) (Identity axiom) Let ξ ∈ C−∞(U). If for every i we have that ξ|Ui
≡ 0,

then ξ|U ≡ 0.

(2) (Glueability axiom) Given a collection of distributions {ξi}i∈I , where ξi ∈

C−∞(Ui), that agree on intersections, i.e. ∀i, j ∈ I we have that ξi|Ui∩Uj ≡

ξj |Ui∩Uj , there exists ξ ∈ C−∞(U) satisfying ξ|Ui
≡ ξi for any i.

Proof. Choose a locally finite partition of unity 1 =
∑

i∈I λi corresponding to the

cover Ui by Lemma 3.1.3.

(1) Given f ∈ C∞c (U) we need to show 〈ξ, f〉 = 0. Let fi := λif . Then

f =
n∑

i=1

fi, and

〈ξ, f〉 = 〈ξ,
n∑

i=1

fi〉 =
n∑

i=1

〈ξ, fi〉 = 0.

(2) Note that for any compact K ⊆ U we then have that λi|K ≡ 0 for all but

finitely many i. Now suppose we are given ξi ∈ C−∞(Ui) which agree on

pairwise intersections. For any f ∈ C∞c (U) define

〈ξ, f〉 :=
∑

i∈I

〈ξi, λif〉.

Since f is supported on some compact K this sum is finite. It is clear that

ξ is linear, we need to prove that it is continuous, and that ξ|Ui
= ξi.
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Let fn converge to f , where all functions lie in C∞c (U). Then also

λi ∙ fn → λi ∙ f as the multiplication (f, g) 7→ f ∙ g is continuous. Since
∞⋃

n=1
suppfn ⊆ K for some K ⊆ U , we have fλi ≡ 0 for all but finitely many

indices i so we can write 〈ξ, f〉 =
∑k

i=1〈ξi, λif〉 and 〈ξ, fn〉 =
∑k

i=1〈ξi, λifn〉

for any n. By continuity of ξi we get that 〈ξi, λi ∙ fn〉 → 〈ξi, λi ∙ f〉 and

therefore

〈ξ, fn〉 =
∑

i

〈ξi, λi ∙ fn〉 →
∑

i

〈ξi, λi ∙ f〉 = 〈ξ, f〉,

so ξ continuous. Now let f ∈ C∞c (Uj), then

〈ξ, f〉 =
∑

i

〈ξi, λif〉 =
∑

i

〈ξj , λif〉 = 〈ξj ,
∑

i

λif〉 = 〈ξj , f〉,

where the second equality follows from the fact that λif ∈ C∞c (Uj ∩ Ui)

and ξi|Ui∩Uj ≡ ξj |Ui∩Uj .

A second way to prove continuity of ξ is working with the open sets

in the topology of C∞c (U). As ξi are continuous, they are bounded in

some convex open set 0 ∈ Bi, so |〈ξi, f〉| < ε for every f ∈ Bi. Notice

that conv(
⋃

i∈I

Bi) is open in
⊕

i∈I C∞c (Ui), where each Bi is an open set in

C∞c (Ui) and hence a set in
⊕

i∈I C∞c (Ui)) as conv(
⋃

i∈I

Bi) ∩ C∞c (Ui) = Bi.

Consider the map ϕ :
⊕

i∈I C∞c (Ui) → C∞c (U) given by extension by zero

and summation. Note that B := ϕ(conv(
⋃

i∈I

Bi)) is open. Now let f ∈ B.

We can write f =
n∑

ji=1

aifi where fi ∈ Bji and
∑

ai = 1. Therefore

ξ(f) :=
∑

ξi(aifi) <
∑

ai ∙ ε = ε and ξ is bounded on B.

�

3.2. Filtration on spaces of distributions.

Exercise 3.2.1. Let U ⊂ Rn, show that in C∞c (Rn) we have

C∞c (U) = {f ∈ C∞c (Rn) : ∀x /∈ U, ∀ differential operator L, Lf(x) = 0} .

Consider U = Rn\Rk. We wish to describe the space of distributions supported on

Rk, which we denote C−∞Rk (Rn). Notice that:

C−∞Rk (Rn) = {ξ ∈ C−∞(Rn)|∀f ∈ C∞c (Rn\Rk) we have 〈ξ, f〉 = 0}

and by continuity this is the same as:

{ξ ∈ C−∞(Rn)|∀f ∈ C∞c (Rn\Rk) we have 〈ξ, f〉 = 0} = {ξ ∈ C−∞(Rn)| ξ|V = 0},



GENERALIZED FUNCTIONS LECTURES 27

where V = C∞c (U) as described in Exercise 3.2.1. Notice that we can define a

natural descending filtration on V by:

V ⊆ Vm = {f ∈ C∞c (Rn)|∀i ∈ Nn−k
0 with |i| ≤ m we have

∂if

(∂x)i
|Rk = 0}.

We immediately see that f ∈ Vm implies f ∈ Vm−1, hence this is a descending

chain. After dualizing, this defines an ascending filtration on C−∞Rk (Rn) by:

Fm(C−∞Rk (Rn)) = V ⊥m = {ξ ∈ C−∞Rk (Rn) : ξ|Vm
= 0} ⊆ C−∞Rk (Rn).

Exercise 3.2.2. Show the following.

(1)
⋂

m≥0

Vm = V = C∞c (Rn\Rk).

(2)
⋃

m≥0

Fm 6= C−∞Rk (Rn).

(3) Let U ⊆ Rn be open and U compact. Show that for every ξ ∈ C−∞Rk (Rn)

there exists ξ′ ∈ Fm such that ξ|U = ξ′|U , thus
⋃∞

i=0 Fi covers C−∞Rk (Rn)

locally.

(4) Show that Fn is stable under coordinate changes. More generally, let ϕ :

Rn → Rn be a smooth proper map that fixes Rk. Show that for every ξ ∈ Fi,

ϕ∗(ξ) ∈ Fi, where 〈ϕ∗(ξ), f〉 := 〈ξ, f ◦ ϕ〉.

Theorem 3.2.3. As vector spaces we have Fm '
⊕

|i|≤m

∂i(C−∞(Rk))
∂xi where i ∈ Nn−k

0

and ∂i(C−∞(Rk))
∂xi is the image of C−∞(Rk) under the differential operator ∂i

∂xi (note

that we only differentiate with respect to coordinates not lying in Rk).

Proof. We prove here the statement for m = 0, and return to the case where m > 0

in section 5. Define a map res∗ : C−∞(Rk)→ F0 by 〈res∗ξ, f〉 = 〈ξ, f |Rk〉 for every

ξ ∈ C−∞(Rk). Notice that res∗ξ(f) = 0 for any f ∈ F0 by definition so it is well

defined.

Furthermore, res∗ is injective since if 〈res∗ξ, f〉 = 〈ξ, f |Rk〉 = 0 for all f ∈ C∞c (Rn)

then ξ = 0 since the restriction res : C∞c (Rn)→ C∞c (Rk) is surjective.

It is left to prove surjectivity. Define an extension map ext∗ : F0 → C−∞(Rk)

by 〈ext∗η, f〉 = 〈η, ext(f)〉 where ext(f)|Rk = f for every f ∈ C∞c (Rk). Note

that this is well defined since if we choose a different extension ext′(f) we get

that 〈η, ext′(f) − ext(f)〉 = 0 since (ext′(f) − ext(f))|Rk ≡ 0 and thus ext∗(η) =

ext′∗(η). Also, we have that ext∗η is a continuous functional, since we can choose

the extension ext(f) in such a way that if (fn)∞n=1 converges to f then (ext(fn))∞n=1

converges to ext(f). Finally, note that since res∗ext∗(η) = η, we have that ext∗ is

indeed surjective, and we are done. �

Remark 3.2.4. Note that if we now define Gm =
⊕

|i|≤m

∂i(C−∞(Rk))
∂xi we get that

Gm ' Fm/Fm−1.
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Exercise 3.2.5. Show that Gm and G(i) = ∂i(C−∞(Rk))
∂xi , where i is some multi-

index, are not invariant under changes of coordinates, that is we might have that

ϕ(Gm) 6= Gm and ϕ(G(i)) 6= G(i) for a diffeomorphism ϕ : Rn → Rn.

3.3. Functions and distributions on a Cartesian product. Consider the nat-

ural map

ϕ : C∞c (Rn)⊗ C∞c (Rk)→ C∞c (Rn × Rk), given by ϕ(f ⊗ g)(x, y) 7→ f(x)g(y).

Exercise 3.3.1. Show that this map is continuous and has a dense image.

Let us now define a natural map

Φ : C−∞(Rn)⊗ C−∞(Rk)→ C−∞(Rn × Rk) by

〈Φ(ξ ⊗ η), F 〉 := 〈η, f〉, where f is given by f(y) := 〈ξ, F |Rn×{y}〉.

Exercise 3.3.2. Show that this map is continuous and has a dense image.

Let us now denote by L(C−∞(Rn), C−∞(Rk)) the space of all continuous linear

operators, and define a natural map

S : C−∞(Rn × Rk)→ L(C∞c (Rn), C−∞(Rk)) by

〈(S(ξ))(f), g〉 := 〈ξ, ϕ(f ⊗ g)〉

Exercise 3.3.3. Show that the map S

(i) is continuous and has a dense image, where L(C∞c (Rn), C−∞(Rk)) is endowed

with the topology of bounded convergence.

(ii) maps C∞(Rn × Rk) to L(C∞c (Rn), C∞(Rk)) by the formula

(S(f)(g))(y) =
ˆ

Rn

f(x, y)g(x)dx.

Remark 3.3.4. (i) Note that the map S is similar to the matrix multiplication.

(ii) The map S is in fact an isomorphism. This statement is the Schwartz kernel

theorem, see [Tre67, Theorem 51.7]

(iii) There are two natural topologies one can define on a tensor product: the injec-

tive one and the projective one. If the spaces are nuclear these two topologies

coincide. We will not define these notions in the present course, but all the

topological vector spaces we consider are nuclear, and thus our tensor products

possess natural topology. If we complete C−∞(Rn) ⊗ C−∞(Rk) with respect

to this topology, the map Φ will extend, and will become an isomorphism.

The analogous statement for the map ϕ does not hold, but it will hold if we

omit the compact support assumption. In other words, the extension of ϕ to

the completed tensor product C∞(Rn)⊗̂C∞(Rk) by the same formula is an

isomorphism with C∞(Rn × Rk), see [Tre67, Theorem 51.6].
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4. p-adic numbers and `-spaces

One motivation to define the p-adic numbers comes from number theory. Assume

we are given a polynomial equation p(x) = 0 where p ∈ Z[x]. If it has an integral

solution x0 ∈ Z, then surely it satisfies the equation p(x) = 0 mod n for every

n ∈ N. Now, consider the converse question - if we know that it has a solution

modulo n for every n ∈ N, does it have an integral solution in characteristic zero?

In some cases, such as for quadratic forms, the answer, together with demanding

that there also exists a real solution, is yes (see the Hasse principle for more on

this). To know whether there exists a real solution, we can use simple methods

from analysis. The question of whether an equation has a solution mod n for every

n ∈ N can be simplified in two steps. Firstly, by the Chinese remainder theorem

it is enough to check whether the equation has a solution mod pn for every n ∈ N.

The second step is then by defining a ring Zp, called the ring of p-adic integers,

such that if there exists a solution x ∈ Zp it implies that there is a solution mod

pn for every n ∈ N. The field Q of p-adic numbers is then defined to be the field of

fractions of Zp.

A different motivation for introducing the p-adic numbers comes from a more an-

alytic point of view. One construction of the real numbers is via completing Q

with respect to its absolute value. An interesting question is whether this can be

generalized, that is what are the possible absolute value-like functions on Q and

their completions. It turns out that besides the standard and the trivial absolute

values, every absolute value (up to equivalence) is a p-adic absolute value (this is

essentially Theorem 4.1.8 below). The p-adic numbers are then obtained as the

completion of Q with respect to such an absolute value.

In this manuscript we take the second approach, starting with defining what prop-

erties we demand from an absolute value function.

4.1. Defining p-adic numbers.

Definition 4.1.1. A topological field is a field F , together with a topology, such

that addition, multiplication and the multiplicative and additive inverses are con-

tinuous operations with respect to this topology.

Definition 4.1.2. Given a field F , an absolute value is a function | ∙ | : F → R≥0

that satisfies:

(1) The triangle inequality : |x + y| ≤ |x|+ |y|.

(2) |x||y| = |xy|.

(3) |x| = 0⇔ x = 0.

If furthermore |x+y| ≤ max{|x|, |y|}, we say that |∙| is a non-Archimedean absolute

value (and Archimedean otherwise).



GENERALIZED FUNCTIONS LECTURES 30

For topological fields we demand the absolute value to be a continuous map. Notice

that every absolute value satisfies |1| = 1 (as |1| = |1| ∙ |1|, and |1| 6= 0).

Example 4.1.3. The following are absolute values:

(1) The trivial absolute value, defined by |x|0 :=






0 x = 0

1 x 6= 0.

(2) The standard absolute value on R: | ∙ |∞ =






x x > 0

−x x ≤ 0.

Definition 4.1.4. Let p be a prime number. We define the p-adic absolute value

of x ∈ Q by

|x|p =






p−n, for x 6= 0,

0, for x = 0,

where x = pn a
b and a, b ∈ Z, are coprime to p.

Exercise 4.1.5. Show that | ∙ |p is indeed an absolute value on Q, and that it is

non-Archimedean.

Definition 4.1.6. Two absolute values | ∙ | and | ∙ |′ on F are called equivalent, and

denoted | ∙ | ∼ | ∙ |′ if they induce the same topology on F .

Exercise 4.1.7. Let | ∙ | and | ∙ |′ be two absolute values on a field F . Show that

the following are equivalent:

(1) | ∙ | and | ∙ |′ are equivalent.

(2) There exists α ∈ R>0 such that | ∙ | = (| ∙ |′)α.

(3) Every sequence which is Cauchy with respect to | ∙ | is Cauchy with respect

to | ∙ |′.

Theorem 4.1.8. [Ostrowski’s Theorem] Every absolute value | ∙ | on Q is equivalent

to either | ∙ |p for a prime p, the standard absolute value | ∙ |∞ on Q induced from

R, or the trivial absolute value | ∙ |0.

Proof. Let | ∙ | be an absolute value, we show it must be one of the above by

cases. Assume | ∙ | is non-Archimedean, i.e. |x + y| ≤ max{|x|, |y|}, and set a =

{x ∈ Z : |x| < 1}. This set is non empty as |0| = 0, and since we assume | ∙ | is

non-Archimedean it is an ideal of Z since,

|x + . . . + x| ≤ |x|,(1)

and thus if x ∈ a, meaning that |x| < 1, then xy = x + . . . + x︸ ︷︷ ︸
y times

∈ a. Consider a

prime p. If |p| = 1 for every prime, we get that |x| = 1 for every 0 6= x ∈ Q,

as | 1p | = |p|−1, and thus | ∙ | is the discrete absolute value. Thus we can assume

that there exists p ∈ a (note that for every integer |m| ≤ 1 by (1)), implying that
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pZ ⊆ a ( Z and consequentially pZ = a. Now, if we put s = − log |p|
log p , we see that

|p| = p−s. Taking x = pn a
b where a, b, n ∈ Z and a and b are coprime to p we get:

|x| = |pn a

b
| = |pn| |

a

b
|

︸︷︷︸
=1

= |p|n = p−ns = |x|sp,

showing | ∙ | is equivalent to | ∙ |p.

Now, assume | ∙ | is an Archimedean absolute value. We must have that |n| ≥ 1 for

all non-zero integers n ∈ Z. Otherwise, let n be the smallest positive number such

that |n| < 1, and for every n < x ∈ N write it in base n:

(2) x = a0 + a1n + a2n
2 + . . . + arn

r, for 0 ≤ ai ≤ n− 1, nr ≤ x.

We have |ai| ≤ ai ≤ n, thus

|x| ≤
r∑

i=0

|ain
i| ≤

r∑

i=0

n|n|i =
n(1− |n|r+1)

1− |n|
≤

n

1− |n|
.

Since n
1−|n| is independent of r, it bounds every x > n, and thus we must have that

|x| ≤ 1 for every x > n as otherwise |x|k > n
1−|n| for k large enough. We get that

|x| ≤ 1 for x < n in the same way by considering n < xk for k large enough. But

this means that |x| ≤ 1 for all x ∈ Z, so by the previous step it is equivalent to a

p-adic absolute value, in contradiction to the fact that | ∙ | is Archimedean.

We can thus assume |n| ≥ 1 for all n ∈ N . Recall the number r defined in (2) and

note that r ≤ log x
log n . We now have:

|x| ≤
r∑

i=0

|ai||n|
i ≤

(

1 +
log x

log n

)

n|n|
log x
log n .

Using these bounds for xk:

|x|k ≤ (1 + k
log x

log n
)n|n|

k log x
log n ,

implying

|x|
1

log x ≤
r∑

i=0

|ai||n|
i ≤ k

√

(1 + k
log x

log n
)n|n|

1
log n .

By taking k → ∞, we get |x|
1

log x ≤ |n|
1

log n . But by interchanging x and n we can

get that |n|
1

log n ≤ |x|
1

log x (note that if n < x we can repeat this process for x and

nk for k large enough). Thus |x|
1

log x = |n|
1

log n = e
log |x|
log x is constant, implying that

s = log |x|
log x = log |n|

log n is constant. Now, note that |x| = xs for every x and get that,

|x| = xs = |x|s∞,

finishing the proof. �
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Exercise 4.1.9. Show that given a field F and an absolute value | ∙ | on it the

topology it defines makes F a topological field, i.e. that addition, multiplication,

and the inverse operations are continuous.

Exercise 4.1.10. Non-Archimedean locally compact fields such as Qp have some

interesting properties. Prove the following two:

(1) For every open ball B(x, r) = {y ∈ Qn
p : |xi − yi| < r} of radius r with

center x we have that B(x, r) = B(x, r) for every x′ ∈ B(x, r).

(2) Any two p-adic balls B(x, r) and B(x′, r′) in Qn
p are either distinct or one

contains the other.

We can now define the p-adic numbers.

Definition 4.1.11. Let p be a prime number. We define the field of p-adic numbers

Qp to be the completion of Q with respect to the absolute value | ∙ |p.

Remark 4.1.12.

(1) The completion is defined just as we did in the case of the Archimedean

norm on Q; by equivalence classes of Cauchy sequences. Therefore, any

element a ∈ Qp is represented by a Cauchy sequence {an}∞n=1 ⊂ Q with

respect to | ∙ |p.

(2) We get a space which is an uncountable field of characteristic 0, not alge-

braically closed, locally compact (every point has a compact neighborhood)

and totally disconnected, i.e. every connected component is a point.

Definition 4.1.13. We define the p-adic integers Zp to be the unit disc in Qp,

explicitly Zp = {x ∈ Qp : |x|p ≤ 1}.

Exercise 4.1.14. Show that the p-adic absolute value extends from Q to Qp, that is

show that for every Cauchy sequence {an}∞n=1 of elements in Q the limit lim
n→∞

|an|p
exists.

Remark 4.1.15. Notice that just like R, this completion is not algebraically closed.

Try to find an equation in Qp for some p which does not have a solution Qp.

4.2. Misc. -not sure what to do with them (add to an appendix about

p-adic numbers?)

Theorem 4.2.1 (Taken from Koeblitz Theorem 2 page 11). Every equivalence

class a ∈ Qp for which |a|p ≤ 1 has exactly one representative Cauchy sequence of

the form {ai}∞i=1 for which:

1) 0 ≤ ai < pi for i = 1, 2, . . .

2) ai ≡ ai+1(mod(pi)) for i = 1, 2, . . .

For the proof we will use the following lemma:
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Lemma 4.2.2 (Taken from Koeblitz page 12). If x ∈ Q and ‖x‖p ≤ 1, then for

any i there exists an integer α ∈ Z such that ‖α− x‖p ≤ p−i. The integer α can be

chosen in the set {0, 1, 2, . . . pi − 1}.

Proof. Let x = a/b written in the form where (gcd(a, b) = 1). Since ‖x‖p ≤ 1 it

follows that p does not divide b and therefore b and piare relatively prime. Then

we can find m,n ∈ Z such that bm + npi = 1 . The intuition is that bm is close to

1 up to a small p-adic length so it is a good approximation to 1 so am is a good

approximation to a/b. So we pick α = am and get:

‖α− x‖ = ‖am− a/b‖ = ‖a/b‖ ∙ ‖bm− 1‖ ≤ ‖bm− 1‖ =
∥
∥npi

∥
∥ ≤ 1/pi

Note that we can add multiples of pi to α and still have
∥
∥α− k ∙ pi − x

∥
∥ ≤ max(1/pi, 1/pi) ≤ 1/pi.

Therefore we can assume that α ∈ {0, . . . .pi − 1}. �

Proof of Theorem 4.2.1. At first we prove the uniqueness: If {a′i} is a different

sequence satisfying (1) and (2) and if there exists i0 such that ai0 6= a′i0 then

ai 6= a′i(mod(pi0)) for every i > i0. Therefore ‖ai − a′i‖ > 1/pi0 so {a′i}, {ai} are

not equivalent.

Now we prove existence: Suppose we have a Cauchy sequence {bi} ∈ Qp, we want

to find an equivalent sequence {ai} with the above property. Let Nj be the number

such that for every i, i′ > Nj we have ‖bi − bi′‖ < p−j , and we can choose Nj to

be strictly increasing with j, and Nj > j. Observe that ‖bi‖ ≤ 1 if i > N1. Indeed,

for all i′ > N1 we have that ‖bi − bi′‖ < 1/p , ‖bi‖ ≤ max(‖bi′‖ , ‖bi − bi′‖) and for

i′ →∞ we have that ‖bi′‖ → ‖a‖p ≤ 1.

Now we use the lemma and get a sequence {aj} when 0 ≤ aj < pj such that
∥
∥aj − bNj

∥
∥ < p−j . We claim that{aj} is equivalent to {bi}, and satisfies the condi-

tions of the theorem. It indeed satisfies the conditions as:

‖aj+1 − aj‖ =
∥
∥aj+1 − bNj+1 + bNj+1 − bNj

− (aj − bNj
)
∥
∥

≤ max(
∥
∥aj+1 − bNj+1

∥
∥ ,
∥
∥bNj+1 − bNj

∥
∥ ,
∥
∥aj − bNj

∥
∥) ≤ p−j

So aj+1 − aj has at least pjas a common divisor as required.

Furthermore, for any j and any i > Nj we have

‖ai − bi‖ =
∥
∥ai − aj + aj − bNj − (bi − bNj )

∥
∥ ≤ max(‖ai − aj‖ ,

∥
∥aj − bNj

∥
∥ ,
∥
∥bi − bNj

∥
∥) ≤ p−j .

So {ai} v {bi}. �

Now, if we have some {a} ∈ Qp with ‖a‖ ≥ 1 then there exists some m such that

‖a ∙ pm‖ ≤ 1 and we have numbers with negative powers. Therefore we can present
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the p-adic numbers as:

Qp := {
∞∑

i=−k

ai ∙ p
i, where ai ∈ {0 . . . pi − 1}}.

We define the ring of integers , denoted Zp as Zp := {x ∈ Qp| ‖x‖p ≤ 1} or equiv-

alently Zp := {
∑∞

i=0 ai ∙ pi, where ai ∈ {0 . . . pi − 1}} or equivalently Zp := Z‖ ‖p
-

the closure of Z with respect to the p-adic norm. Notice that Zp is indeed a ring

and that the only invertible elements are x ∈ Zp with ‖x‖p = 1.

4.3. p-adic expansions. We want to write the p-adic expansions of elements q

in Q. If q ∈ N, that’s just writing its p-base expansion. For example, (126)5 =

” . . . 002001.” Let x := m
n be some rational number, with (n,m) = 1. It is enough

to describe the expansion when p - n (that is, when x ∈ Zp ∩ Q) as otherwise we

can multiply x by pk for some k, calculate the expansion, and move the point k

places to the left.

We can’t take remainder of x modulo p, as with integers. Instead, we can calculate

the fraction x = m
n in Fpk for k ∈ N. Thus, the expansion of x in Qp is calculated

inductively:

• Write the digit x0 := [m
n ] ∈ Fp.

• The nominator of the difference m
n −x0 = m−n∙x0

n is divisible by p. Redefine

our fraction to be x := 1
p ∙ (

m
n − x0), and continue inductively.

Example 4.3.1. Calculate 1
2 ∈ Q7. We start by solving the equation 2x0 =

1(mod7). The answer is x0 = 4. In the second step we calculate 1
7 ( 1

2 − 4) = x1. So

2 ∙ (7x1 + 4) = 1(mod49). Therefore x1 = 3. We continue by induction and get the

required expansion.

Every ball in Qp is a disjoint union of p balls. For p = 2, the ball Z2 = Bc(0, 1) =

Bo(0, 2) consists of numbers with no digits to the right of the point. It’s a disjoint

union of two balls, B0 and B1 - where each Bi consists of all numbers ending with

the digit ′i′. Similarly, B0 = B00

⋃
B01, B1 = B10

⋃
B11, where the elements in

Bij end with the digits ′ij′. And so on.

This recursive structure implies p-adic integers are homeomorphic to the Cantor

set.

== Appendix material ends here ==

Exercise 4.3.2. Show that
∞∑

n=0
an converges in Qp ⇐⇒ |an|p → 0.

Exercise 4.3.3. Show Zp is homeomorphic to the Cantor set as topological spaces,

where the Cantor set has its usual topology induced from the real numbers. In

particular this shows Zp is a compact set.

4.4. Inverse limits.
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Definition 4.4.1. Let A1 ← A2 ← A3 ← . . . be a sequence of Abelian groups

{Ai} together with a system of homomorphisms {fij : Aj → Ai | j > i}, such that

fik = fij ◦ fjk, ∀i ≤ j ≤ k. An inverse limit of a sequence of Abelian groups is

defined by the collection of compatible sequences:

lim←−Ai = {a ∈
∏

i∈N

Ai : fij(aj) = ai, ∀i ≤ j ∈ N}.

Exercise 4.4.2. Prove the following:

(1) Let Ai := Z/piZ, and let fij be the projection Z/pjZ → Z/piZ. Show that

lim←−Z/pnZ ' Zp as a topological ring.

(2) Qp is the localization of Zp by p.

(3) Prove that Qp is homeomorphic to the Cantor set minus a point.

(4) Prove that Qn
p and Qp are homeomorphic.

(5) Let U ⊂ Qn
p be an open set. Show that either U is homeomorphic to the

Cantor set, or to Cantor set minus a point.

4.5. Haar measure and local fields. Let X be a topological space and let Cc(X)

be the space of continuous functions of compact support on X. Recall that the space

of continuous linear functionals Cc(X)∗ can be identified with the space of regular

Borel measures on X.

Theorem 4.5.1 (Haar’s theorem). Let G be a locally compact topological group.

Then:

(1) There exists a measure μ on G with values in C such that μ(U) = μ(gU)

for any measurable set. Equivalently, there exists φ ∈ Cc(G)∗ such that for

any g ∈ G we have that φ(f) = φ(fg) where fg(x) = f(g−1 ∙ x).

(2) This measure is unique up to a scalar.

Exercise 4.5.2.

(1) Prove Haar’s theorem for (Qp, +).

(2) Given a Haar measure μ, we can define another invariant measure μa(B) =

μ(aB) for any a ∈ Qp. Show that μa = |a| ∙ μ.

Definition 4.5.3. A local field is a non-discrete topological field which is locally

compact.

Theorem 4.5.4. Any local field F is isomorphic as a topological field to one of the

following :

(1) R or C (if F is Archimedean).

(2) A finite extension of Qp for some prime p (if F is non-Archimedean of

characteristic 0).

(3) The field of formal Laurent series Fps((t)) = {
∑∞

i=−k ait
i | ai ∈ Fps} for

some prime p and natural number s (if F is non-Archimedean of charac-

teristic p).
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Proof. The main steps of the proof are as follows:

(1) Using Haar’s theorem define a measure on (F, +). Using this measure

we define an absolute value, up to scalar multiplication, that is, we set

|a| = α(a) where μa = α(a)μ.

(2) We show that for every local field the absolute value which was defined in

(1) defines its topology.

(3) We prove that every compact metric space is complete.

(4) Every local field of characteristic 0 contains Q and one of its completions.

This means that F contains R if it is archimedean, and Qp if it is non-

archimedean.

(5) We show that if F has characteristic 0, then F must be a finite extension

of R or Qp. Otherwise, if it is a non algebraic extension it must be non-

locally-compact.

(6) We show that any finite extension of Qp, R or Fq((t)) is indeed a local field.

(7) For char(F ) 6= 0 we show that F contains a transcendental element, name

it t, and show that it contains Fq((t)). We show that F must be a finite

extension of Fq((t)).

�

4.6. Some basic properties of `-spaces.

Definition 4.6.1. An `-space X is a Hausdorff, locally compact and totally dis-

connected topological space.

Remark 4.6.2. We usually add the demand X is σ-compact, that is it is the union

of countably many compact spaces. Such a space is also sometimes called countable

at ∞.

Exercise 4.6.3. Find a compact `-space X and U ⊆ X such that U is not countable

at ∞.

Exercise 4.6.4. Show the following:

(1) Any non-archimedean local field is an `-space.

(2) Finite products, and open or closed subsets of an `-space are `-spaces. Note

that any subset of a totally disconnected topological space is totally discon-

nected.

Proposition 4.6.5. Let X be an `-space, then it has a basis of clopen (that is

closed and open) sets (i.e. it is zero-dimensional).

Proof. Taken from [AT08, 3.1.7]. Assume we have a point x ∈ W ⊆ K, with W

open and K = W compact and set Px = {U ⊆ K : U is clopen in K and x ∈ U}

and P =
⋂

V ∈Px

V . Note that K ∈ Px, thus P 6= ∅.
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Now, we claim that for every closed subset F of K such that F ∩ P = ∅ there

exists some W ∈ Px such that W ∩ F = ∅. Indeed, set η = {U ∩ F : U ∈ Px}. By

assumption, it is a family of non-empty closed subsets of F , and since F is compact if
⋂

V ∈η

V = ∅, then there is a finite collection of Vi such that
n⋂

i=0

Vi =
n⋂

i=0

Ui ∩ F = ∅

(note that this is an equivalent characterization of compactness via closed sets).

Now set W :=
n⋂

i=0

Ui ∈ Px. Since Px is closed under finite intersections, W ∈ Px.

Now we wish to show that P = {x}. Assume the contrary, i.e. P 6= {x}. P

is disconnected since X is totally disconnected, so there exists non-empty closed

x ∈ A and B such that A ∪ B = P and A ∩ B = ∅ which are open in K. Since K

is regular, (Hausdorff + locally compact implies regular), there exist open disjoint

sets U 3 U and V ⊇ B in K, where we have F = K\(U ∪ V ) closed in K and

P ∩F = ∅. We showed that for such F we can find W ∈ Px such that F ∩W = ∅.

Now, observe that the open set G = U ∩W is also closed in K as,

G = U ∩W ⊆ (K\V ) ∩ (K\F ) = K\(V ∪ F ) ⊆ U.

Therefore G ⊆ U ∩W = G (W was closed). Since x ∈ G, we have G ∈ Px, but as

G∩B = ∅, we get that P = A∪B is not contained in G, which is a contradiction,

implying P = {x}.

Since for every open set x ∈ O in K the set K\O is compact and x /∈ K\O, it

follows from the above claim that O contains some V ∈ Px.

Now, given an open set x ∈ A in X, we have that W ∩A ⊂ K ∩ A, is open in K,

and thus contains a clopen U in the topology of K ∩ A from the above. Now, U is

closed in K and thus closed in X, and open in W ∩A but contained in W ∩A and

thus open in X. This finishes the proof. �

Exercise 4.6.6. Show that every σ-compact, first countable `-space X is homeo-

morphic to one of the following:

(1) Countable (or finite) discrete space.

(2) Cantor set.

(3) Cantor set minus a point.

(4) Disjoint union of (2) or (3) with (1).

Definition 4.6.7. A refinement of an open cover
⋃

i∈I

Ui = X is an open cover

{Vj}j∈J such that for any j, we have that Vj ⊆ Ui for some i.

Exercise 4.6.8.

(1) Let C ⊆ X be a compact subset of an `-space. Then any open cover has an

open compact disjoint refinement.

(2) Let X be a σ-compact `-space, then any open cover has an open compact

disjoint refinement.
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4.7. Distributions on `-spaces.

Definition 4.7.1. Let X be an `-space. A function f : X → C is said to be smooth

if it is locally constant, that is for every point x ∈ X there is an open neighborhood

x ∈ U ⊆ X such that the restriction f |U is constant. Similarly to the archimedean

case, the space of smooth functions on X is denoted by C∞(X).

Proposition 4.7.2. Let X be an `-space. Show that smooth functions separate the

points in X. Assuming this, the Stone-Weierstrass theorem implies that C∞(X) is

dense in the space of all continuous functions C(X).

Proof. Let x, y ∈ X. As X is Hausdorff and has a basis of open compact, sets

there exists disjoint Ux and Uy which are compact and open. Set f|Ux
= 1 and

f|X\Ux
= 0. Then f is smooth and f(x) = 1, and f(y) = 0. �

Definition 4.7.3. The space of smooth functions with compact support, C∞c (X) ⊂

C∞(X), are called Schwartz functions. We denote them by S(X). We also denote

Dist(X) = C∞c (X)∗ = S∗(X). We consider S(X) as a vector space, without any

topology.

Exercise 4.7.4. Let X be an `-space, show that S∗(X) is a sheaf.

Remark 4.7.5. In Rn, the Schwartz functions are the functions whose derivatives

decrease faster than any polynomial, and there is a strict containment C∞c (Rn) ⊂

S(X) ⊂ C∞(Rn). We will define them in the next lectures.

4.8. Distributions supported on a subspace. Recall that over R, the descrip-

tion of distributions on a space X that are supported on a closed subspace Z is

complicated (we did that using filtrations). Distributions on `-spaces behave much

better.

Definition 4.8.1. Let X be an `-space, we define the support of a distribution

ξ ∈ S∗(X) as we did for distributions on real spaces, by supp(ξ) =
⋂

ξ|Dc
β
≡0

Dβ, where

Dβ ⊂ X are taken to be closed.

Proposition 4.8.2. (Exact sequence of an open subset). Let U ⊆ X be open and

set Z = X \ U . Then 0→ S(U)→ S(X)→ S(Z)→ 0 is exact.

Proof. It is clear that extension by zero S(U)→S(X) is injective, we show that

S(X)→S(Z) is onto. Let f ∈ S(Z). As f is locally constant and compactly

supported, we may assume that Z is compact and has a covering by a finite number

of open sets Ui (open in Z) with f |Ui
= ci. Notice that each Ui is of the form

Ui = Wi ∩Z, where Wi is open in X. Therefore, Z ⊆
n⋃

i=1

Wi, and as Z is compact,

we may refine {Wi}ni=1 and get that Z ⊆
⋃m

j=1 Vj where Vj are open, compact
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mutually disjoint and Vj ∩ Z ⊆ Wi ∩ Z = Ui for some i. We can thus extend f by

setting f(x) = ci for x ∈ Vj ⊆Wi and zero otherwise.

It is left to prove exactness at S(X). Let f ∈ S(X) such that f |Z = 0. As f is

locally constant, there is an open set Z ⊆ V such that f |V = 0. This implies that

f is supported on Zc = U and therefore f |U ∈ S(U). �

Corollary 4.8.3. Let X be an l-space, and Z ⊂ X a closed subspace. Then:

(1) The inclusion i : S∗(Z)→ S∗Z(X) is an isomorphism.

(2) There is an exact sequence 0→ S∗(Z)→ S∗(X)→ S∗(X\Z)→ 0.

Remark 4.8.4.

(1) Note that if we replace X by R, then the map i is not onto. For example,

for Z := {0} ⊂ R, the derivatives δ
(n)
0 ∈ S∗Z(Rn) but they are not in the

image of i as in that case S∗(Z) ' C.

(2) This can be corrected by replacing S∗(X) by S∗Z(X). Thus the following is

an exact sequence:

0→ S∗Z(X)→ S∗(X)→ S∗(X\Z).

Exercise 4.8.5. Let V be a vector space (not necessarily finite dimensional) over

a field K, and L ⊂ V a linear subspace. Show that ∀f ∈ L∗ ∃g ∈ V ∗ such that

g|L ≡ f . Use Zorn’s lemma.

Proposition 4.8.6. Let X,Y be `-spaces. Given f1 ∈ S(X) and f2 ∈ S(Y ),

consider the bilinear map φ : S(X)⊗ S(Y )→ S(X × Y ) via

(φ(f ⊗ g))(x, y) := f(x) ∙ g(y).

Then φ is an isomorphism of vector spaces.

Proof. It is easy to see that the image lies in the space of locally constant functions.

We first prove this map is surjective. Let f ∈ S(X × Y ), then f =
∑

cUi×Vi and

by refining {Ui × Vi}ni=1 we may assume that they are disjoint (note we are using

the fact that suppf is compact). Since each term cUi×Vi
∈ Imφ we are done.

To show φ is injective, assume that

φ(
k∑

i=1

fi ⊗ gi))(x, y) :=
k∑

i=1

fi(x) ∙ gi(y) = 0.

We can assume that {fi} are linearly independent and that {gi} are non zero and

that k is minimal with respect to these demands. If we take some y such that

g1(y) 6= 0 we get that for any x ∈ X, we have
∑k

i=1 fi(x) ∙ gi(y) = 0. This implies

that fi are linearly dependent. Contradiction. Hence gi ≡ 0 for all i, implying

fi ⊗ gi ≡ 0, contradicting the assumption that k is minimal. �

Define a natural map

S : S∗(X × Y )→ HomF (S(X),S∗(Y )) by
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〈S(ξ)(f), g〉 := 〈ξ, φ(f ⊗ g)〉.

Exercise 4.8.7.

(i) Show that the map S is a linear isomorphism.

(ii) Assume X = Fn, Y = Fm and let μ and ν be Haar measures on X and

Y . Embed C∞(X × Y ) ↪→ S∗(X × Y ) and C∞(Y ) ↪→ S∗(Y ) by multipli-

cation by the corresponding Haar measures. Then S maps C∞(X × Y ) to

HomF (S(X), C∞(Y )) by the formula

(S(f)(g))(y) =
ˆ

X

f(x, y)g(x)μ.

Exercise 4.8.8. Consider the natural map

Φ : S∗(X)⊗ S∗(Y )→ S∗(X × Y ) given by

〈Φ(ξ ⊗ η), F 〉 := 〈η, f〉, where f is given by f(y) := 〈ξ, F |X×{y}〉.

(i) Show that Φ is not onto. Hint: take X = Y = Z.

(ii) Endow S(X × Y ) with the weak topology, i.e. ξn → ξ iff 〈ξn, f〉 → 〈ξ, f〉 for

every f ∈ S(X × Y ). Show that the map Φ has dense image.

5. Vector valued distributions

Definition 5.0.1. Let F be either R or C, let X be a locally compact space and

let V be a vector space over F . We define C∞c (X,V ) to be the space of smooth

functions on X with compact support with values in V . Here the smoothness of a

function is the usual coordinate-wise one.

Exercise 5.0.2. Let V be a topological vector space over F . Prove that C∞c (X,V ) ∼=
C∞c (X) ⊗F V as topological vector spaces, where the topology on C∞c (X) ⊗F V is

given by choosing a basis to identify V with Fn and by then taking the product topol-

ogy on C∞c (X)⊗F Fn ∼= (C∞c (X))n. In particular, this topology is independent of

a choice of a basis.

5.1. Smooth measures. Recall that a measure is a σ additive map from the σ-

algebra of Borel subsets of X into R. For us, the following characterization is

better:

Definition 5.1.1. Let X be a locally compact topological space. The space of signed

measures on X is Cc(X)∗, i.e. all continuous functionals on Cc(X) (and all linear

functionals if X is an `-space). A signed measure is a measure if it is non-negative

on non-negative functions.

As the space Cc(X) is larger than C∞c (X), its dual is smaller. Explicitly, Cc(X)∗ ⊆

C∞c (X)∗ where the inclusion is the dual of the dense embedding C∞c (X) ↪→ Cc(X).

If X is a group then in Cc(X)∗ there is a one-dimensional space of Haar measures,

which for X = Rn is just the space of multiples of the Lebesgue measure.
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Remark 5.1.2. We usually consider the space of complex valued measures. As in

the real case, it can naturally be identified with Cc(X)∗.

Definition 5.1.3. Let V be a locally compact vector space (note that it must be

finite dimensional as otherwise it is not locally compact). The space of Haar mea-

sures on V , denoted Haar(V ) ⊆ Cc(V )∗, is the space of translation invariant mea-

sures (which exists by Haar’s theorem).

The fact that this space is one dimensional is non-trivial, but the intuition is as

follows: A Borel measure on V is determined by its value on cubes with rational

coordinates, as they form basis of the topology. It is not hard to see that if the

measure is translation invariant, the measures of these cubes are determined by the

measure of the unit cube.

Definition 5.1.4. Let V be a topological vector space. A measure μ on V is called

a smooth measure if μ ∈ C∞(V, Haar(V )), i.e. μ = f(x)h where f is smooth and h

is a Haar measure. We denote this space by μ∞(V ), and the space of all compactly

supported measures inside it by μ∞c (V ).

Exercise 5.1.5 (*). Let V be a vector space over a local field and let ξ ∈ C∞c (V )∗

be translation invariant. Prove that ξ is a Haar measure, i.e. show it is a mea-

sure (note that C∞c (V )∗ ! Cc(V )∗ so a-priori there might be translation invariant

distributions which are not measures).

Remark 5.1.6. Note that by definition μ∞c (V ) ' C∞c (V ) ⊗ Haar(V ) canonically.

We also have that μ∞c (V ) ' C∞c (V ) by choosing a Haar measure. This isomorphism

is not canonical.

5.2. Generalized functions versus distributions. We are now in a position to

understand the difference between generalized functions and distributions.

A distribution on V is a continuous functional on the space of smooth functions

with compact support:

Dist(V ) := C∞c (V )∗.

A generalized function is a continuous functional on the space of smooth measures

with compact support on V , i.e.

C−∞(V ) := C∞c (V, Haar(V ))∗.

As functions can be integrated against smooth measures of compact support, we

have a bilinear pairing

C∞c (V, Haar(V ))× C∞c (V )
〈∙,∙〉
→ C.
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Thus we have the following picture:

C−∞c (V )
'
⇐⇒ Dist(V )

j ↑ i ↑

C∞c (V )
'
⇐⇒ μ∞c (V )

where the diagonals are dual to each other. Both inclusions i and j are obtained

via the pairing 〈∙, ∙〉.

Exercise 5.2.1. Show that Haar(V ) ' Dist(V )V or equivalently that Dist(V )V is

one dimensional, for any finite dimensional vector space V over a local field F .

Definition 5.2.2. We can also define generalized functions with values in a vector

space by either:

1) C−∞(V,E) := C−∞(V )⊗ E

2) C−∞(V,E) := C∞c (V, Haar(V )⊗ E∗)∗

and then C−∞(V, Haar(V )) := C−∞(V )⊗Haar(V ) = C∞c (V )∗ = Dist(V ).

Exercise 5.2.3.

(1) Show that the two definitions of C−∞(V,E) are equivalent.

(2) Describe an embedding C∞c (V,E) ↪→ C−∞(V,E).

5.3. Some linear algebra.

Definition 5.3.1. Let V be a finite dimensional vector space over a local field F .

(1) We define the exterior algebra as

Λ(V ) =
∞⊕

k=0

Λk(V ),

where Λ0(V ) = F , and for k > 0 we have Λk(V ) = (
k⊗

j=1

V )/Jk where Jk is

the vector space generated in
k⊗

j=1

V by the set

{v1 ⊗ . . .⊗ vk : vi = vj for some i 6= j}.

(2) We define the symmetric algebra Sym(V ) as

Sym(V ) =
∞⊕

k=0

Symk(V ),

where Sym0(V ) = F , and for k > 0 we have Symk(V ) = (
k⊗

j=1

V )/Ik where

Ik is the vector space generated in
k⊗

j=1

V by the set

{v1 ⊗ . . .⊗ vk − vσ(1) ⊗ . . .⊗ vσ(k) : σ ∈ Sk}.
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Note that this implies that the elements of the exterior algebra are anti-symmetric

(i.e. v ⊗ u = −u ⊗ v), and that Λk(V ) = 0 if k > dim V , since after choosing a

basis for V and decomposing an element in Λk(V ) to basic tensors, there must be

a basis element which appears at least twice.

Definition 5.3.2. Let V be an n-dimensional vector space over a local field F with

absolute value | ∙ |.

(1) We define the space of k-forms Ωk(V ) = Λk(V ∗).

(2) For a 1-dimensional space V we define a real vector space

|V | := {f : V ∗ → R : ∀α ∈ F, f(αv) = |α|f(v)}.

(3) We define the densities of V as

Dens(V ) := {f : V n → R : f(Av1, . . . , Avn) = | det(A)|f(v1, . . . , vn)}.

Now, let Ωtop(V ) be the space of anti-symmetric n-forms on V . It is a one-

dimensional space, and Ωtop(V ) = Λn(V ∗).

Exercise 5.3.3. Let B be the space of bases of V .

(1) Show that Ωtop(V ) = {f : B → F : f(B1) = det(MB2
B1

)f(B2)∀B1, B2 ∈ B}

where MB2
B1

is the respective base changing matrix.

(2) Show that Ωtop(V ) = {f : V n→F : f(Av1, . . . , Avn) = det(A)f(v1, . . . , vn)}.

Definition 5.3.4. For a finite dimensional real vector space V define the orienta-

tion line

Ori(V ) := {f : B → R : f(B1) = sign(det(MB2
B1

)) ∙ f(B2)}.

Exercise 5.3.5. Using the tensor product of the natural maps Ωtop(V )→ Dens(V )

and Ωn(V )→ Ori(V ) show that Ωtop(V ) = Dens(V )⊗Ori(V ).

Note that the orientation line is a linear space and not just two points as one is

used to think about orientations. However, we have two distinguished points in

Ori(V ), the two functions with absolute value 1. These are the usual orientations

we are used to thinking about.

Proposition 5.3.6. Show that there is a canonical isomorphism Dens(V ) ' Haar(V ).

Proof. A Haar measure can be viewed both as a functional on compactly supported,

continuous functions and as a function on a Borel algebra. The absolute value

of the determinant | det | : V n → R is an element of the one dimensional space

|Ωn(V )| (recall that for finite dimensional spaces V ∼= V ∗∗). We have a canonical

isomorphism by choosing a basis {ei}ni=1 for V , and bijecting between the element

ϕ ∈ |Ωn(V )| such that ϕ(e1, . . . , en) = 1 with the Haar measure normalized such

that it has the value 1 on the parallelogram spanned by the vectors {ei}ni=1. This is

independent of choice of basis since given a different basis both elements would be
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multiplied by the same factor of | det(M)|, where M is the change of basis matrix

with respect to these two bases. �

Exercise 5.3.7. Show the following:

(1) |L⊗M | = |L| ⊗ |M | for two one dimensional vector spaces L and M .

(2) |Ωtop(V )| ' Dens(V ).

(3) If W ⊆ V then Haar(W )⊗Haar(V/W ) ∼= Haar(V ).

(4) If W ⊆ V then Ωtop(V ) ∼= Ωtop(W )⊗ Ωtop(V/W ).

(5) If F = R, then Ori(V ) ∼= Ori(W )⊗Ori(V/W ).

5.4. Generalized functions supported on a subspace. Let W ⊆ V be lin-

ear spaces. We showed that over a non-archimedean local field F we have that

DistW (V ) = Dist(W ), and for F = R we described DistW (V ) for the case where

V = Rn and W = Rk. The goal now is to describe distributions on V supported

on W for any real linear spaces W ⊆ V . Recall we have defined a (non-exhausting)

filtration Vm(W ) on C∞c (V ) by

Vm(W ) = {f ∈ C∞c (V )|∀i ∈ Nn−k
0 where |i| ≤ m it holds that

∂if

(∂x)i
|W = 0}.

where dim(V ) = n and dim(W ) = k. We then defined Fm(W ) ⊆ DistW (V ) by

Fm(W ) = (C∞c (V )/Vm(W ))∗ := {ξ ∈ Dist(V )|〈ξ, f〉 = 0 for any f ∈ Fm
W (V )}.

Note that we have that Fm(W ) = Vm(W )⊥ where V ⊥2 := (V1/V2)
∗ for two vector

spaces V2 ⊆ V1. We want to describe Fm(W )/Fm−1(W ) in canonical terms, that is

such that the isomorphism will respect diffeomorphisms of V which preserve W .

Theorem 5.4.1. We have an isomorphism of vector spaces which commutes with

diffeomorphisms of V which preserve W :

Fm(W )/Fm−1(W ) ∼=can C∞c (W, Symm(W⊥))∗ ' Dist(W )⊗ Symm(V/W ).

The proof of the theorem is based on the following lemma:

Lemma 5.4.2. Fm(W )/Fm−1(W ) ∼= (Vm−1(W )/Vm(W ))∗.

Proof. For any φ ∈ Fm(W ), the restriction φ|Vm−1(W ) vanishes on Vm(W ), and

we send it to the induced functional on Vm−1(W )/Vm(W ) which we denote by

φ̃. This is an injective morphism, since if φ̃ = 0 then φ|Vm−1(W ) = 0 so φ ∈

Fm−1(V )W . Surjectivity follows from the Hahn-Banach theorem in the following

way: any ϕ ∈ (Vm−1(W )/Vm(W ))∗ can be extended to ϕ̃ ∈ (C∞c (V )/Vm(W ))∗ =

Fm(W ). Therefore [ϕ̃] + Fm−1(W ) 7→ ϕ. �

Hence, in order to prove the theorem it will be sufficient to prove that

Vm−1(W )/Vm(W ) ∼= C∞c (W, Symi(W⊥)).
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For this we do the natural thing- we attach to f ∈ Vm−1(W )/Vm(W ) its i-th

derivatives. Explicitly, we define:

Φ(f)(w)(v1, . . . , vi) = ∂v1 . . . ∂vif(w).

It is well defined as f vanishes identically on W , so this form vanishes on all the

tangential derivatives. It is injective since if Φ(f) = 0 then f vanishes with all of

its derivatives up to degree i, so it is in Vm(W ).

Exercise 5.4.3.

(1) Finish the proof of the lemma - show that Φ is onto, hence an isomorphism.

(2) Show that the isomorphism Fm(W )/Fm−1(W ) ∼=can C∞c (W, Symm(W⊥))∗

is invariant with respect to diffeomorphism of (V,W ).

(3) Find ξ ∈ Dist(V \W ) such that there is no η ∈ Dist(V ) such that η|V \W =

ξ. That is, show that the natural map Dist(V )→ Dist(V \W ) is not onto.

To get a similar result for generalized functions, we twist by the one dimensional

space of Haar measures:

Fm(W )/Fm−1(W ) ∼= C∞c (W, Symm(W⊥))∗ = C−∞(W, Symm(W⊥)⊗Haar(W )).

Take Gm(W ) = Fm(W ) ⊗ Haar(W )∗ ⊆ C−∞(V ). We get by the compatibility of

tensor product and quotient the following:

Gm(W )/Gm−1(W ) ∼= C−∞(W, Symm(W⊥)⊗Haar(W ))⊗Haar(V )∗

∼= C−∞(W, Symm(W⊥)⊗Haar(W )⊗Haar(V )∗).

The next exercise shows that Haar(W ) ⊗ Haar(V )∗ can be presented in a simpler

manner:

Exercise 5.4.4. Let W ⊆ V .

(1) Show that Haar(W )⊗Haar(V/W ) ∼=can Haar(V ).

(2) Show that Haar(V ∗) ∼=can Haar(V )∗.

(3) Conclude that Haar(W )⊗Haar(V )∗ ∼=can Haar(W⊥).

We arrive at the following corollary, yielding the desired description for generalized

functions.

Corollary 5.4.5. By the above argument it follows that:

Gm(W )/Gm−1(W ) ∼= C−∞(W, Symm(W⊥)⊗Haar(W⊥)).

6. Manifolds

After understanding generalized functions on vector spaces, we move to understand

generalized functions on spaces which locally look like vector spaces. For this we

define the notion of a manifold.
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Definition 6.0.1. Let X be a topological space.

(1) A cover {Ui}i∈I is called locally finite, if for any x ∈ X there is a neigh-

borhood V such that V ∩ Ui 6= ∅ only for finitely many i ∈ I.

(2) X is called paracompact, if any open cover has a locally finite refinement.

(3) X is called a topological manifold if X is locally homeomorphic to Rn and

is Hausdorff and paracompact.

Exercise 6.0.2.

(1) Find a space X which is locally homeomorphic to Rn at every point and is

paracompact but is not Hausdorff.

(2) Find a space which is Hausdorff, locally isomorphic to Rn but is not para-

compact.

We now give a definition of a smooth manifold which is different than the usual

definition in differential topology and uses sheaves of functions.

Definition 6.0.3. A sheaf of (K-valued) functions F on a topological space X is

an assignment U 7→ F(U) ⊆ {f : U → K| f is continuous} for every open U ⊂ X

such that:

(1) F(U) is an algebra with unity.

(2) If f ∈ F(U) and V ⊂ U then the restricted function f |V belongs to F(V ).

(3) (Gluing) For every open cover U =
⋃

i∈I

Ui, and every collection of functions

{fi ∈ F(Ui)}i∈I such that fi|Ui∩Uj ≡ fj |Ui∩Uj for any i, j ∈ I, there exists

f ∈ F(U) s.t. f |Ui ≡ fi for any i ∈ I.

Note that a sheaf of functions is a sheaf. The identity axiom is automatic.

Example 6.0.4. Continuous or smooth functions on a space X form a sheaf of

functions. So do locally constant functions.

Definition 6.0.5. A space with functions is a pair (X,F), where X is a topological

space and F is a sheaf of functions on X. A morphism of spaces with functions

ϕ : (X,F)→ (Y,G) is a continuous map ϕ : X → Y such that for any open U ⊂ Y

and any function f ∈ G(U), the composition f ◦ (ϕ|U ) lies in F(ϕ−1(U).

In the language of sheaves, the composition with ϕ defines ϕ# : G → ϕ∗F

Definition 6.0.6. A smooth manifold is a space with a sheaf of functions (X,C∞(X))

such that X is a topological manifold and for every point x ∈ X there is an open

neighborhood U such that (U,C∞(X)|U ) ' (Rn, C∞(Rn)) as sheaves of functions.

Remark 6.0.7. The usual definition of manifolds adds an atlas to the structure

of X, that is an open cover X =
⋃

i∈I

Ui with diffeomorphisms φi : Ui → Rn. We

also demand that φi ◦ φ−1
j is differentiable, so it seems like an additional demand
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with respect to the definition above. Alas, further rumination shows that a pair

of isomorphisms ϕi : (Ui, C
∞(Ui)) → (Rn, C∞(Rn)) and ϕj : (Uj , C

∞(Uj)) →

(Rn, C∞(Rn)) implies that the following composition is an isomorphism:
(
ϕi ◦ ϕ−1

j |Ui∩Uj

)#
: (Rn, C∞(Rn))|ϕj(Ui∩Uj) →

(
ϕi ◦ ϕ−1

j

)
∗
(Rn, C∞(Rn))|ϕi(Ui∩Uj).

In particular, by the next exercise we can deduce that ϕi ◦ ϕ−1
j |Ui∩Uj is smooth

and is a diffeomorphism. Therefore Definition 6.0.6(2) is equivalent to the usual

definition of a smooth manifold.

Exercise 6.0.8.

(1) Show that C∞(Rn,Rk) = {f : Rn → Rk : f∗(μ) ∈ C∞(Rn) ∀μ ∈ C∞(Rk)}.

(2) Let M and N be smooth manifolds. Show that 6.0.6(1) is equivalent to the

usual definition of a morphism of smooth manifolds. That is, that a map

f : M → N is a smooth map of manifolds ⇐⇒ it is a morphism of ringed

spaces (where the sheaf is a sheaf of smooth functions).

Remark 6.0.9. Note that by a theorem of Whitney every n-dimensional manifold

can be embedded in R2n+1. Thus we can always think about smooth manifolds sitting

in RN for N large enough.

6.1. Tangent space of a manifold. There are several equivalent ways to define

the tangent space to a smooth manifold M at a point x ∈ M . We first give a

categorical definition and then construct several objects which satisfy this definition.

Definition 6.1.1. We denote by ptMan the category of smooth pointed manifolds,

that is the objects are pairs consisting of a smooth manifold M and a point x ∈M

and the morphisms are smooth maps of manifolds which preserve the distinguished

points.

Definition 6.1.2. A tangent space is a functor Tan : ptMan→ Vect from pointed

smooth manifolds to vector spaces which satisfies the following conditions:

(1) The restriction of Tan to the subcategory V ect ⊂ ptMan is the identity

functor.

(2) If f, g : (R, 0)→ (C, 0) satisfy f ′(0) = g′(0) then Tan(f) = Tan(g).

(3) If ϕ : U ↪→M is an open embedding, then Tan(ϕ) is an isomorphism.

There are several structures that satisfy the above conditions:

(1) The space of all smooth paths Tx(M) := {γ : ((−1, 1), 0)→ (M,x)}modulo

the relation γ1 ∼ γ2 ⇐⇒ there exists a neighborhood U of x and an

isomorphism φ : U → Rn s.t. (φ ◦ γ1)′(x) = (φ ◦ γ2)′(x). It is easy to check

that this definition does not depend on the choice of (φ,U).

(2) The space of derivations

Tx(M) = {∂ : C∞(M)→ R : ∂ is linear, ∂(f ∙ g) = ∂f ∙ g(x) + f(x) ∙ ∂g}.
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(3) Define mx := {f ∈ C∞(M) : f(x) = 0}, and take Tx(M) := (mx/m2
x)∗.

Exercise 6.1.3. Show the constructions of the tangent space given above are equiv-

alent.

Definition 6.1.4. Let φ : M → N be a smooth map. The differential of φ at

x ∈ M is the map dxφ : Tx(M) → Tφ(x)(N) defined by dx(φ)(γ) := φ ◦ γ for an

equivalence class of paths [γ] ∈ Tx(M) .

Exercise 6.1.5.

(1) Show the differential is well defined, i.e. it does not depend on the repre-

sentative γ ∈ [γ].

(2) Show that given manifolds M,N, and K and maps φ : M → N and ψ :

N → K, the differentials satisfy dx(ψ ◦ φ) = dφ(x)(ψ) ◦ dx(φ).

6.2. Types of maps between smooth manifolds.

Definition 6.2.1. Let φ : M → N be a smooth map between smooth manifolds.

(1) φ is an immersion if dxφ is injective.

(2) φ is a submersion if dxφ is surjective.

(3) φ is a local isomorphism or étale if dxφ is an isomorphism.

(4) φ is an embedding if it is an immersion and defines a homeomorphism

M ∼= φ(M).

(5) φ is a proper map if for every compact K ⊂ N , the preimage φ−1(K) is

compact. In particular, in that case all the fibers of φ are compact in M .

(6) φ is a covering map if for every x ∈ N there exists a neighborhood U ⊆ N ,

such that φ|φ−1(U) : φ−1(U)→ U is locally a diffeomorphism, and φ−1(U) ∼=
U ×D for some discrete set D.

Example 6.2.2.

(1) Let φ : [−1, 1]→ R2 be a smooth path that slows to a stop at φ(0) = (0, 0),

but spends no time at (0, 0). That is, φ′(0) = (0, 0), but φ(x) 6= 0 for all

x 6= 0 in some neighborhood [−ε, ε] of 0. Such a φ is locally injective at 0,

but since d0φ = 0 it is not an immersion at 0.

(2) An immersion is not necessarily one-to-one. As an example, consider a

self-intersecting path φ : R→ R2 with constant speed.

(3) Let L and D be finite dimensional linear spaces. The differential of a linear

map φ : L→ V is φ itself. Thus, a one-to-one φ will be an immersion, an

onto φ will be a submersion, and an isomorphism of linear space will be an

étale map.

Exercise 6.2.3. Let M and N be smooth manifolds.

(1) Find a map φ : M → N which is an injective immersion, but is not an

embedding.
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(2) Show that every proper map which is an injective immersion is a closed

embedding.

(3) Show that a proper map which is étale is a covering map, and that a covering

map with finite fibers is proper and étale.

Definition 6.2.4. Let X and Y be topological spaces. A fiber bundle is a map

p : X→Y , such that for every y ∈ Y there exists a neighborhood U ⊆ Y such that

p−1(U) ' U × Z for U ⊆ Y for some topological space Z.

Exercise 6.2.5. Show that a proper submersion is a fiber bundle.

6.3. Analytic manifolds and vector bundles. We would like to be able to talk

about manifolds for a general local field. In order to do so, for a non-archimedean

local field F we introduce the notion of an analytic F -manifold.

Definition 6.3.1. Let F be a non-archimedean local field. An analytic F -manifold

is a topological space M which is locally isomorphic to On
F together with the sheaf

of functions

An(U) = {f : U → F : ∀x ∈ U, ∃r > 0 s.t. f|Br(x)(y) =
∑

~k∈Nn

a~k(x− y)
~k},

where Br(x) is the ball of radius r around x, ~k is a multi-index, and (x − y)~k =
n∏

i=0

(xi − yi)ki .

Remark 6.3.2. By Exercise 4.6.8 there is no need to use partition of unity for

F -analytic manifolds.

Example 6.3.3. There exist singular analytic manifolds, and any singular affine

algebraic variety is an example for such a manifold.

Definition 6.3.4. Let M be a smooth manifold or a p-adic analytic manifold.

A real vector bundle over M is a tuple (E, p) where E is a topological space and

p : E →M is a continuous surjection such that:

(1) For every x ∈ M we have a structure of a finite dimensional real vector

space on p−1(x) = Vx.

(2) For every x ∈ M there exists an open x ∈ U and a local trivialization

ϕU : Vx × U → p−1(U) where ϕU is a homeomorphism (or diffeomorphism

if M is a real smooth manifold) and p ◦ ϕU (v, x) = x for all v ∈ Vx.

(3) The maps v 7→ ϕU (v, x) are linear isomorphisms.

If E ' V ×M we say (E, p) is a trivial bundle over M .

If dim Vx = 1 for all x ∈M we say (E, p) is a line bundle over M .

Exercise 6.3.5. It is known that the Mobius strip M is not homeomorphic to the

(finite) cylinder I × S1. By extending each segment I of M to R, we can define a
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vector bundle E over the manifold S1. This way, points of E are such that the fiber

over θ ∈ S1 is a line in R3 which intersects the z-axis with angle 0.5 ∙ θ. Define the

vector bundle above rigorously and show it is not diffeomorphic to the trivial bundle

S1 × R.

Example 6.3.6. The tangent bundle of M = S1 is TS1 ' S1 × R. The tangent

space at any point is one-dimensional, and changes smoothly as we move along the

circle. However, on M = S2 the tangent bundle is not isomorphic to S2×R2. This

happens since every vector field on S2 vanishes at some point. (Hairy ball theorem).

Definition 6.3.7. Let (M,E) be a k-dimensional real vector bundle and π be its

projection. Given trivializing neighborhoods U and V , and trivializations ϕU : U ×

Rk ∼
−→ π−1(U) and ϕV : V × Rk ∼

−→ π−1(V ), one can consider ϕ−1
V ◦ ϕU : (U ∩

V ) × Rk → (U ∩ V ) × Rk. We can then write ϕ−1
V ◦ ϕU (x, v) = (x, gU,V (v)) where

gU,V ∈ GL(Rk). The maps gU,V are called transition functions.

Notice that the set of transition functions gU,V , satisfy the cocycle conditions

gU,U (x) = Id and gU,V (x)gV,W (x) = gU,W (x).

Conversely, given a fiber bundle (E,X, π) of degree k with a transition map in

GL(Rk) abiding the cocycle condition which acts in the standard way on the fiber

Rk, there is an associated a vector bundle. This is sometimes taken as the definition

of a vector bundle.

Proposition 6.3.8. Given a manifold M , vector bundles {(Ei, pi)}ni=1 each of

which with fiber of constant dimension mi over it, and a functor F : Vectn → Vect,

we can construct a vector bundle (F (E1, . . . , En), q) over M .

Proof. First, take a cover {Uα}α∈I of M which is a local trivialization of E (that

is, p−1(Uα) ' V × Uα). Define the total space F (E) over each Uα by F (V ) × Uα,

where the surjection q will be projecting to M , and glue every two pieces q−1(Uα)

and q−1(Uβ) by setting (v, x) ∼ (gα,β(v), x) for every x ∈ Uα ∩ Uβ and v ∈ V ,

where gα,β = F (ϕ−1
Uβ

ϕUα). Finally, note that for any two elements of the cover

g−1
α,β = gβ,α, and that in order for our construction to be well defined we need to

show the cocycle condition, namely that gβ,γgα,β = gα,γ when restricted to triple

intersections. This holds since

gβ,γgα,β = F (ϕ−1
Uγ

ϕUβ
)F (ϕ−1

Uβ
ϕUα) = F (ϕ−1

Uγ
ϕUα) = gα,γ .

Note that if we want F (E) to have a smooth structure we need to demand that F

preserves smooth maps. �

Example 6.3.9. Let E1 and E2 be two vector bundles over M . The direct sum

E1 ⊕ E2 is defined by applying our construction above to the direct sum functor
⊕

: Vect2 → Vect.
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Exercise 6.3.10. Find two non-isomorphic bundles E and E′, such that E ⊕F ∼=
E′ ⊕ F for a bundle F (Hint: use vector bundles over S2).

Definition 6.3.11. Let M be a manifold.

(1) The tangent bundle of M is the disjoint union of its tangent spaces TM =
⋃

x∈M

{x} × TxM .

(2) Given a submanifold N ⊆ M , and an embedding i : N → M , we define

the normal bundle to N in M to be NM
N := i∗(TM)/TN , where i∗ is the

pullback of the bundle TM to N . Similarly, the conormal bundle to N in

M is CNM
N := (NM

N )∗.

Example 6.3.12. For the sphere N = S2 ⊂ R3 = M , the normal bundle at a

point is the normal line to it (i.e. the line passing at the point and at zero). It is

diffeomorphic to the trivial bundle on N .

Definition 6.3.13. For vector bundles E1, E2 over a manifold (smooth or F -

analytic), we define the following:

(1) E∗1 .

(2) E1 ⊕ E2.

(3) E1 ⊗ E2.

(4) For an embedding ϕ : E1 ↪→ E2, we define E2/E1.

(5)
∧k(E1), Symk(E1).

(6) We define the density bundle of E1 by Dens(E1).

Definition 6.3.14. Let M be either a smooth manifold or an F -analytic manifold,

we define its density bundle by Dens(M) = |Ωtop(TM)|, that is the density bundle

of its tangent bundle.

6.4. Sections of a bundle. A set theoretic section of a function f : X → Y is a

function g : Y → X s.t. g ◦ f = idX.

Example 6.4.1. Let f : R2 → R be the projection f(x, y) = x. One example of a

section is g(x) := (x, sinx).

In many case sections of bundles give rise to important concepts:

• A section of the tangent bundle of a manifold is a vector field.

• A section of the k-th exterior power of the cotangent bundle of a manifold

is a differential form of degree k.

• A section of the density bundle is a density on the manifold.

• A section of the orientation bundle is a choice of an orientation on the

manifold.

Exercise 6.4.2.
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(1) Show the every manifold has a Riemannian metric, i.e , an inner product

on tangent spaces

〈∙, ∙〉p : TpM × TpM → R

which varies smoothly.

(2) Let M be a smooth n-dimensional Riemannian manifold, that is a smooth

real manifold with a Riemannian metric. Construct explicitly a density over

M , that is a smooth section of the density bundle over M . The density

should respect coordinate changes, and be the standard density when M is

a linear space with the standard inner product.

Remark 6.4.3. We do not always have non-zero top differential forms on a man-

ifold M , and the Mobius strip is an example of a manifold with no non-zero top

differential form. However, we can always find a non-zero density on M . Since

with a density we can define a measure on the manifold, we can define integration

over manifolds.

6.5. Another description of vector bundles.

Definition 6.5.1. Let V be a finite dimensional vector space and X a topological

space.

(1) We define the constant sheaf V X to be the sheafification of the constant

presheaf, which assigns to every open set in X the vector space V .

(2) We say that a sheaf F over X is locally constant if for every x ∈ X there

exists an open x ∈ Ux and a finite dimensional vector space Vx such that

F|Ux
' VxUx

.

Exercise 6.5.2. Let V be a finite dimensional vector space and X a topological

space.

(1) Show that V X(U) consists of the locally constant functions from U to V .

(2) Show that if X is a σ-compact `-space then every locally constant sheaf F

such that Fx ' Fy for all x, y ∈ X is isomorphic to the constant sheaf.

Up to now we have used the Grothendieck definition of a sheaf. In some situations

the following definition is more useful.

Definition 6.5.3. A Leray sheaf on X is a pair (E, p) such that E is a topological

space and p : E → X is a homeomorphism locally in E, i.e. every point in E has

an open neighborhood U such that p(U) is open and p|U defines a homeomorphism

U ' p(U).

Theorem 6.5.4. The category of Leray sheaves is equivalent to the category of

Grothendieck sheaves.
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Proof. Given a Leray sheaf (E, p) we define a Grothendieck sheaf by

F(U) := {s : U → p−1(U) : f is continuous and p ◦ s = IdU}

with the obvious restriction maps.

For the other direction, given a Grothendieck sheaf F , we define E =
⊔

x∈X Fx

with the natural projection map p : E → X. The basis of the topology of E is

given by Us,V = {(x, (s)x) : x ∈ V } where V ⊆ X is open and s ∈ F(V ). �

Exercise 6.5.5. Complete the proof by showing that this is indeed an equivalence

of categories.

Exercise 6.5.6.

(1) Show that covering spaces correspond to locally constant sheaves, and that

a covering space is trivial when it corresponds to a constant sheaf.

(2) Give an example of a locally constant sheaf arising from a covering space

which is not constant.

7. Distributions on analytic manifolds and on smooth manifolds

Definition 7.0.1. Let E be an F -analytic line bundle over an F -analytic manifold

X. Define a real vector bundle |E| as follows. As a set define |E| := {(x, v) :

x ∈ X, v ∈ |Ex|} and define a topology by giving C the discrete topology, so locally

E|U ' U × F and |E| |U ' U × |F | ' U × C. Hence, a base for the topology is

Vi,U,α = ϕi(U × {α}) where ϕi : U × C→ |E| |U and α ∈ C.

Remark 7.0.2. Note that p̃ : |E| → X is a local homeomorphism as Vi,U,α ' U as

a topological space. Hence p̃ is a Leray sheaf. Its corresponding Grothendieck sheaf

is F(U) := {continuous sections U → p̃−1(U)}. This is a locally constant sheaf

CXover X.

Definition 7.0.3. We can now define the density bundle over an F -analytic man-

ifold X in two ways:

Def 1 (Leray): Dens(X) := |Ωtop(X)|.

Def 2 (Grothendieck):

Dens(X)(U) := {μ ∈ Measures(U)|∀ϕ ∈ On
F → U, there exists f ∈ C∞(On

F ) such that μ = ϕ∗(f ∙Haar)}.

Lemma 7.0.4. Let ϕ : Fn → Fn be an analytic diffeomorphism, let f ∈ Cc(Fn)

and let μ be a choice of a Haar measure on Fn. Then

〈μ, f〉 =:
ˆ

fdx =
ˆ

(f ◦ ϕ) |det(Dxϕ)| dx.

Exercise 7.0.5. Show that the above definitions are equivalent.
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7.1. Smooth sections of a vector bundle. In this subsection we assume that

F = R and we are dealing with smooth manifolds.

Definition 7.1.1. We define smooth functions on a manifold M with compact

support and values in a vector bundle (E, π) by:

C∞c (M,E) := {f : M → E : π◦f = IdM and ∃K compact such that f |KC (m) = (m, 0)}.

Recall that C∞c (Rn,Rk) = lim−→C∞Km
(Rn,Rk) where Km is an increasing sequence of

compact sets such that
∞⋃

n=1
Km = Rn. We define a topology on C∞c (M,E) using

the topology on C∞c (Rn,Rk):

Case 1- The trivial case: M ' Rn and E ' Rn × Rk with the projection to

the first component. Note that continuous sections from Rn to Rn × Rk are just

functions in C∞c (Rn,Rk). Hence we give C∞c (M,E) the topology of C∞c (Rn,Rk).

Exercise 7.1.2. Show that the above definition is well defined, i.e. it does not

depend on the isomorphism M ' Rn and E ' Rn × Rk → Rn. In other words,

show that:

(1) Given a diffeomorphism ϕ : Rn → Rn it induces a homeomorphism ϕ∗ :

C∞c (Rn,Rn × Rk)→ C∞c (Rn,Rn × Rk) via precomposition.

(2) Given a smooth map ψ ∈ C∞(Rn, GLk(R)) we have that ψ∗ : C∞c (Rn,Rn×

Rk)→ C∞c (Rn,Rn × Rk) by ψ∗(f) = ψ ◦ f is a homeomorphism.

Case 2- General case: We can choose trivializing {Ui}i∈I such that M =
⋃

i∈I

Ui

where ϕi : Ui
'
→ Rn and ψi : E|Ui

'
→ Rn × Rk. We have a surjective map

ϕ :
⊕

i∈I

C∞c (Ui, E|Ui
)� C∞c (M,E)

by summation where surjectivity follows from partition of unity. We define the quo-

tient topology on C∞c (M,E) according to the map ϕ, that is, a set U ⊆ C∞c (M,E)

is open if ϕ−1(U) is open in
⊕

i∈I

C∞c (Ui, E|Ui), where the latter is endowed with the

direct sum topology.

Proposition 7.1.3. The topology on C∞c (M,E) is well defined. That is, the defi-

nition does not depend on the choice of the cover {Ui}i∈I of M .

Proof. We need to show that given a different cover {Vβ}β∈J of M which locally

trivializes M and E, we get the same topology.

Consider the cover {Wα,β} for Wα,β = Uα ∩Vβ which refines both covers. We need

to show that for the addition map,
⊕

α∈I

⊕

β∈J

C∞c (Wα,β , E|Wα,β
)

+
−→
⊕

α∈I

C∞c (Uα, E|Uα
)

a set in the range is open if and only if its preimage is open, where Wα,β ⊆ Uα ' Rn

and E|Wα,β
' E|Uα

' Rk. In order to show the above, it is enough to handle each
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case
⊕

β∈J

C∞c (Wα,β ,Rk)
+
−→ C∞c (Uα,Rk) ' C∞c (Rn,Rk) separately, since in the

direct sum topology a set is open if all the injections Di ↪→
⊕

Di are continuous

(we furthermore assume our open sets are convex).

Given a basic open set U(Lm,εm,Bm) ⊆ C∞c (Uα,Rk) where Lm are mixed differen-

tiations, εm ∈ R>0 and Bm are compact sets such that
∞⋃

m=1
Bm = Rn, it is of the

form U(Lm,εm,Bm) =
∑

m∈N
VLm,εm,Bm , where

VLm,εm,Bm =

{

f ∈ C∞(Rn,Rk) : supp(f) ⊆ Bm, sup
x∈Rn

||Lm(f)|| < εm

}

.

Now, take a finite sum
∑

fβ ∈ +−1(U{Lm,εm,Bm}) for
∑

fβ = f =
l∑

i=0

fmi
and

fmi
∈ VLmi

,εmi
,Bmi

. Let fβ = prβ(f) be the projection of f into C∞c (Wα,β ,Rk),

and define N = #{β : prβ(f) 6= 0} and ε′mi
=

εmi
−sup ||Lmi

(fmi
)||

N and set ε′m = εm

N

if m 6= mi for all 0 ≤ i ≤ l. For B′m,β ⊆ Wα,β , compact sets which exhaust

Wα,β and such that B′m,β ⊆ Bm, the sets U(Lm,ε′m,B′
m,β) are basic open sets in each

C∞c (Wα,β ,Rk), and their direct sum is open in the direct sum. Now, we claim that,

f ∈
⊕

β:fβ 6=0

fβ + U(Lm,ε′m,B′
m,β) ⊆ +−1(U(Lm,εm,Bm)).

Given g =
∑

β:fβ 6=0

gβ where gβ ∈ U(Lm,ε′m,B′
m,β), then gβ =

lβ∑

iβ=1

gβ,iβ
where gβ,iβ

∈

VLniβ
,ε′niβ

,B′
niβ

,β
.

Thus if niβ
= mi for some i, we have sup

x∈Bmi

||Lmi(gβ,mi)|| < ε′mi
=

εmi
−sup ||Lmi

(f)||
N

implying that,

sup
x∈Bmi

∣
∣
∣
∣
∣
∣
∑

β:fβ 6=0

Lmi(fmi,β + gβ,mi)
∣
∣
∣
∣
∣
∣ ≤ sup

x∈Bmi

∣
∣
∣
∣
∣
∣
∑

β:fβ 6=0

Lmi(fmi,β)
∣
∣
∣
∣
∣
∣+

∑

β:fβ 6=0

sup
x∈Bmi

||Lmi(gβ,mi)||

< sup
x∈Bmi

∣
∣
∣
∣
∣
∣Lmi(fmi)

∣
∣
∣
∣
∣
∣+

∑

β:fβ 6=0

( εmi
− sup ||Lmi

(fmi
)||

N

)

= εmi .

Otherwise, if niβ
6= mi for all i, set n′ = niβ

, and using the requirement sup
x∈Bn′

||Ln′(gβ,n′)|| <

εn′

N we note that:

sup
x∈Bn′

∣
∣
∣
∣
∣
∣
∑

β:fβ 6=0

Ln′(gβ,n′)
∣
∣
∣
∣
∣
∣ ≤

∑

β:fβ 6=0

sup
x∈Bn′

||Ln′(gβ,n′)|| < N
εn′

N
= εn′ .



GENERALIZED FUNCTIONS LECTURES 56

This allows us to conclude that f + g =
∑

β:fβ 6=0

l∑

i=1

fmi,β +
∑

β:fβ 6=0

lβ∑

iβ=1

gβ,iβ
lie in

U(Lm,εm,Bm) =
∑

m∈N
VLm,εm,Bm

for all such functions g, implying that the ad-

dition is continuous. For a less cumbersome approach, note that the embed-

dings
⊕

β∈J

C∞c (Wα,β ,Rk) −→ C∞c (Rn,Rk) are continuous (a cookie for the person

who finds a quick proof for this), so it is enough to show that the addition map
⊕

β∈J

C∞c (Rn,Rk)
+
−→ C∞c (Rn,Rk) '

k⊕

i=k

C∞c (Rn) is continuous. Since the domain

has the direct sum topology, it is enough to check this for a finite direct sum, which

follows by the continuity of addition in a topological vector space.

To show the map is open, it is enough to consider
⊕

β∈J

C∞K,c(Wα,β ,Rk)
+
−→ C∞K (Rn,Rk) '

k⊕

j=1

C∞K (Rn), for every compact K, and since the domain has the direct sum topol-

ogy and the basic open sets are finite sums of open sets in each coordinate, it is

enough to show it for a finite direct sum
m⊕

i=1

C∞K,c(Wi,Rk)
+
−→

k⊕

j=1

C∞K (Rn) where

K ⊂
m⋃

i=1

Wi. Now, use partition of unity fi, with Ci = supp(fi) ⊂ Wi where

m∑

i=1

fi|K ≡ 1 to get an onto map via the composition,

m⊕

i=1

C∞K∩Ci
(Wi,R

k) ↪→
m⊕

i=1

C∞K,c(Wi,R
k)

+
−→ C∞K (Rn).

Since this is a continuous surjective map of Fréchet spaces, it must be open, implying

that the addition is open since the embedding is continuous. �

We now give a different description of the topology of C∞c (Rn). First observe that

f ∈ C(Rn) is compactly supported if and only if fg is bounded for any g ∈ C(Rn).

Now let D ∈ Diff(Rn) be a differential operator on C∞c (Rn). Define a seminorm

‖f‖D by sup
x∈Rn

|D(f)(x)|.

Exercise 7.1.4. The topology on C∞c (Rn) can be defined by the seminorms ‖ ‖D.

Definition 7.1.5. Let M be a manifold and D : C∞(M)→ C∞(M) be a map. We

say that D is a differential operator on M if for any trivializing cover
⋃

i∈I

Ui = M

and ϕi : Ui
∼
−→ Rn we have ϕ−1

i ◦ D ◦ ϕi ∈ Diff(Rn). We denote the space of all

differential operators on M by Diff(M).

We would like to define differential operators from C∞(M,E) to C∞(M,E′), which

we denote by Diff(C∞(M,E), C∞(M,E′)). As before we divide the definition into

cases:
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Case 1- the trivial case: Assume that E ' M × Rk and E′ ' M × Rk′
. Then

Diff(C∞(M,E), C∞(M,E′)) ' Diff(C∞(M)k, C∞(M)k′
) and the latter space is

isomorphic as a vector space to the space of k×k′ matrices with values in Diff(C∞(M)).

Exercise 7.1.6. Show that the definition of the space of differential operators

Diff(C∞(M,E), C∞(M,E′)) does not depend on the isomorphisms E ' M × Rk

and E′ 'M × Rk′
.

Case 2- the general case: Let A ∈ Hom(C∞(M,E), C∞(M,E′)). Then we say

that A ∈ Diff(C∞(M,E), C∞(M,E′)) if:

(1) For any f1, f2 ∈ C∞(M,E) such that f1|U = f2|U , we have Af1|U = Af2|U .

(2) If E′|U is a trivialization then A|U ∈ Diff(U,E|U , E′|U ).

Definition 7.1.7 (Second definition to the topology on C∞c (M,E)). For D ∈

Diff(C∞(M,E), C∞(M,E)) define ‖f‖D = sup
x∈M
|D(f)(x)|. Define the topology on

C∞c (M,E) via

C∞c (M,E) = lim
←D

(C∞c (M,E)‖∙‖D
).

Exercise 7.1.8. Given a manifold M and a vector bundle E over it show that the

two definitions of the topology on C∞c (M,E) are equivalent (one defined via taking

a cover of M and trivialization of E and the other through differential operators).

7.2. Distributions on manifolds.

Definition 7.2.1. Let M be a smooth or F -analytic manifold, and let E be a

smooth vector bundle over it (in the case of an analytic manifold it has the discrete

topology).

(1) The space of distributional E-sections is defined to be Dist(M,E) := C∞c (M,E)∗.

(2) The space of generalized E-sections is defined to be C−∞(M,E) = Dist(M,E∗⊗

Dens(M)).

Although we do not have a natural injection from C∞c (M,E) to C∞c (M,E)∗, we

have a natural injection

i : C∞c (M,E) ↪→ C−∞(M,E)

as follows: let μ ∈ C∞c (M,E∗ ⊗Dens(M)) and f ∈ C∞c (M,E). Note that

f ⊗ μ ∈ C∞c (M,E∗ ⊗ E ⊗Dens(M)),

that is, f ⊗ μ(m) = f(m)⊗ μ(m). Note that we have a natural map

q : C∞c (M,E∗ ⊗ E ⊗Dens(M))→ C∞c (M, Dens(M))

by pairing E with E∗ and a natural map
ˆ

: C∞c (M, Dens(M))→ C
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by integrating over M according to the measure defined by the section of the density

bundle. We define

〈i(f), μ〉 :=
ˆ

M

q(f ⊗ μ).

Therefore, the definition of generalized sections indeed generalizes smooth sections.

Proposition 7.2.2. Let X be either a smooth or an F -analytic manifold. Then

C∞c (X)
w

= C−∞(X).

Proof. Recall that C−∞(X) = μ∞c (X)∗. Given a topological vector space V , for

W ⊆ V ∗ the space W is dense with respect to the weak topology if and only if

W⊥ = {v ∈ V : 〈w, v〉 = 0 ∀w ∈ W} = {0}. To see the relevant direction, if

W⊥ = {0}, we will show that for every ξ ∈ V ∗, finite set S ⊂ V and ε > 0

we can find w ∈ W such that ξ|S = w|S . Given such ξ ∈ V ∗, S = {v1, . . . , vn}

and ε > 0, assume S is a linearly independent set, and consider ρ : V ∗ → Rn

by ρ(η) = (〈η, v1〉, . . . , 〈η, vn〉). The map ρ|W is onto, since otherwise there exist

ci ∈ R such that
n∑

i=1

ci〈w, vi〉 = 0 for all w ∈ W (it must lie in some hyperplane,

and all hyperplanes are of this form), but this means that 〈w,
n∑

i=1

civi〉 = 0 implying

n∑

i=1

civi ∈ W⊥ = {0}. The surjectivity of ρ|W allows us to find the desired w ∈ W .

Thus it is enough to show that given η ∈ μ∞c (X), if 〈f, η〉 = 0 for all f ∈ C∞c (X)

then η = 0.

Assume X is a smooth manifold. Given a non-zero measure η, there exists some

Rn ' U ⊂ X such that η|U 6= 0, to see this either use the fact that distributions

form a sheaf, or view it as a positive function on Borel sets. Now, since U ' Rn

we must have that η|U = g ∙ μHaar where g ∈ C∞(Rn). Taking some cutoff function

ψ ∈ C∞c (Rn) such that ψ|B1(0)
≡ 1 and ψ ≥ 0 implies the desired result as 〈gψ, η〉 =

〈gψ, g ∙ μHaar〉 = 〈g2ψ, μHaar〉 > 0 as this is an integral of a positive function.

For an F -analytic manifold we do the same procedure only this time ψ is the

indicator function of the open unit ball in Fn. �

Exercise 7.2.3. Let M,N be either smooth or F -analytic manifolds and let E and

I be complex vector bundles over M and N respectively.

(i) Show that the natural map C∞c (M,E)⊗C∞c (N, I)→ C∞c (M×N,E�I) is an

embedding with dense image, and is an isomorphism if M,N are F -analytic

manifolds.

(ii) Show that the natural map

Φ : Dist(M,E)⊗Dist(N, I)→ Dist(M ×N,E � I)

given by

〈Φ(ξ ⊗ η), F 〉 := 〈η, f〉, where f is given by f(y) := 〈ξ, F |Rn×{y}〉
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is an embedding with dense image.

(iii) Show that the natural map

Dist(M ×N,E � I)→ L(C∞c (M,E), Dist(N, I))

is an embedding with dense image, and is an isomorphism if M,N are F -

analytic manifolds.

Definition 7.2.4. Let X be an `-space and F a sheaf over X. Define Fc(X) to

be the space of compactly supported global sections of F , that is all s ∈ F(X)

such that s|KC = 0 outside some compact K. Define C∞c (X,F) := Fc(X) and

Dist(X,F) = C∞c (X,F)∗.

Theorem 7.2.5. Let i : Z ↪→ X be `-spaces where Z is closed. Then:

(1) Dist(X,F)|Z ' Dist(Z,F|Z) = i∗(F).

(2) We have the following short exact sequence:

0→ Dist(Z,F|Z)→ Dist(X,F)→ Dist(U,F|U )→ 0.

We now want to prove the following important theorem:

Theorem 7.2.6. Let N ⊆ M be a closed submanifold of a real manifold M , and

let E a bundle over M . Then there is a canonical filtration Fi ⊆ Dist(M,E) such

that:

(1) Every ξ ∈ Fi is supported on N .

(2) Fi is locally exhaustive, i.e.
∞⋃

i=1

Fi is locally DistN (M,E).

(3) Fi/Fi−1 ' Dist(N,E|N ⊗ Symi(CNM
N )).

In order to prove the theorem, we would like to define the notion of derivatives of

smooth sections f ∈ C∞c (M,E). Alas, the value of the derivative depends on the

chart defined on M , so it is not well defined. Fortunately, the notion of vanishing

of derivatives of certain order is well defined as the following exercise shows:

Exercise 7.2.7. Let f ∈ C∞(Rn) such that f (α)(0) = 0 for every multi-index α

with |α| < k, and ϕ : Rn → Rn a diffeomorphism such that ϕ(0) = 0. Furthermore

let g ∈ C∞(Rn) be a nowhere vanishing function, and set f̃(x) = g(x)(f ◦ϕ−1(x)).

(1) Show that f̃ (α)(0) = 0 for every multi-index α with |α| < k.

(2) Show that:
(

∂k

∂v1 . . . ∂vk
f̃

)

(0) =

(
∂k

∂ ((dϕ)v1) . . . ∂ ((dϕ)vk)
f

)

(0)g(0).

(3) Find a counter example for part (1) if f (i)(0) 6= 0 for some |i| < k.

Remark 7.2.8. As a consequence of this exercise, given any f ∈ C∞c (M,E) whose

first k−1 derivatives vanish we can define the k-th differential symbol of f denoted
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dk
xf : TxM × . . .× TxM → Ex by

dk
xf(ξ1,i, . . . , ξk,i) =

(
∂k

∂ξ1,i . . . ∂ξk,i
(f ◦ ϕ−1

i )

)

(0),

where ϕi is a local chart and ξ1,i = (ϕi ◦ γ1)
′ (0) are tangent vectors. If we choose

a different chart ϕj we get that

dk
xf(ξ1,j , . . . , ξk,j) =

(
∂k

∂ξ1,j . . . ∂ξk,j
(f ◦ ϕ−1

j )

)

(0) =

(
∂k

∂ξ1,j . . . ∂ξk,j
(f ◦ ϕ−1

i ◦ ϕ)

)

(0)

where ϕ := ϕi ◦ ϕ−1
j . By the discussion above, we get that

(
∂k

∂ξ1,j . . . ∂ξk,j
(f ◦ ϕ−1

j )

)

(0) =

(
∂k

∂(dϕ)ξ1,j . . . ∂(dϕ)ξk,j
(f ◦ ϕ−1

i )

)

(0),

but as

dxϕ(ξ1,j) = dxϕ ∙ (ϕi ◦ γ1)
′ (0) = (ϕ ◦ ϕi ◦ γ1)

′(0) = ξ1,i

we have that dk
xf(ξ1,j , . . . , ξk,j) = dk

xf(ξ1,i, . . . , ξk,i) so this is well defined.

Proof of Theorem 7.2.6. Note that we can identify dk
xf ∈ Symk(T ∗x M) ⊗ Ex. Let

N ⊆M be a submanifold. Define:

F i
N (C∞c (M,E)) = {f ∈ C∞c (M,E) : ∀x ∈ N, the first k − 1 derivatives of f vanish}.

Choose trivializationsM |U ' Rn andN |U∩N ' Rk. We showed that F i−1
W (V )/F i

W (V ) ∼=
C∞c (W, Symi(W⊥)⊗ Ex) using the map f 7→ dk

xf . Hence we get that:

F i
N/F i−1

N ' C∞c (N,E|N ⊗C Symi(CNM
N )).

This gives a canonical filtration Fi ⊆ DistN (M,E) such that

Fi/Fi−1 '
(
F i

N/F i−1
N

)∗
' C∞c (N,E|N⊗CSymi(CNM

N ))∗ = Dist(N,E|N⊗CSymi(CNM
N )).

�

Corollary 7.2.9. We have

Gri(C
−∞(M,E)N ) = C−∞(N,E|N ⊗Dens(M)∗|N ⊗ Symi(NM

N )⊗Dens(N)).

Proof. We have

Gri(C
−∞(M,E)N ) = Gri(DistN (M,E∗ ⊗Dens(M)))

' Dist(N,E∗|N ⊗Dens(M)|N ⊗ Symi(CNM
N )) =

= C−∞(N,E|N ⊗Dens(M)∗|N ⊗ Symi(NM
N )⊗Dens(N)).

�

8. Operations on generalized functions

In this section we assume X and Y are either `-spaces, analytic F -manifolds (with

or without complex bundles over them), or smooth manifolds.
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Definition 8.0.1. Let ϕ : X → Y be a map. We define the pullback ϕ∗ :

C∞(Y ) → C∞(X) by ϕ∗(f) = f ◦ ϕ. It is easy to see that if ϕ is proper then

ϕ∗ : C∞c (Y )→ C∞c (X). By dualizing, we get an operation ϕ∗ : Dist(X)→ Dist(Y )

on distributions, which we call pushforward, by

ϕ∗(ξ)(f) := ξ(ϕ∗(f)) = ξ(f ◦ ϕ).

Note that if ϕ is not proper then we can define ϕ∗ : Dist(X)prop → Dist(Y ) where

Dist(X)prop := {ξ ∈ Dist(X)|ϕ|supp(ξ) is proper}. We would like to set 〈ϕ∗ξ, f〉 =

〈ξ, f ◦ϕ〉, but f ◦ϕ might not be compactly supported. Therefore we choose a cutoff

function ρ such that ρ|supp(ξ) = 1 and ρ|UC = 0 where U is a small neighborhood

of supp(ξ) and ϕ|U is proper (it is a hard task to find such a function). Hence we

can define

〈ϕ∗ξ, f〉 := 〈ξ, ρ ∙ (f ◦ ϕ)〉.

Note that

supp(ρ ∙ (f ◦ ϕ)) ⊆ supp(ρ) ∩ ϕ−1(supp(f)) ⊆ ϕ|−1
supp(ρ)(supp(f)).

Since ϕ|supp(ρ) is proper, and f is compactly supported, this is well defined. The

definition clearly does not depend on the choice of ρ.

Recall that for vector spaces we had that Dens(V ) ' Haar(V ) canonically. Hence

we can identify the space of smooth measures μ∞c (X) with the space of smooth

sections of the density bundle C∞c (X, Dens(X)). Note that we can define ϕ∗ :

C∞c (X, Dens(X))→ Dist(X) by 〈ϕ∗(μ), f〉 =
´

X
fdμ.

Exercise 8.0.2. Let X and Y be either smooth or F -analytic manifolds and ϕ :

X → Y a map. Show that the pushforward of a compactly supported distribution is

compactly supported, that is ϕ∗(Distc(X)) ⊆ Distc(Y ).

Proposition 8.0.3. Let X and Y be either smooth or F -analytic manifolds and

ϕ : X → Y be a submersion. Then:

(1) ϕ∗(μ∞c (X)) ⊆ μ∞c (Y ).

(2) ϕ∗(f ∙ |ωX |) = g ∙ |ωY |, where |ωX | and |ωY | are non-vanishing densities on

X and Y respectively and

g(y) =
ˆ

ϕ−1(y)

f
|ωX |
|ϕ∗ωY |

where |ωX |
|ϕ∗ωY |

⊗ |ωY | is the image of |ωX | under the natural isomorphism

Dens(X)x ' Dens(ϕ−1(y))x ⊗Dens(Y )ϕ(x).

Proof.

(1) We prove the first statement in two steps. Case 1: X = Fn, Y = Fm

where n ≥ m and ϕ : Fn → Fm is the natural projection ϕ(x1, . . . , xn) =

x1, . . . , xm. Recall that Haar(X) ' Haar(Y )⊗ Haar(X/Y ) or equivalently
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that

Dens(X) ' Dens(Y )⊗Dens(X/Y ).

Let φ ∈ C∞c (X, Dens(X)) and note that φ = f ∙ dμX where f ∈ C∞c (X)

and μX is a normalized Haar measure (taking the value 1 on the unit ball

of X = Fn), so we can write μX = μY ⊗ μX/Y . By definition, for any

g ∈ C∞c (Y ) we have:

〈ϕ∗(φ), g〉 = 〈φ, g ◦ ϕ〉 =
ˆ

X

f ∙ (g ◦ ϕ)dμX =
ˆ

Y

ˆ

X/Y

f ∙ (g ◦ ϕ)dμY ⊗ μX/Y .

It is compactly supported, and since g ◦ ϕ(x1, . . . , xn) = g(x1, . . . , xm)

depends only on Y we have

〈ϕ∗(φ), g〉 =
ˆ

Y

(ˆ

X/Y

f ∙ dμX/Y

)

∙ gdμY =
ˆ

Y

f̃ ∙ gdμY

where f̃ ∈ C∞c (Y ). Hence ϕ∗(φ) is a smooth measure.

Case 2 - general case: Let ϕ : X → Y be a submersion. Take trivializing

covers Y =
⋃

j∈J

Vj and X =
⋃

i∈I

Ui such that ϕ(Ui) ⊆ Vj . For any i, j such

that ϕ(Ui) ⊆ Vj we can choose isomorphisms τi : Ui ' Fn and ψj : Vj ' Fm

(if X and Y are F -analytic we choose isomorphisms to some powers of OF

) such that ψj ◦ ϕ ◦ τ−1
i is the natural projection Fn → Fm (respectively

On
F → O

m
F for F -analytic). Hence

(
ψj ◦ ϕ ◦ τ−1

i

)
∗
(μ∞c (Fn)) ⊆ (μ∞c (Fm)

and ϕ∗(C∞c (Ui, Dens(Ui))) ⊆ C∞c (Vj , Dens(Vj)).

Now, let φ ∈ C∞c (X, Dens(X)). Using partition of unity, we can write

φ =
∑

i∈I

fiμi where fiμi ∈ C∞c (Ui, Dens(Ui)). Note that this is a finite sum

since φ is compactly supported and observe that:

ϕ∗(φ) = ϕ∗

(
∑

i∈I

fiμi

)

=
∑

i∈I

ϕ∗(fiμi) =
∑

i∈I

giμ
′
i

where gi ∈ C∞c (Vj , Dens(Vj)). Each giμ
′
i is a smooth compactly sup-

ported measure, so the sum
∑

i∈I

giμ
′
i is a smooth section of the density

bundle and we are done.

(2) Since ϕ is a submersion for any ϕ(x) = y ∈ Y the fiber ϕ−1(y) is a sub-

manifold of X and the following sequence is exact:

0→ Txϕ−1(y)→ Tx(X)→ Tϕ(x)(Y )→ 0.

Since this is an exact sequence of vector spaces it splits so Tx(X) = Txϕ−1(y)⊕

Tϕ(x)(Y ) and by dualizing we get that

T ∗x (X) = T ∗x ϕ−1(y)⊕ T ∗ϕ(x)(Y ).

This implies that Dens(X)x = Dens(ϕ−1(y))x ⊗ (Dens(Y ))ϕ(x).
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We now reduce the problem to a small neighborhood. As before take

trivializing covers Y =
⋃

j∈J

Vj and X =
⋃

i∈I

Ui such that ϕ(Ui) ⊆ Vj , and

choose appropriate isomorphisms τi and ψj for ϕ(Ui) ⊆ Vj such that ψj ◦

ϕ ◦ τ−1
i is the natural projection Fn → Fm (resp. On

F → O
m
F ).

We need to prove that for every h ∈ C∞c (Y ) we have

〈ϕ∗(f |ωX |), h〉 = 〈f |ωX | , h ◦ ϕ〉 = 〈g ∙ |ωY | , h〉,

where g is as in the statement of the proposition. Construct a partition of

unity f =
∑

i∈I

fi with respect to {Ui}i∈I . Then it is enough to prove the

claim for fi |ωX | as then:

ϕ∗(f |ωX |)(h) = ϕ∗(
∑

fi |ωX |)(h) =
∑ ˆ

Y

gih |ωY |

where gi(y) =
´

ϕ−1(y)
fiη since supp(fiη) ⊂ Ui. As g =

∑

i∈I

gi we would

have that g(y) =
´

ϕ−1(y)
fη as required.

In (1) we showed the case where ϕ is a projection. Using the fact that

for diffeomorphisms pushforward and pullback are inverse to one another

and using part (1) we get that:

ψj ◦ ϕ∗(fi |ωX |) = ψj ◦ ϕ ◦ (τ−1
i )∗((τ

−1
i )∗ (fi |ωX |))

= ψj ◦ ϕ ◦ (τ−1
i )∗(fi ◦ τ−1

i ∙
∣
∣(τ−1

i )∗ωX

∣
∣) = g̃i

∣
∣(ψ−1

j )∗ωY

∣
∣

where g̃i(x) =
´

τi◦ϕ−1◦ψ−1
j (x)

fi ◦ τ−1
i

∣
∣
∣

(τ−1
i )∗ωX

(ϕ◦τ−1
i )∗ωY

∣
∣
∣. Set gi := g̃i ◦ ψj , then

g̃i = gi ◦ ψ−1
j . Hence ϕ∗(fi |ωX |) = gi |ωY | where,

gi(y) = g̃i(ψj(y)) =
ˆ

τi◦ϕ−1(y)

fi ◦ τ−1
i

∣
∣
∣
∣

(τ−1
i )∗ωX

(ϕ ◦ τ−1
i )∗ωY

∣
∣
∣
∣ =

ˆ

ϕ−1(y)

fi

∣
∣
∣
∣

ωX

ϕ∗ωY

∣
∣
∣
∣ .

�

Definition 8.0.4. By the proposition, the map ϕ∗ : C∞c (X, Dens(X))→ C∞c (Y, Dens(Y ))

gives rise to a pullback ϕ∗ : C−∞(Y )→ C−∞(X).

Exercise 8.0.5. Let ϕ : X → Y be a submersion. We can define a pullback

ϕ∗ : C∞(Y ) → C∞(X) both by ϕ∗(f) = f ◦ ϕ and by the restriction of the map

ϕ∗ : C−∞(Y )→ C−∞(X) to the subspace C∞(Y ) ⊂ C−∞(Y ). Show that these two

definitions coincide.

We can generalize the pushforward and pullback operations on functions and on

distributions to functions and distributions with values in a vector bundle:

Definition 8.0.6. Let ϕ : X → Y and let be π : E → Y a bundle.

(1) Define the pullback of the bundle (E, π) to X by

ϕ∗(E) := {(x, e) ∈ X × E : ϕ(x) = π(e)}
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with the natural projection to X.

(2) Using (1) define the the pullback of sections

ϕ∗ : C∞(Y,E)→ C∞(X,ϕ∗(E))

and by dualizing the pushforward of distributions

ϕ∗ : Dist(X,ϕ∗(E))prop → Dist(Y,E).

(3) Define ϕ!(E) := ϕ∗(E)⊗ ϕ∗(Dens(Y )∗)⊗Dens(X).

Proposition 8.0.7. Let ϕ : X → Y be a submersion. Then

ϕ∗ (C∞c (X,ϕ∗(E)⊗Dens(X))) ⊆ C∞(Y,E ⊗Dens(Y )).

In particular, this implies that ϕ∗
(
C∞c (X,ϕ!(E))

)
⊆ C∞(Y,E).

Proof. As in the proof of the last proposition, we may reduce to the case where

ϕ : X → Y is the natural projection, and X = Fn, Y = Fm, and E ' Fm × F k

is trivial (resp On
F ,O

n
F and O

m
F ×O

k
F for F -analytic manifolds). As a consequence,

ϕ∗(E) = Fn × F k (resp. On
F ×O

k
F ). Note reducing is possible since the notion of

smoothness of a distribution (that is, it is a smooth measure) is local.

Let φ = fμ ∈ C∞c (X,ϕ∗(E)⊗Dens(X)). Then we have for any g ∈ C∞(Y,E),

〈ϕ∗(φ), g〉 = 〈φ, g ◦ ϕ〉 =
ˆ

X

f ∙ (g ◦ ϕ)μX =
ˆ

Y

(ˆ

X/Y

f ∙ μX/Y

)

∙ gμY

=
ˆ

Y

f̃ ∙ gμY = 〈f̃μY , g〉,

where f̃ =
´

X/Y
f ∙ μX/Y which is smooth, so ϕ∗(φ) is smooth. �

9. Fourier transform

Definition 9.0.1. Let G be a locally compact Hausdorff abelian group. Define its

Pontryagin dual by,

G∨ = {χ : G→ U1(C) = S1 ⊆ C|χ(g1g2) = χ(g1)χ(g2), χ is cts}.

The topology on G∨ is the compact open topology, i.e. a sub-basis of the topology is

comprised of sets M(K,V ) = {χ ∈ G∨ : χ(K) ⊆ V } where K ⊆ G is compact and

V ⊆ S1 is open.

Theorem 9.0.2. Let G be a locally compact, Hausdorff abelian group, then G∨ is

a locally compact Hausdorff abelian group.

Proof. We see that characters form an abelian group. Since S1 is a topological

group, the compact open topology on G∨ is equivalent to the topology of uniform

convergence on compact sets. Thus, in order to show that the multiplication and

inverse operations are continuous, it is enough to show that if fn → f and gn → g
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uniformly on compact sets then fn ∙g−1
n → f ∙g−1 uniformly on compact sets. Now,

if K ⊂ G is compact, note that this follows from the following bound (∀x ∈ K):

|fng−1
n − fg−1| ≤ |fn(g−1

n − g−1)|+ |(fn − f)g−1| = |gn − g|+ |fn − f |.

Now to show it is locally compact, consider the space (S1)G of all functions f :

G→ S1 ' R/Z with the product topology (i.e. a basis is given by open sets in only

finitely many components). It is a compact space by Tychonoff’s theorem, and it

has the space

G̃ =
⋂

g1,g2∈G

{χ : G→ S1 : χ(g1g2) = χ(g1)(g2)},

as a closed subspace, implying that G̃ is compact. Furthermore, for every S ⊆ G

and ε > 0 the set A(S, ε) = {χ ∈ (S1)G : χ(S) ⊆ [−ε, ε]} is also closed and compact

in (S1)G as the complement is a union of sets of the form

{χ : G→ S1 : ∃s ∈ S s.t. χ(s) ∈ [−ε, ε]c}

which are open.

In particular, taking an open neighborhood e ∈ U ⊂ G, the sets V (U, ε) = A(U, ε)∩

G̃ are closed and compact in (S1)G. Take 0 < ε < 1
2 , we show that we have that

V (U, ε) ⊆ G∨. Start with an open e ∈ U0 = U ⊂ G, and choose a sequence of

neighborhoods (Un)∞n=1 in G such that Un+1 ∙ Un+1 ⊂ Un for all n ∈ N and set

εn = ε
2n . Taking χ ∈ V (Un, εn), we see that since for x ∈ Un+1 we have that

χ(x) ∈ [−εn, εn] and x2 ∈ Un we get χ(x2) = χ(x)2 ∈ [−ε2n, ε2n] ⊆ [− εn

2 , εn

2 ],

implying that V (Un, εn) ⊆ V (Un+1, εn+1).

Now, take χ ∈ V (U, ε) and a basic open set (−δ, δ) ⊂ S1 for δ > 0. We have

that [−εn, εn] ⊆ (−δ, δ) for n big enough, implying that e ∈ Un ⊆ χ−1((−δ, δ))

which means that χ is continuous at e. Since χ is a homomorphism, we can show

it is continuous everywhere; if χ(g) ∈ W ⊂ S1 and W is open, we have that

(−δ, δ) ⊆ χ(g−1)W for some δ > 0 and that,

χ−1(χ(g−1)W ) = {y ∈ G : χ(y) ∈ χ−1(g)W} = {y ∈ G : χ(gy) ∈W}

= g−1{gy ∈ G : χ(gy) ∈W} = g−1χ−1(W ).

Now, for some m ∈ N0 big enough, the following implies that g ∈ gUm ⊆ χ−1(W ):

Um ⊂ χ−1(χ(g−1)W ) = g−1χ−1(W ).

We know that V (U, ε) is compact in the product topology, and want to show it is

compact with respect to the compact open topology. For this, it is enough to show

that any net in V (U, ε) has a converging subnet in the compact open topology.

Assume we are given some net (xα) ∈ V (U, ε), then it has a subnet (fβ) → f

converging in the product topology with fβ , f ∈ V (U, ε). Now, note that V (U, ε)

is uniformly equicontinuous, that is if g1, g2 ∈ G and g1g
−1
2 ∈ Un then for any
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χ ∈ V (U, ε),

|χ(g1)− χ(g2)| = |χ(g1)χ
−1(g2)− 1| = |χ(g1g

−1
2 )− 1| ≤ εn.

Given a basic open neighborhood of the identity character 1G ∈ M(K,Bε′(0)),

where K is compact, for every g ∈ K we have that g ∈ Ung (for n big enough).

Now, taking any g′ ∈ Ung, we get that g′g−1 ∈ Un implying that for some big

enough β we have that |f(g)− fβ(g)| < εn and that,

|f(g′)− fβ(g′)| ≤ |f(g′)− f(g)|+ |fβ(g′)− fβ(g)|+ |f(g)− fβ(g)| < 3εn.

Taking n > ng such that εn < ε′

3 , we see that fβ → f uniformly on Ung, but since

K is compact we can cover it with finitely many sets of the form Ung
g, and take

n = max
0≤i≤k

{ngi} and appropriate β.

To finish off the argument, note that by local compactness every g ∈ G has a

neighborhood g ∈ U with compact closure U ⊂ K, and we have thatM(K,Bε(0)) ⊆

V (U, ε) for an appropriate 1
2 > ε > 0. �

Exercise 9.0.3. Let G be a locally compact, Hausdorff abelian group. Show that if

G is compact then G∨ is discrete, and that if G is discrete then G∨ is compact.

Theorem 9.0.4. For a locally compact abelian group G, we have that the natural

map ϕ : G → G∨∨ defined by g 7→ ϕg, where ϕg(χ) = χ(g), is an isomorphism

G∨∨ ' G.

Proof. This is complicated. Need a reference. �

Exercise 9.0.5. Let G be a locally compact, Hausdorff abelian group, and H ≤ G

a closed subgroup. Show that:

(1) Pontryagin duality is a contravariant endofunctor in the category of locally

compact abelian groups.

(2) H∨ ' G∨/H⊥ where H⊥ = {χ ∈ G∨ : χ(h) = 1 ∀h ∈ H}, and that if

H and G are vector spaces then this is a homeomorphism (Hint: use an

appropriate version of the Hahn-Banach theorem).

Example 9.0.6.

(1) For any finite abelian group G we have that G ' G∨.

(2) The dual of U1(C) = S1 is Z.

(3) We have that R∨ ' R.

Exercise 9.0.7. Let V be a topological vector space over a local field F . Then

V ∗ ⊗F F∨ ' V ∨.

Definition 9.0.8. Let G be a locally compact Hausdorff abelian group. The map

F : μc(G)→ C(G∨) defined by F(μ)(χ) =
´

χdμ is called the Fourier transform.

Exercise 9.0.9. Show the following:
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(1) F is continuous.

(2) Let G be a locally compact abelian group. For a character τ : G→ S1 define

shh(τ)(x) = τ(x + h). Show that for η ∈ μ∞c (G) and g ∈ G:

(a) F(shg(η))(χ) = χ(g)F(η)(χ) for all χ ∈ G∨.

(b) F(χη) = shχ−1(F(η)) for all χ ∈ G∨.

Definition 9.0.10. Let X1 and X2 be locally compact topological vector spaces and

let μ1 ∈ μ∞c (X1) and μ2 ∈ μ∞c (X2). We define the external tensor product of such

measures μ1 � μ2 ∈ μ∞c (X1 × X2). In addition, If X1 = X2 = G, then we define

the convolution of these measures by μ1 ∗ μ2 := m∗(μ1 � μ2) where m : G×G→ G

is the multiplication map.

Fact 9.0.11. For two measures α, β ∈ μ∞c (G) we have that F(α∗β) = F(α) ∙F(β).

Definition 9.0.12. Let V be a finite dimensional vector space over a local field F .

Define the space of Schwartz functions S(V ) on V by:

(1) If F is non-archimedean, then S(V ) = C∞c (V ), i.e. locally constant func-

tions on V .

(2) If F is archimedean, then

S(V ) = {f ∈ C∞(V )|∀i ∈ Nn, p ∈ F [V ], sup
∣
∣∂if ∙ p(x)

∣
∣ <∞}.

In other words it is the space of rapidly decreasing smooth functions on V .

Proposition 9.0.13. The Fourier transform F : S(V, Haar(V )) → S(V ∨) is con-

tinuous for an Archimedean V and its image is indeed contained in S(V ∨) in both

cases.

Proof. Assume V is a real vector space of dimension n, and recall that the topology

on S(V ) is determined by the semi-norms ‖f‖α,β = sup
x∈V
|Φα(x)∂βf(x)

∂xβ | where α, β ∈

Nn
0 and Φα(x) =

n∏

j=1

x
αj

j . It is enough to show that for every f ∈ C∞c (V, Haar(V ))

and semi-norm ‖ ∙ ‖α,β on S(V ∨) there exists a semi-norm ‖ ∙ ‖′ on S(V, Haar(V ))

and a positive constant C such that ‖F(f)‖α,β ≤ C‖f‖′. Now, recall that,

i∂F(f)
∂ξj

=
ˆ

Rn

i∂

∂ξj
(e−iξ∙xf(x))dx = F(xjf),

where one can differentiate directly using the definition to verify the above proce-

dure. The other side of the coin is given by integration by parts,

ξjF(f) =
ˆ

Rn

ξje
−iξ∙xf(x)dx =

[
−e−iξ∙xf(x)

]∞
−∞
−
ˆ

Rn

ξj

−iξj
e−iξ∙x ∂f(x)

∂xj
dx = F(

−i∂(f)
∂xj

).

Note that since the functions e−iξ∙x converge weakly to zero as distributions as

|ξ| → ∞ we get that Schwartz measures are mapped into S(V ∨). We can now
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bound F(f) properly using the above relations:

‖F(f)‖α,β = sup
x∨∈V ∨

∣
∣
∣
∣Φα(x∨)

(−i∂)βF(f)(x∨)
∂(x∨)β

∣
∣
∣
∣ = sup

x∨∈V ∨

∣
∣
∣
∣
∣
∣

ˆ

V

x∨
(−i∂)α(Φβ(−x)f)

∂xα
μ

∣
∣
∣
∣
∣
∣

≤ sup
x∨∈V ∨

ˆ

V

∣
∣
∣
∣x
∨ ∂α(Φβ(−x)f)

∂xα

∣
∣
∣
∣μ ≤ C sup

x∈V

(

(1 + |x|)n+1

∣
∣
∣
∣
∂α(Φβ(|x|)f)

∂xα

∣
∣
∣
∣

)

.

where C =
´

V

1
(1+|x|)n+1 dμ(x). Since the last expression is a linear combination of

norms of the form ‖f‖α′,β′ for |α′| ≤ |α|+ n + 1 and |β′| ≤ |β|, this implies that F

is continuous. Note that we can also use this to show that F(f) is Schwartz, since

if all the norms ‖ ∙ ‖α,β are bounded then the value of |Φα(x)∂βf(x)
∂xβ | decays to 0 as

|x| → ∞ for every α and β.

The proof for vector spaces over non-Archimedean fields is analogous. �

Definition 9.0.14. Let S(V ) be the space of Schwartz functions on V .

(1) We call ξ ∈ S∗(V ) the space of tempered distributions and G(V ) :=

S∗(V, Haar(V )) the space of tempered generalized functions.

(2) Finally, we define the Fourier transform on tempered distributions via du-

ality:

F∗ : S∗(V ∨)→ G(V ) := S∗(V, Haar(V )).

Taking V := V ∨ we get F∗ : S∗(V )→ G(V ∨).

Theorem 9.0.15. The definition of Fourier transform of distributions is consistent

with the definition given for functions. In other words F∗|S(V,Haar(V )) = F .

Proof. Let f(x) ∙ dx ∈ S(V, Haar(V )) and g(χ) ∙ dχ ∈ S(V ∨, Haar(V ∨)). Then by

definition,

〈F∗(f(x) ∙ dx), g(χ) ∙ dχ〉 := 〈f(x) ∙ dx,F(g(χ)dχ)〉 =
ˆ

V

f(x)F(g(χ) ∙ dχ)(x)dx

where F(g(χ) ∙ dχ)(x) :=
´

V ∨ χ(x)g(χ)dχ. Therefore we have:
ˆ

V

f(x)F(g(χ) ∙ dχ)(x)dx =
ˆ

V

f(x)
ˆ

V ∨

χ(x)g(χ)dχdx =
ˆ

V ∨

(ˆ

V

χ(x)f(x)dx

)

g(χ)dχ

=
ˆ

V ∨

(F(f)(χ)) g(χ)dχ = 〈F(f(x) ∙ dx), g(χ) ∙ dχ〉.

�

Remark 9.0.16. We will usually omit the ∗ from the F∗ notations, this should

cause no confusion.

In the following argument we would like to show the Fourier transform is a unitary

operator. For this we will first need to define a pairing between Haar(V ) and

Haar(V ∨). Given α ∈ Haar(V ) and β ∈ Haar(V ∨) we can define such a pairing
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as follows. We choose f ∈ C∞c (V ∨) such that f(0) = 1 and then define 〈α, β〉 :=

〈F(α), f ∙ β〉.

Exercise 9.0.17.

(1) Show this is well defined. That is, given a different g ∈ C∞c (V ∨) such that

g(0) = 1, show that 〈F(α), (f − g) ∙ β〉 = 0.

(2) Show that Haar(V ∨) 'can Haar(V )∗.

Exercise 9.0.18. Show that F(δa)(t) = exp(at).

Definition 9.0.19. We define a map Fn : S∗(V, Haar(V )⊗n)→ S∗(V ∨, Haar(V ∨)⊗(1−n))

such that F0 is the Fourier transform. We use the following isomorphisms:

(1) The pairing Haar(V ∨) 'can Haar(V )∗.

(2) The identification S∗(V, Haar(V )⊗n) ' S∗(V )⊗Haar(V )⊗−n.

(3) The identification S∗(V ∨, Haar(V ∨)⊗(1−n)) ' S∗(V ∨, Haar(V ∨))⊗Haar(V ∨)⊗n.

The first item was shown in the previous exercise. The second identification is as

follows. Given ξ ⊗ β ∈ S∗(V )⊗Haar(V ∨)⊗n and f ∙α ∈ S(V, Haar(V )⊗n) we have

that 〈ξ ⊗ β, fα〉 = 〈ξ, f〉〈β, α〉. The third identification is similar.

Finally, we define the map by applying the Fourier transform on the first coordinate

of the right hand side of (2) and by applying the canonical map (1) on the second

coordinate.

Proposition 9.0.20. We have that F1◦F0 = flip where 〈flip(ξ), f(x)μ〉 = 〈ξ, f(−x)μ〉.

Proof. Note that span{δx}x∈V is a dense subspace of S∗(V ) with respect to the

weak topology. Hence it is enough to show that F1 ◦ F0(δa) = δ−a for all a ∈ V .

Note that 〈F0(δ0), fβ〉 := 〈δ0,F0(fβ)〉 =
´

V ∨ fdβ, this implies F0(δ0) = 1.

As before, F1 : S∗(V ∨, Haar(V ∨))→ S∗(V ) is defined by identifying : S∗(V ∨, Haar(V ∨))

with S∗(V ∨)⊗Haar(V ). Under this identification, 1 ∙μ for a choice of a Haar mea-

sure μ on V ∨ is identified with 1⊗ η where η ∈ Haar(V ) and 〈μ, η〉 = 1.

Given f ∈ S(V ), we have that (note we are using Theorem 9.0.15):

〈F1(1 ∙ μ), f〉 = 〈F∗(1)⊗ η, f ∙ η ⊗ μ〉 = 〈F(1), f ∙ η〉〈η, μ〉 = 〈δ0, f ∙ η〉 ∙ 1 = f(0),

so F1 ◦ F0(δ0) = δ0.

Using Exercise 9.0.9, we now see that (here χ(a) is the function which substitutes

the value a in a given character χ):

F1 ◦ F0(δa) = F1 ◦ F0(sha(δ0)) = F1(χ(a)F0(δ0)) = sh−aF1 ◦ F0(δ0) = δ−a.

By continuity of F0 and F1 this implies that F1 ◦ F0 = flip. �

Definition 9.0.21. Let F and K be local fields and χ : F× → K× a character.

For a 1-dimensional space V over F we define a functor by:

χ(V ) := {ϕ : V ∗ → K : ϕ(αv) = χ(α)ϕ(v)∀α ∈ F×, v ∈ V ∗}.



GENERALIZED FUNCTIONS LECTURES 70

Example 9.0.22. Let χ : F× → F× be the character x 7→ x2 and let V be a one

dimensional vector space of F . Then

χ(V ) := {ϕ : V ∗ → K : ϕ(αf) = α2ϕ(f)}.

Note that χ(V ) 'can V ⊗ V by v ⊗ w 7→ ϕv ∙ ϕw. Indeed, given ψ ∈ V ∗, we have

ϕv ∙ ϕw(ψ) = ψ(v) ∙ ψ(w) and ϕv ∙ ϕw(aψ) = aψ(v) ∙ aψ(w) = a2ϕv ∙ ϕw(ψ).

Definition 9.0.23. Let V be a 1-dimensional vector space over R.

(1) A positive structure on V is a non trivial subset P ⊆ V such that R≥0 ∙P =

P .

(2) If V has a positive structure, we define

V α := |V |α = {ϕ : V ∗ → R : ϕ(βf) = |β|α ∙ ϕ(f)}.

Exercise 9.0.24. Let V be a real 1-dimensional vector space with a positive struc-

ture.

(1) Show that:

(a) V 'can |V |.

(b) V α+β 'can V α ⊗ V β where α, β ∈ Q×.

(2) Deduce that Haar(V )α ⊗Haar(V )β ' Haar(V )α+β.

Definition 9.0.25. For α ∈ Q we define similarly to the procedure defined above,

Fα : S∗(V, Haar(V ))→ S∗(V ∨, Haar(V ∨)1−α).

In particular, choosing α = 1
2 we have:

F 1
2

: S∗(V, Haar(V )
1
2 )→ S∗(V ∨, Haar(V ∨)

1
2 ).

Theorem 9.0.26 (Functoriality of Fourier transform). Let W ⊂ V be vector spaces

over a local field, denote the inclusion of W in V by i, and set p : V ∨ → W∨ for

the induced linear map on the duals, then the following diagrams commute:

S(V ) S(W ) S∗(V ) S∗(W )

S(V ∨, Haar(V ∨)) S(W∨, Haar(W∨)) G(V ∨) G(W∨).

i∗

F F

p∗

F

i∗

F

p∗

Note that this is possible since p is a submersion (linear and surjective) so pushing

Schwartz measures along it yields Schwartz measures.

Proof. We start by showing the right hand side diagram commutes. Since i∗, the

Fourier transform and p∗ are continuous with respect to the weak topology, it is

enough to prove commutativity for a dense set in S∗(W ).

First take the delta function δ0 ∈ S∗(W ), it is a compactly supported measure, and

it holds that i∗(δ0) = δ0. Furthermore, since F : S∗(V ) → G(V ∨) is defined via
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duality we have that F(δ0) = 1:

〈F(δ0), fμ〉 = 〈δ0,F(fμ)〉 = F (fμ)(0V ∨∨) =
ˆ

V ∨

fdμ = 〈1, fμ〉,

where the third equality is sensible since F(fμ) ∈ S(V ∨∨) and 0V ∨∨(χ) = 1 for

all χ ∈ V ∨. We can also show that p∗(1) = 1. Consider G(W∨) as a subspace of

C−∞(W∨), there the generalized Schwartz function 1 is a smooth function, and

note that the following diagram, where the horizontal arrows are the inclusions is

commutative:

G(V ∨) C−∞(V ∨) C∞(V ∨)

G(W∨) C−∞(W∨) C∞(W∨).

p∗ p∗ p∗

Now, note that every measure fμ ∈ μ∞c (V ∨) can be treated either as a functional

on smooth functions (since it has compact support as a distribution), or as the

parameter a generalized function takes values on. This is utilized in the second

equality bellow to yield the required result:

〈p∗C−∞(1), fμ〉 = 〈1, p∗(fμ)〉 = 〈p∗(fμ), 1〉 = 〈fμ, p∗C∞(1)〉 = 〈fμ, 1〉 = 〈1, fμ〉.

Note that since p∗ is a submersion pushing forward a compactly supported smooth

measure along it yields a smooth measure.

Since δw for any w ∈ W is just a translation of δ0 by w, its Fourier transform is

F(δw)(χ) = χ(w), and i∗ and p∗ are invariant to translations, the diagram is com-

mutative for delta distributions. The space of delta distributions spanC{δw}w∈W

is dense w.r.t the weak topology since for every function f with f(x0) 6= 0 we can

take suitable c ∈ C such that |〈ξ − cδx, f〉| is small as desired.

To see this implies the commutativity of the left diagram, it is enough to show

that if A∗ = 0 for A∗ : V ∗2 → V ∗1 where A∗ is the dual map to the linear map

A : V1 → V2, then A = 0, and use this for Fi∗ − p∗F .

If A∗ = 0, we have for every ξ2 ∈ V ∗2 and v1 ∈ V1 that 0 = 〈A∗ξ2, v1〉 = 〈ξ2, Av1〉. If

there exists v1 ∈ V1 such that Av1 6= 0, then we can define a non-zero linear func-

tional ξ : spanC{Av1} → C via 〈ξ, Av1〉 = 1, and extend it to a non-zero continuous

functional ξ2 ∈ V ∗2 by the Hahn-Banach theorem. This yields a contradiction as

1 = 〈ξ2, Av1〉 = 〈A∗ξ2, v1〉 = 〈0, v1〉 = 0.

�
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10. Wave-front set

The wave-front set of a generalized function ξ is the collection of all points and

codirections in which ξ is not smooth. It is a very important invariant of the

generalized function. For example, there are some operations on functions, like

product or pull-back, that do not extend to arbitrary generalized functions but

do extend to generalized functions under some conditions on the wave-front set.

The term comes from physics. Every differential equation satisfied by a generalized

function will give a restriction on its wave-front set.

Example 10.0.1. Let ξ be the δ-function of the x-axis on R2, i.e. the generalized

function given by 〈ξ, fdxdy〉 :=
´

f(x)dx〉, let L ⊂ R2 denote the x-axis and L⊥ ⊂

(R2)∗ denote the subspace of functionals vanishing on L. Then WF(ξ) = L× L⊥.

We will now define the wave-front set by characterizing properties.

Definition 10.0.2. The wave-front set is an assignment of a closed subset WF(ξ) ⊂

T ∗M for any ξ ∈ C−∞(M,E) such that

(1) For any isomorphism ν : (M,E) ' (M ′, E′),

ν̃(WF(ξ)) = WF(ν∗(ξ)).

(2) WF(ξ) is conical in the cotangent directions, i.e.

(x, v ∈WF(ξ)⇒ (x, λv) ∈WF(ξ) ∀λ ∈ F.

(3) pM (WF(ξ)) = WF(ξ) ∩ (M × {0}) = supp(ξ),

where pM : T ∗M →M denotes the natural projection.

(4) ξ ∈ C∞(M,E)⇔WF(ξ) ⊂M × {0}

(5) WF(fξ + gη) ⊂WF(ξ) ∪WF(η)

(6) For another bundle E′ over M , let η ∈ C−∞(M,E) and consider ξ ⊕ η ∈

C−∞(M,E ⊕ E′). Then WF(ξ ⊕ η) = WF(ξ) ∪WF(η).

(7) For any open subset U ⊂M , WF(ξ|U ) = WF(ξ) ∩ p−1
M (U).

(8) Let ν : N → M be a submersion. Then WF(ν∗ξ) = ν∗(WF(ξ)), where the

operation ν∗ on subsets of cotangent bundles will be defined below.

(9) Let ν : M → N be a smooth map such that ν|supp(ξ) is proper. Then

WF(ν∗(ξ)) ⊂ ν∗(WF(ξ)), where the operation ν∗ on subsets of cotangent

bundles will be defined below.

Definition 10.0.3. (i) For sets A,B, and subsets X ⊂ A, Y ⊂ B, S ⊂ A × B

define subsets S∗(X) ⊂ B and S∗(Y ) ⊂ A by

S∗(X) = {y ∈ B | ∃x ∈ X s.t.(x, y) ∈ S} S∗(Y ) = {x ∈ A | ∃y ∈ Y s.t.(x, y) ∈ S}.

(ii) For a morphism smooth map ν : M → N , define Δν ⊂ T ∗M × T ∗N by

Δν := {((m, v), (n,w) ∈ T ∗M × T ∗N | ν(m) = n, d∗mν(w) = v}.
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For a subset X ⊂ T ∗M define ν∗(X) := (Δν)∗(X) ⊂ T ∗N and

for a subset Y ⊂ T ∗N define ν∗(Y ) := (Δν)∗(Y ) ⊂ T ∗M.

Exercise 10.0.4 (*). Check whether the wave-front set is uniquely defined by the

above properties.

Hint. By (7), WF is local and thus it is enough to prove for ξ ∈ C−∞(Fn). Let

(0, v) /∈ WF(ξ), and let ρ ∈ C∞c (Fn) be constant 1 in a neighborhood of zero.

Consider v∗(ρξ) ∈ C−∞(F ). From (9) and (4), v∗(ρξ) ∈ C∞(F ). Thus, if v∗(ρξ) /∈

C∞(F ) for some ρ as above then (0, v) ∈WF(ξ).

Let us now find a necessary condition for (0, v) ∈ WF(ξ). We will use the Radon

transform, which maps f ∈ C∞c (V ) to the integrals of f on all affine hyperplanes,

i.e. hyperplanes not necessarily passing through the origin. For a vector space

W , denote W̄ := P(W ⊕ F ). Note that this is a compact manifold and that the

manifold of all affine hyperplanes in V is V ∗, and the manifold of all affine lines in

V is V̄ . Define R := {(l,H) ∈ V̄ ×V ∗ | l ∈ H}, and let p1 : R→ V̄ and p2 : R→ V ∗

be the projections. Then the Radon transform is (p2)∗ ◦ p∗1. It is known that this

transform is invertible, and thus any distribution is the Radon transform of another

one. Thus, the conditions (9) and (8) give an upper bound on WF. Hopefully, the

two bounds together determine WF. �

10.1. Definition of the wave-front set. Let us now give a constructive definition

of WF, following Hörmander, and then prove the above properties. It will take

several steps.

Definition 10.1.1. For any local field F , let V be an F -vector space, v ∈ V and

f ∈ C∞(V ). We say that f vanishes asymptotically along v if there exists an

open neighborhood U of v and ρ ∈ C∞c (U) such that p∗(ρ)m∗f ∈ S(U × F ), where

m : V × F → V is given by m(v, λ) := λv and p : V × F → F is the projection.

Exercise 10.1.2. TFAE:

(i) f vanishes asymptotically along v for any v 6= 0 ∈ V

(ii) f ∈ S(V ).

Exercise 10.1.3. Show that f vanishes asymptotically along 0 if and only if f = 0.

Exercise 10.1.4. For any Lie group G, we have F(Distc(G)) ⊂ C∞(Ǧ).

Definition 10.1.5. Let V be a vector space, and ξ ∈ Dist(V ).

(i) We say that ξ is smooth at (x,w) ∈ V × V ∗ if there exists ρ ∈ C∞c (V ) such

that ρ(x) = 1 and F(ρξ) vanishes asymptotically along w.

(ii) WF(ξ) = {(x,w) ∈ V × V ∗ | ξ is not smooth at (x,w)}.

(iii) For x ∈ V , let WFv(ξ) := WF(ξ) ∩ {x} × V ∗

Theorem 10.1.6 (The proof is complicated). Let ν : V → V be a diffeomorphism

s.t. ν(0) = 0 and d0ν = Id. Then WF0(ν∗(ξ)) = WF0(ξ) for any ξ ∈ Dist(V ).



GENERALIZED FUNCTIONS LECTURES 74

Exercise 10.1.7 (*). A distribution ξ on V is smooth at (x,w) ∈ V × V ∗ if and

only if for any ρ ∈ C∞c (V ) with ρ(x) = 1, the Fourier transform F(ρξ) vanishes

asymptotically along w.

Corollary 10.1.8. Let ν : V → V be a diffeomorphism. Then

WF(ν∗(ξ)) = ν∗(WF((ξ))).

Corollary 10.1.9. The definition of WF extends to generalized sections of vector

bundles on manifolds.

Exercise 10.1.10. Let L ⊂ V be linear spaces of dimensions 1 and 2. Fix a Haar

measure μ on L and define δL ∈ Dist(V ) by 〈δL, f〉 :=
´

L
fμ. Compute WF(δL).

Exercise 10.1.11. Properties (1)-(7) of WF hold.

Exercise 10.1.12. For any epimorphism of Lie groups p : G � H, and any

ξ ∈ Distc(G), we have F(p∗(ξ)) = F(ξ)|Ȟ .

Exercise 10.1.13. Property (8) holds.

Exercise 10.1.14. Property (9) holds.

Hint. Any map ν : M → N decomposes as a composition of the closed embedding

graph(ν) : M ↪→ M × N and the projection M × N � N . Thus it is enough

to prove for a closed embedding and for a projection. By the locality of WF and

invariance to isomorphisms it is enough to prove for a linear embedding and a linear

epimorphism. �

10.2. Advanced properties of the wave-front set.

Definition 10.2.1. Let Γ ⊂ T ∗M be a closed subset. Define

C−∞Γ (M) := {ξ ∈ C−∞(M) |WF(ξ) ⊂ Γ}.

Definition 10.2.2. (i) For a non-archimedean F , an F -analytic manifold M

and an F -vector space W define

SW (M) := {f ∈ C∞(M ×W ) | prM |supp(f) is proper }.

(ii) For a smooth manifold M and an R-vector space W define

SW (M) := {f ∈ C∞(M ×W ) | ∀ compact K ⊂M, ∀m,n ∈ Ndim W

∀D ∈ Diff(M). sup
(x,w)∈K×W

||Df (n)
x,wwm|| <∞}.

Definition 10.2.3. Define topology on C−∞Γ (V ) by: ξi → ξ if ξ
w
→ ξ in C−∞(V )

and for any v ∈ V there exists ε > 0 and ρ ∈ C∞c (Bε(v)) such that for any l ∈ V ∗

we have

m∗F(ρξi)|Bε(l)×F → m∗F(ρξi)|Bε(l)×F

in SF (Bε(l)× F ).
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Definition 10.2.4. For a smooth map ν : M → N , define

Sν := {(ν(x), w) ∈ T ∗N | dxν∗(w) = 0}.

Note that Sν = ν∗(M × {0}).

Theorem 10.2.5. Let ν : M → N and let Γ ⊂ T ∗N be a closed subset such that

Γ ∩ Sν ⊂ N × {0}.

Then ν∗ : C∞(N)→ C∞(M) can be continuously extended to

ν∗ : C−∞Γ (N)→ C−∞ν∗(Γ)(M).

Proof. For a submersion, one can pullback any distribution, C−∞Γ (N) = C∞(N).

Also, the statement is local. Thus, enough to prove it for ν : V → W . Any such ν

decomposes to i : V → V ×W given by i(v) := (v, 0), ν′ : V ×W → V ×W given

by (v, w) 7→ (v, ν(v) + w) and the projection on W . Thus, it is enough to prove for

i. For i we have

Si = CN(V ) = V ×W ∗ ⊂ (V ⊕W )× (V ∗ ⊕W ∗) = T ∗(V ⊕W ).

Also, enough to prove for the case dim W = 1. This we do by twisting pushforward

by F .

More precisely, we use Theorem 9.0.26 on functoriality of Fourier transform. By this

theorem, for f ∈ S(V ⊗W ) we have F(i∗f) = p∗(F(f)), where p : V ∗⊕W ∗ → V ∗ is

the projection. This formula extends to ξ ∈ C−∞V×W∗(V ⊕W ), since F(ρξ) vanishes

asymptotically along W ∗ for any ρ ∈ C∞c (V ⊕W ). More precisely, we can choose a

sequence ρn ∈ C∞c (V ⊕W ) that on every compact becomes the constant 1 starting

from some index, and define ν∗ξ to be the limit of F−1(p∗(F(ρnξ))). �

Corollary 10.2.6. Let ξ, η ∈ C−∞(M) such that WF(ξ) ∩WF(η) ⊂ M × {0}.

Then we can define the product ξ ∙ η ∈ C−∞WF(ξ)+WF(η)(N).

Proof. Define Δ : M →M ×M by Δ(m) := (m,m). Then ξ ∙ η = Δ∗(ξ ⊗ η). �

Theorem 10.2.7. Let ξ ∈ C−∞(V ) and let Z ⊂ V ∗ be a closed conical set such

that suppF(ξ) ⊂ Z. Then WF(ξ) ⊂ V × Z.

Intuitively, this theorem makes sense since the cotangent directions in the wave-

front set form the asymptotic support of the Fourier transform. Let us now give the

proof in the p-adic case, since the proof in the real case is similar, though longer.

Proof. Enough to show that for any ρ ∈ C∞c (V ), F(ρξ) is asymptotically supported

in Z. Note that F(ρξ) = F(ρ) ∗ F(ξ) and thus suppF(ρξ) ⊂ suppF(ρ) + Z. Since

suppF(ρ) is a compact set, F(ρξ) is eventually zero in any direction not in Z.

Since Z is closed, this implies that F(ρξ) is asymptotically supported in Z and

thus WF(ξ) ⊂ V × Z. �
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Theorem 10.2.8. Let M be a smooth manifold, D be a differential operator on

M , and ξ ∈ C−∞(M) such that Dξ = 0. Then Symb(D)(WF(xi)) = {0}.

Sketch of proof. Since the question is local, we can assume that M is a vector space

V . Fix x ∈ V and let p be the polynomial on V ∗ given by p(l) := Symb(D)(v, l).

Let l ∈ V ∗ be a cotangent direction such that p(l) 6= 0. We want to show that

p /∈WFx(ξ). Define

ν(ξ, l) := sup
w∈l+Bε(0)

lim
λ→∞

ln |F(ξ)(λw)|
ln |λ|

This is the order of asymptotics as λ → ∞ of F(ξ) near the direction l. It is not

+∞ since F(ξ) is a tempered distribution. We want to show that ν(ξ, l) = −∞ for

ε small enough. Denote ψ(α) := exp(2πiα), and define fλ ∈ C∞(V ) by fλ(v) :=

ψ(λl(v)). We have

0 = 〈ρDξ, fλ〉 = 〈ξ,D(ρfλ)〉.

Using the Leibnitz rule we get

D(ρfλ)(v) = D(ρ(v)ψ(λl(v)) =
degD∑

m=0

λmψ(λl(v))ρm =
degD∑

m=0

λmfρm

for some collection ρm ∈ C∞c (V ). Thus

0 = 〈ξ,D(ρfλ)〉 =
∑

λm〈ξ, fρm〉 =
∑

λmF(ρmξ)(λl) =
∑

λm(F(ξ)∗F(ρm))(λl).

Thus

F(ξ) ∗ F(ρdegD)(λl) = −λ−1(F(ξ) ∗ F(ρdegD−1))(λl) + . . .

and thus ν(ξ, l) = ν(ξ, l)− 1. Thus ν(ξ, l) = −∞. �

10.3. Sketch of proof of the invariance to isomorphisms in the p-adic case.

Let V := Fn. Let ψ : F → U(1) ⊂ C× be a non-trivial unitary additive character

with ψ(B1(0)) = {1}. Identify V̌ with V ∗ using ψ.

Notation 10.3.1. Let l ∈ V ∗ and r, ε > 0 ∈ R. Denote

C−∞l,r,ε(V ) := {ξ ∈ C−∞(V ) | supp(ξ) ⊂ Br(0) and m∗(F(ξ))|Bε(l)×F ∈ S
F (Bε(l)×F )}

C−∞l,r,ε,α(V ) := {ξ ∈ C−∞(V ) | supp(ξ) ⊂ Br(0) and supp(m∗(F(ξ)))|Bε(l)×F ⊂ Bε×Bα(F )}

Note that C−∞l,ε (V ) := ∪α∈RC−∞l,ε,α(V ).

Exercise 10.3.2. (i) If ξ ∈ C−∞l,r,ε,α(V ) with ||l|| = 1 then 1Bδ(l)ξ ∈ C−∞l,r,ε,α+δ−1 (V ).

(ii) If ξ ∈ C−∞l,r,ε(V ) and ρ ∈ C∞c (V ) then ρξ ∈ C−∞l,r,ε(V ).

Notation 10.3.3. For a diffeomorphism ν : V → V and x ∈ V denote by Affxν

the affine approximation to ν at x. Namely

Affxν(y) := ν(x) + dxν(y − x).
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Exercise 10.3.4. Let ν : V → V be a diffeomorphism s.t. ν(0) = 0 and d0ν = Id.

Let r > 0. Show that ∃C ∀δ > 0 ∀x ∈ Br(0) we have

sup
Bδ(x)

||ν −Affxν|| < Cδ2.

Hint. Use Taylor series �

Exercise 10.3.5. Let ξ ∈ S∗c (V ). Let ν1, ν2 : V → V and let ε > 0 be s.t.

sup
suppξ

||ν1 − ν2|| < ε.

Then

F(ν∗1ξ)|Bε−1 (0) = F(ν∗2ξ)|Bε−1 (0).

Exercise 10.3.6. Let r, ε, α > 0 with ε < 1 and let l ∈ V ∗ s.t. ||l|| = 1. Let

A : V → V be an affine transformation s.t. ||d0A−Id|| < 1 and A(Br(0)) ⊂ Br(0).

Then

A∗(C−∞l,r,ε,α(V )) ⊂ C−∞d∗
0A(l),r,ε,α(V ).

This exercise follows from the rules for conjugation of linear transformations by

Fourier transform.

The theorem follows now from the following specialization.

Theorem 10.3.7. Let r, ε, α > 0 with ε < 1 and let l ∈ V ∗ s.t. ||l|| = 1. Let

ν : V → V be a diffeomorphism such that

(1) ν(0) = 0

(2) ||dxν − Id|| < ε

(3) for any x ∈ Br(0) and any r′ ≤ r we have ν(Br′(x)) = Br′(ν(x)).

Let ξ ∈ C−∞l,r,ε,α(V ). Then

ν∗ξ ∈ C−∞l,r,ε(V ).

Proof. Let C be as in Exercise 10.3.4. Fix λ ∈ F with |λ| > α + C +
√

C(C + 2α).

Let δ = 1/(
√

2λC). Thus α + δ−1 < |λ| < C−1δ−2. It is enough to show that for

any l′ ∈ Bε(l) we have F(ν∗ξ)(λl′) = 0. Present Br(0) as a disjoint union of balls

Ui = Bδ(xi) of radius δ. We have

F(ν∗ξ)(λl′) =
∑

i

F(ν∗(1Uiξ))(λl′).

Since |λ| < C−1δ−2, Exercises 10.3.4 and 10.3.5 imply

F(ν∗(1Ui
ξ))(λl′) = F((Affxi

ν)∗(1Ui
ξ))(λl′).

By Exercise 10.3.2 (i) and by the assumptions 1Ui
ξ ∈ C−∞l,r,ε,α+δ−1(V ). By Exercise

10.3.6 this implies

(Affxiν)∗(1Uiξ) ∈ C−∞d∗
xi

ν(l),r,ε,α+δ−1(V ).
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Since |λ| > α + δ−1 and l′ ∈ Bε(d∗xi
ν(l)) we have

F((Affxiν)∗(1Uiξ))(λl′) = 0 ∀i.

Summarizing, we have

F(ν∗ξ)(λl′) =
∑

i

F(ν∗(1Uiξ))(λl′) =
∑

i

F((Affxiν)∗(1Uiξ))(λl′) = 0.

�

Remark 10.3.8. (1) The method in the proof is called the stationary phase

method, which is a central method in microlocal analysis.

(2) In order to use the affine approximation we decomposed ξ =
∑

i 1Uiξ. The

multiplication of ξ by 1Ui “damaged" ξ but this “damage" can be controlled

using 10.3.2(i), and is apparently moderate since the affine approximation

is good to the second order.

11. The Weil representation, the oscillator representation and an

application

In this section we show that the Fourier transform is not alone - it is part of an

infinite group of operators. This group is a representation of a double cover of

SL2(F ). Thus this section requires some knowledge of representation theory. To

motivate the existence of this representation we first describe the Heisenberg group

and its representations.

Definition 11.0.1. Let V := Fn and let ω be the standard symplectic form on

Wn := V ⊕ V ∗. The Heisenberg group Hn is the algebraic group with underlying

algebraic variety Wn × F with the group law given by

(w1, z1)(w2, z2) = (w1 + w2, z1 + z2 + 1/2ω(w1, w2)).

Define a unitary character χ of R by χ(z) := exp(2πiz).

Definition 11.0.2. The oscillator representation of Hn is given on the space L2(V )

by

(3) (σ(x, ϕ, z)f)(y) := χ(ϕ(y) + z))f(x + y).

Note that the center of Hn is 0×F , and it acts on σ by the character χ, which can

be trivially extended to a character of V ∗ × F .

It is easy to see that σ is the unitary induction of (the extension of) the character

χ from V ∗ × R to Hn = (V ⊕ V ∗)× F .

Lemma 11.0.3. The space of smooth vectors in σ is S(V ), and the Lie algebra of

Hn acts on it by

(4) σ(v)f := ∂vf, σ(ϕ)f := ϕf, σ(z)f := 2πizf.



GENERALIZED FUNCTIONS LECTURES 79

Proof. Formula (4) is obtained from (3) by derivation. Now, it is known that the

space of smooth vectors in a unitary induction consists of the smooth L2 functions

whose derivatives also lie in L2. �

Theorem 11.0.4 (Stone-von-Neumann). The oscillator representation σ is the

only irreducible unitary representation of Hn with central character χ.

Idea of the proof. Let me ignore all the analytic difficulties. Consider the normal

commutative subgroup A := V ×F . Conjugation in Hn defines an action of V on the

dual group of A. This action has only two orbits. The closed orbit is the singalton

{1} and the open orbit O is the complement to the closed one. The restriction σ|A
decomposes to a direct integral of characters in O, each “with multiplicity one".

The restriction of any non-zero subrepresentation ρ ⊂ σ to A will also include χ,

and thus the whole orbit O of χ. Thus ρ = σ and σ is irreducible.

Now let τ be any irreducible unitary representation of Hn with central character

χ. Then the restriction of τ to A will again include all the characters in O with

multiplicity one. Thus τ is the induction of an irreducible representation of the

stabilizer of χ in Hn. However, this stabilizer is A and thus τ ' σ. �

Note that the symplectic group Sp(V ⊕ V ∗) acts on Hn by automorphisms, pre-

serving the center. Thus the theorem implies the following corollary.

Corollary 11.0.5. For every g ∈ Sp(V ⊕ V ∗) there exists a (unique up to a

scalar multiple) linear automorphism T of S(V ) such that For any h ∈ Hn we

have σ(hg) = Tσ(h)T−1.

The uniqueness part of Corollary 11.0.5 follows from Schur’s lemmas. Corollary

11.0.5 defines a projective representation of Sp(V ⊕ V ∗) on S(V ), i.e. a map τ :

Sp(V ⊕ V ∗) → GL(S(V )) such that τ(gh) = λg,hτ(g)τ(h). It is not possible to

coordinate the scalars in order to obtain an honest representation of Sp(V ⊕ V ∗),

but it is possible to obtain a representation of a double cover S̃p(V ⊕V ∗), called the

metaplectic group. This was shown by A. Weil. We will not give the formulas for

the full Weil representation, but rather for its restriction to the subgroup S̃L2(F )

embedded by

E11 7→ IdV , E12 7→ T, E21 7→ T−1, E22 7→ IdV ∗ ,

where by IdV we mean the operator that is Id on V and zero on V ∗ and by T the

operator that is zero on V ∗ and on V is given by ω.

Suppose that F is non-archimedean, and identify V with V ∗ using a non-degenerate

quadratic form q. Also, identify σ with S(V ). Let n := dim V . Then the Weil

representation is given by
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π(

(
1 u

0 1

)

, ε)f(v) = εnψ(uq(v))f(v)(5)

π(

(
t 0

0 t−1

)

, ε)f(v) = εn|t|n/2γ(q)γ(tq)−1f(tv)(6)

π(

(
0 1

−1 0

)

, ε)f(v) = εnγ(q)F(f)(v)(7)

Here, γ(q) is a certain eights root of unity that depends on the quadratic form, and

ψ is the non-trivial unitary additive character that we use to identify V̌ with V ∗.

Note that this representation defines a representation of SL2(F ) if and only if n is

even. The existence of the Weil representation and the formulas above imply the

following corollary.

Corollary 11.0.6 (Rallis - Schiffmann). Let ξ ∈ S(V ) and let q be a non-degenerate

quadratic form on V . Let Z denote the zeros of q in V . Let ξ ∈ S∗(V ) such that

suppξ ⊂ V and suppF(ξ) ⊂ V . Then ξ = γ(q)F(ξ) and

〈ξ, f(tv)〉 = |t|−n/2γ(q)−1γ(tq)〈ξ, f(v)〉.

Moreover, if ξ 6= 0 then n is even.

Proof. Since suppξ ⊂ Z, we have ψ(uq(v))ξ = ξ and thus π(

(
1 u

0 1

)

, ε)ξ =

εnξ. Since

(
0 1

−1 0

)(
1 u

0 1

)(
0 1

−1 0

)

=

(
0 1

−1 0

)

, and suppF(ξ) ⊂ Z,

(7) and (5) imply π(

(
1 0

u 1

)

, ε)ξ = εnξ. Since the subgroups

(
1 ∗

0 1

)

and
(

1 0

∗ 1

)

generate SL2(F ), we get that (g, ε)ξ = εnξ for any (g, ε) ∈ S̃L2(F ). We

can assume ξ 6= 0. Then we get that n is even, and S̃L2(F ) acts trivially on ξ. The

lemma follows now from (6) and (7). �

In the case F = R, one can prove a slightly weaker lemma. The problem in

generalizing the argument above to the archimedean case is that in this case the

condition suppF(ξ) ⊂ V does not imply ψ(uq(v))ξ = 0, but rather that there exists

k such that ψ(uq(v))kξ = 0. On the other hand, in this case one can use the Lie

algebra sl2.

For the Archimedean version of the corollary we will need the following definition.

Definition 11.0.7. For any t ∈ F× denote by ρ(t) the homotheties action on

Sc∗(V ). Denote also δ(t) := γ(q)/γ(tq).
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We say that a distribution ξ ∈ S∗(V ) is adapted to q if for any t ∈ F× we have

either (i) ρ(t)ξ = δ(t)|t|dim V/2ξ or (ii) ρ(t)ξ = δ(t)t|t|dim V/2ξ.

Theorem 11.0.8. Let L ⊂ S∗V (Z(q)) be a non-zero subspace such that for all ξ ∈ L

we have Fq(ξ) ∈ L and q ∙ ξ ∈ L (here B is viewed as a quadratic function).

Then there exists a non-zero distribution ξ ∈ L which is adapted to q.

Using it one obtains the following result.

Proposition 11.0.9. Let V be a real vector space and let q be a non-degenerate

quadratic form on V . Let Z denote the zeros of q in V . Let ξ ∈ S∗(V ) such that

suppξ ⊂ V and suppF(ξ) ⊂ V . Then there exists a unitary character χ of R× and

m ∈ {0, 1} either such that for any t ∈ R× we have

〈ξ, f(tv)〉 = |t|−n/2−mχ(t)〈ξ, f(v)〉.

12. Schwartz functions on Nash manifolds

12.1. Semi-algebraic sets and the Seidenberg-Tarski theorem. In this sec-

tion we follow [BCR].

Definition 12.1.1. A subset A ⊂ Rn is called a semi-algebraic set if it can

be presented as a finite union of sets defined by a finite number of polynomial

equalities and inequalities. In other words, if there exist finitely many polynomials

fij , gik ∈ R[x1, ..., xn] such that

A =
r⋃

i=1

{x ∈ Rn|fi1(x) > 0, ..., fisi
(x) > 0, gi1(x) = 0, ..., giti

(x) = 0}.

Lemma 12.1.2. The collection of semi-algebraic sets is closed with respect to finite

unions, finite intersections and complements.

Example 12.1.3. The semi-algebraic subsets of R are unions of finite number of

(finite or infinite) intervals.

In fact, a semi-algebraic subset is the same as a union of connected components of

an affine real algebraic variety.

Definition 12.1.4. Let A ⊂ Rn and B ⊂ Rm be semi-algebraic sets. A mapping

ν : A → B is called semi-algebraic iff its graph is a semi-algebraic subset of

Rm+n.

Proposition 12.1.5. Let ν be a bijective semi-algebraic mapping. Then the inverse

mapping ν−1 is also semi-algebraic.

Proof. The graph of ν is obtained from the graph of ν−1 by switching the coordi-

nates. �
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One of the main tools in the theory of semi-algebraic spaces is the Tarski-Seidenberg

principle of quantifier elimination. Here we will formulate and use a special case of

it. We start from the geometric formulation.

Theorem 12.1.6. Let A ⊂ Rn be a semi-algebraic subset and p : Rn → Rn−1 be

the standard projection. Then the image p(A) is a semi-algebraic subset of Rn−1.

By induction and a standard graph argument we get the following corollary.

Corollary 12.1.7. An image of a semi-algebraic subset of Rn under a semi-

algebraic map is semi-algebraic.

Sometimes it is more convenient to use the logical formulation of the Tarski-

Seidenberg principle. Informally it says that any set that can be described in

semi-algebraic language is semi-algebraic. We will now give the logical formulation

and immediately after that define the logical notion used in it.

Theorem 12.1.8 (Tarski-Seidenberg principle, see e.g.[BCR, Proposition 2.2.4] ).

Let Φ be a formula of the language L(R) of ordered fields with parameters in R.

Then there exists a quantifier - free formula Ψ of L(R) with the same free variables

x1, . . . , xn as Φ such that ∀x ∈ Rn, Φ(x)⇔ Ψ(x).

Definition 12.1.9. A formula of the language of ordered fields with pa-

rameters in R is a formula written with a finite number of conjunctions, disjunc-

tions, negations and universal and existential quantifiers (∀ and ∃) on variables,

starting from atomic formulas which are formulas of the kind f(x1, . . . , xn) = 0

or g(x1, . . . , xn) > 0, where f and g are polynomials with coefficients in R. The

free variables of a formula are those variables of the polynomials which are not

quantified. We denote the language of such formulas by L(R).

Notation 12.1.10. Let Φ be a formula of L(R) with free variables x1, . . . , xn. It

defines the set of all points (x1, . . . , xn) in Rn that satisfy Φ. We denote this set by

SΦ. In short,

SΦ := {x ∈ Rn|Φ(x)}.

Corollary 12.1.11. Let Φ be a formula of L(R). Then SΦ is a semi-algebraic set.

Proof. Let Ψ be a quantifier-free formula equivalent to Φ. The set SΨ is semi-

algebraic since it is a finite union of sets defined by polynomial equalities and

inequalities. Hence SΦ is also semi-algebraic since SΦ = SΨ. �

Proposition 12.1.12. The logical formulation of the Seidenberg-Tarski principle

implies the geometric one.

Proof. Let A ⊂ Rn be a semi-algebraic subset, and pr : Rn → Rn−1 the standard

projection. Then there exists a formula Φ ∈ L(R) such that A = SΦ. Then
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pr(A) = SΨ where

Ψ(y) = “∃x ∈ Rn (pr(x) = y ∧ Φ(x))”.

Since Ψ ∈ L(R), the proposition follows now from the previous corollary. �

In fact, it is not difficult to deduce the logical formulation from the geometric one.

Let us now demonstrate how to use the logical formulation of the Seidenberg-Tarski

theorem.

Corollary 12.1.13. The closure of a semi-algebraic set is semi-algebraic.

Proof. Let A ⊂ Rn be a semi-algebraic subset, and let A be its closure. Then

A = SΨ where

Ψ(x) = “∀ε > 0 ∃y ∈ A |x− y|2 < ε”.

Clearly, Ψ ∈ L(R) and hence A is semi-algebraic. �

Corollary 12.1.14. The derivative f ′ of any differentiable semi-algebraic function

f : R→ R is semi-algebraic.

Proof. The graph of f ′ equals SΨ, where

Ψ(x, y) = “∀ε > 0 ∃δ > 0, s.t. ∀0 6= δ′ ∈ (−δ, δ) we have

(f(x + δ′)− f(x)− yδ′)2 < εδ′)2”.

Clearly, Ψ ∈ L(R) and hence f ′ is semi-algebraic. �

Corollary 12.1.15.

(i) The composition of semi-algebraic mappings is semi-algebraic.

(ii) The R-valued semi-algebraic functions on a semi-algebraic set A form a ring,

and any nowhere vanishing semi-algebraic function is invertible in this ring.

(iii) Images and preimages of semi-algebraic sets under semi-algebraic mappings

are semi-algebraic.

Proposition 12.1.16. [BCR, Proposition 2.4.5] Any semi-algebraic set in Rn has

a finite number of connected components.

Remark 12.1.17. Over a non-archimedean local field F (e.g. F = Qp) one con-

siders sets that are finite unions of finite intersections of sets of the form

{x ∈ Fn s.t. p(x) is a k-th power}, or {x ∈ Fn s.t. p(x) = 0.

An analog of the Seidenberg - Tarski theorem holds for such sets.

12.2. Nash manifolds. Let us now define the category of Nash manifolds, i.e.

smooth semi-algebraic manifolds. I like this category since the Nash manifolds

behave as tamely as algebraic varieties (e.g. posses some finiteness properties, and

admit an analog of Hironaka’s desingularization theorem), and in addition their
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local structure is almost as easy as that of differentiable manifolds. In particular,

they are locally trivial, and analogs of the implicit function theorem and the tubular

neighborhood hold for them. The only thing we “loose" is the partition of unity.

Nash has shown that any compact smooth manifold has a unique structure of

an affine Nash manifold. It was later shown that it also has uncountably many

structures of non-affine Nash manifold. It is Artin-Mazur who first used the term

of Nash manifold. They gave a fundamental theorem which states that an affine

Nash manifold can be imbedded in a Euclidean space so that the image contains

no singular points of its Zariski closure.

In this section we follow [BCR, Shi].

Definition 12.2.1. A Nash map from an open semi-algebraic subset U of Rn to

an open semi-algebraic subset V ⊂ Rm is a smooth (i.e. infinitely differentiable)

semi-algebraic function. The ring of R-valued Nash functions on U is denoted by

N (U). A Nash diffeomorphism is a Nash bijection whose inverse map is also

Nash.

As we are going to do semi-algebraic differential geometry, we will need a semi-

algebraic version of implicit function theorem.

Theorem 12.2.2 (Implicit Function Theorem for Nash manifolds, see e.g. [BCR,

Corollary 2.9.8]). Let (x0, y0) ∈ Rn+p, and let f1, ..., fp be semi-algebraic smooth

functions on an open neighborhood of (x0, y0), such that fj(x0, y0) = 0 for j = 1, .., p

and the matrix [∂fj

∂yi
(x0, y0)] is invertible. Then there exist open semi-algebraic

neighborhoods U (resp. V) of x0 (resp. y0) in Rn (resp. Rp) and a Nash mapping

φ, such that φ(x0) = y0 and f1(x, y) = ... = fp(x, y) = 0 ⇔ y = φ(x) for every

(x, y) ∈ U × V.

Definition 12.2.3. A Nash submanifold of Rn is a semi-algebraic subset of Rn

which is a smooth submanifold.

By the implicit function theorem it is easy to see that this definition is equivalent

to the following one, given in [BCR]:

Definition 12.2.4. A semi-algebraic subset M of Rn is said to be a Nash sub-

manifold of Rn of dimension d if, for every point x of M , there exists a Nash

diffeomorphism φ from an open semi-algebraic neighborhood Ω of the origin in Rn

onto an open semi-algebraic neighborhood Ω′ of x in Rn such that φ(0) = x and

φ(Rd × {0} ∩ Ω) = M ∩ Ω′.

Definition 12.2.5. A Nash map from a Nash submanifold M of Rm to a Nash

submanifold N of Rn is a semi-algebraic smooth map.

Any open semi-algebraic subset of a Nash submanifold of Rn is also a Nash sub-

manifold of Rn.
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Theorem 12.2.6 ([BCR, §2]). Let M ⊂ Rn be a Nash submanifold. Then it has

the same dimension as its Zarisky closure.

Unfortunately, open semi-algebraic sets in Rn do not form a topology, but only a

restricted topology. That is, the collection of open semi-algebraic sets is closed only

under finite intersections and unions but not under infinite unions. For this reason

we will consider only finite covers.

We will use this restricted topology to “glue” affine Nash manifolds and define

Nash manifolds exactly in the same way as algebraic varieties are glued from affine

algebraic varieties.

Definition 12.2.7. A R-space is a pair (M,OM ) where M is a restricted topo-

logical space and OM a sheaf of R-algebras over M which is a subsheaf of the sheaf

R[M ] of real-valued functions on M .

A morphism between R-spaces (M,OM ) and (N,ON ) is a continuous map f :

M → N , such that the induced morphism of sheaves f∗ : f∗(R[N ]) → R[M ] maps

ON to OM .

Example 12.2.8. Take for M a Nash submanifold of Rn, and for
◦

S(M) the family

of all open subsets of M which are semi-algebraic in Rn. For any open (semi-

algebraic) subset U of M we take as OM (U) the algebra N (U) of Nash functions

U → R.

Definition 12.2.9. An affine Nash manifold is an R-space which is isomorphic

to an R-space of a closed Nash submanifold of Rn. A morphism between two affine

Nash manifolds is a morphism of R-spaces between them.

Example 12.2.10. Any real nonsingular affine algebraic variety has a natural

structure of an affine Nash manifold.

Remark 12.2.11. Let M ⊂ Rm and N ⊂ Rn be Nash submanifolds. Then a Nash

map between them is the same as a morphism of affine Nash manifolds between

them.

Let f : M → N be a Nash map. Since an inverse of a semi-algebraic map is semi-

algebraic, f is a diffeomorphism if and only if it is an isomorphism of affine Nash

manifolds. Therefore we will call such f a Nash diffeomorphism.

In [Shi] there is another but equivalent definition of affine Nash manifold.

Definition 12.2.12. An affine C∞ Nash manifold is an R-space which is iso-

morphic to an R-space of a Nash submanifold of Rn.

The equivalence of the definitions follows from the following theorem, which imme-

diately follows from [BCR, Theorem 8.4.6] and Proposition 12.1.16.
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Theorem 12.2.13. Any affine C∞ Nash manifold is Nash diffeomorphic to a union

of finite number of connected components of a real nonsingular affine algebraic

variety.

The book [Shi] usually uses the notion of affine Cω Nash manifold instead of affine

C∞ Nash manifold, that we called here just Nash manifold. The two notions are

equivalent by the theorem of Malgrange (see [Mal] or [Shi, Corollary I.5.7]) and

hence equivalent to what we call just affine Nash manifold. In other words, any

Nash manifold has a natural structure of a real analytic manifold and any Nash

map between Nash manifolds is analytic.

One also considers Cr-Nash manifolds for any 0 ≤ r < ∞. These satisfy all the

properties listed here, and in addition partition of unity.

Definition 12.2.14. A Nash manifold is an R-space (M,NM ) which has a finite

cover (Mi) by open sets Mi such that the R-spaces (Mi,NM |Mi) are isomorphic to

R-spaces of affine Nash manifolds.

Amorphism between Nash manifolds is a morphism of R-spaces between them.

Such morphisms are called Nash maps, and isomorphisms are called Nash diffeo-

morphisms.

By Proposition 12.1.16, any Nash manifold is a union of a finite number of connected

components. Any semi-algebraic set can be stratified by Nash manifolds.

Any Nash manifold has a natural structure of a smooth manifold. Any real non-

singular algebraic variety has a natural structure of a Nash manifold.

It is well-known that the real projective space RPn is affine, see e.g. [BCR, Theorem

3.4.4]. Since any number of polynomial equations over R have the same set of

solutions as a single equation (which is the sum of squares of the left hand sides),

we get that any quasi-projective Nash manifold is affine.

Remark 12.2.15. Note that the additive group of real numbers and and the mul-

tiplicative group of positive real numbers are isomorphic as Lie groups and as Nash

manifolds, but are not isomorphic as Nash groups. Recently, the structure theory

of (almost) linear Nash groups was developed in [Sun].

The following theorem is a version of Hironaka’s theorem for Nash manifolds.

Theorem 12.2.16 ([Shi, Corollary I.5.11]). Let M be an affine Nash manifold.

Then there exists a compact affine nonsingular algebraic variety N and a closed

algebraic subvariety Z of N , which is empty if M is compact, such that Z has

only normal crossings in N and M is Nash diffeomorphic to a union of connected

components of N − Z.

It implies that Nash manifolds are locally trivial.

Theorem 12.2.17 ([Shi, Theorem I.5.12]). Any Nash manifold has a finite cover

by open submanifolds Nash diffeomorphic to Rn.
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Theorem 12.2.18 ([AG10, Theorem 2.4.3]). Let M and N be Nash manifolds and

ν : M → N be a surjective submersive Nash map. Then locally (in the restricted

topology) it has a Nash section, i.e. there exists a finite open cover N =
k⋃

i=1

Ui such

that ν has a Nash section on each Ui.

This implies that any etale Nash map is a local diffeomorphism.

In our work on Schwartz functions we frequently use the following

Theorem 12.2.19. (Nash Tubular Neighborhood). Let Z ⊂ M ⊂ Rn be closed

affine Nash submanifolds. Equip M with the Riemannian metric induced from Rn.

Then Z has a Nash tubular neighborhood, i.e. there exists a strictly positive Nash

function ρM
Z ∈ N (Z) and a Nash diffeomorphism between between an open Nash

neighborhood of Z in M and the open Nash neighborhood of the zero section of the

normal bundle given by

{(z, v) ∈ NM
Z s.t. ||v|| < ρM

Z (z).

12.3. Schwartz functions on Nash manifolds. The Fréchet space S(Rn) of

Schwartz functions on Rn was defined by Laurant Schwartz to be the space of all

smooth functions such that they and all their derivatives decay faster than 1/|x|n

for all n. In other words, S(Rn) is the space of all f ∈ C∞ such that |df | is bounded

for every differential operator d with polynomial coefficients. This definition makes

sense verbatim on any smooth affine algebraic variety and was extended in [dCl] to

affine Nash manifolds, and in [AG08] (using some ideas from unpublished notes of

Casselman) to arbitrary Nash manifolds. One can also define Schwartz sections of

Nash bundles.

Definition 12.3.1. Let M be a Nash manifold, and let E be a Nash bundle over

it. Let M =
k⋃

i=1

Ui be an affine Nash trivialization of E. Then we have a map

φ :
k⊕

i=1

S(Ui)n → C∞(M,E). We define the space S(M,E) of global Schwartz

sections of E by S(M,E) := Imφ. We define the topology on this space using the

isomorphism S(M,E) ∼=
k⊕

i=1

S(Ui)n/Kerφ.

As Schwartz functions cannot be restricted to open subsets, but can be continued

by 0 from open subsets, they form a cosheaf rather than a sheaf.

Let M be a Nash manifold, E be a Nash bundle over M and let S(M,E) denote

the space of Schwartz sections of E.

The following two theorems summarize some results from [dCl, AG08, AG10, AG13].

Theorem 12.3.2. Let U ⊂ M be an open (Nash) submanifold and N ⊂ M be a

closed (Nash) submanifold. Then

(1) S(Rn) = Classical Schwartz functions on Rn.

http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkMKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkMKrVjlG&keytype=ref
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(2) C∞c (M,E) ⊂ S(M,E).

(3) The restriction maps S(M,E) onto S(Z,E|Z).

(4) S(U,E) := S(U,E|U ) =

{ξ ∈ S(M,E)|ξ vanishes with all its derivatives on M − U}.

(5) Partition of unity: Let (Ui)n
i=1 be a finite cover by open Nash submani-

folds. Then there exist smooth functions α1, ..., αn such that supp(αi) ⊂ Ui,
n∑

i=1

αi = 1 and for any g ∈ S(M,E), αig ∈ S(Ui, E).

(6) S(M,E) = S(M)S(M,E).

(7) S(M,E) is a nuclear Fréchet space.

(8) For any Nash manifold M ′ we have S(M ×M ′) = S(M)⊗̂S(M ′).

Let us now sketch the proof of some parts of this theorem.

For part (1) we remark that Nash functions have polynomial growth.

Part (2) is obvious for affine M . For general M let f ∈ C∞c (M,E) and let M =
⋃n

i=1 Ui be an open affine cover of M . Choose a partition of unity 1 =
∑

i αi

corresponding to this cover. Then αif ∈ C∞c (Ui, E) ⊂ S(Ui, E) and thus f =
∑

αif ∈ S(M,E).

Part (3) follows from the Nash tubular neighborhood theorem (Theorem 12.2.19).

Part (4) we will show later.

Part (5) is proven similarly to the classical partition of unity for smooth functions.

We first prove “tempered" partition of unity, i.e. the existence of functions αi

supported in Ui and with polynomial growth, and then use this partition for a

refined cover Vi ⊂ Ui. Then the temperedness of αi guarantees αig ∈ S(M) and

suppαi ⊂ Vi guarantees the vanishing of αi near the boundary of Ui, which in turn

implies αif ⊂ S(Ui).

Part (6) we will not prove here due to lack of time.

For part (7) we note that a quotient of a nuclear Fréchet space by a closed subspace

is nuclear Fréchet, and thus it is enough to show that S(Rn) is nuclear Fréchet. This

follows from its definition. For this we should say a couple of words on what nuclear

means. It means that for any other Fréchet space, the projective and the injective

topologies on their tensor product coincide. These are two natural topologies, and

most other topologies are stronger than injective and weaker than projective. An

inverse limit of spaces with inclusion maps that are Hilbert-Schmidt are nuclear,

and that is why S(Rn) is nuclear.

Part (8) we discussed already for compactly supported functions, and this discussion

implies that S(M)⊗S(M ′) naturally embeds into S(M×M ′) with dense image. We

cannot prove the full statement at this point, since we have not discussed nuclear

spaces and completed tensor products.

We denote by S∗(M) the dual space to S(M) and call it the space of tempered

distributions. From property (4) we obtain
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Corollary 12.3.3. Let M be a Nash manifold and U ⊂M be an open Nash subset.

Let E be a Nash bundle over M . Then we have a short exact sequence

0→ S∗M\U (M)→ S∗(M)→ S∗(U)→ 0.

Theorem 12.3.4. Let N ⊂M be a closed submanifold. Denote

SN (M)i := {φ ∈ S(M) s.t. φ is 0 on N with first i− 1 derivatives}.

Let CNN
M denote the conormal bundle to N in M . Then

S(M)i/S(M)i+1 ∼= S(N,Symi+1(CNN
M ))(8)

S(M \N) ∼= lim
←
S(M)i/S(M)i+1.(9)

Corollary 12.3.5. Let M be a Nash manifold, and N ⊂ M be a closed Nash

submanifold. Then the space S∗N (M) has a natural filtration Fi by the order of

transversal derivatives. This filtration satisfies S∗N (M) =
⋃

Fi and

Fi/Fi−1
∼= S∗(N,Symi+1(CNN

M )).

We frequently use this corollary when we have a natural stratification of M since it

allows to reduce the analysis of equivariant distributions from M to single strata.

Theorem 12.3.6 ([AG09], Theorem B.2.4). Let φ : M → N be a Nash submersion

of Nash manifolds. Fix Nash measures μ on M and ν on N . Then

(i) there exists a unique continuous linear map φ∗ : S(M) → S(N) such that for

any f ∈ S(N) and g ∈ S(M) we have
ˆ

x∈N

f(x)φ∗g(x)dν =
ˆ

x∈M

(f(φ(x)))g(x)dμ.

In particular, we mean that both integrals converge.

(ii) If φ is surjective then φ∗ is surjective.

In fact

φ∗g(x) =
ˆ

z∈φ−1(x)

g(z)dρ

for an appropriate measure ρ.

For the proof of part (4) we will need several lemmas.

Lemma 12.3.7. Let U ⊂ Rn be an open semi-algebraic subset. For any φ : U → R

denote by φ̃ : M → R its extension by 0 outside U . Let φ ∈ S(U). Then φ̃ is

differentiable at least once and for any Nash differential operator D of order 1 on

Rn, Dφ̃ = D̃|Uφ.

Proof. We have to show that for any z ∈ Rn \U , φ̃ is differentiable at least once at

z and its derivative at z in any direction is 0. Denote Fz(x) := ||x − z||. Clearly,

1/F 2
z ∈ N (U). Hence φ/F 2

z is bounded in U and therefore φ̃/F 2
z is bounded on

Rn \ {z}, which finishes the proof. �

http://arxiv.org/abs/0812.5063
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Lemma 12.3.8 ([BCR, Proposition 2.6.4] ). Let F : A → R be a semi-algebraic

function on a locally closed semi-algebraic set. Let Z(F ) := {x ∈ A|F (x) = 0} be

the set of zeros of F and let AF := A \ Z(F ) be its complement. Let G : AF → R

be a semi-algebraic function. Suppose that F and G are continuous. Then there

exists an integer N > 0 such that the function F NG, extended by 0 to Z(F ), is

continuous on A.

The following two lemmas are straightforward.

Lemma 12.3.9. Let U ⊂ Rn be open (semi-algebraic) subset. Then any Nash

differential operator D on U can be written as
∑k

i=1 fi(Di|U ) where fi are Nash

functions on U and Di are Nash differential operators on Rn.

Lemma 12.3.10. Suppose α ∈ C∞(R) vanishes at 0 with all its derivatives. Then

for any natural number n, α(t) = (n!)−1tnα(n)(θ) for some θ ∈ [0, t].

Proof of part (4). Denote Z := X \ U and

WZ := {ξ ∈ S(M,E)|ξ vanishes with all its derivatives on M − U}.

We have to show that the extension by zero defines a continuous isomorphism

between S(U) and WZ .

Case 1 M = RN .

Lemma 12.3.7 implies by induction that the extension by zero continuously

maps S(U) into WZ . Let us show that this map is onto.

Let φ ∈ WZ . For any point x ∈ RN define r(x) := dist(x, Z). Let

S := S(0, 1) ∈ RN be the unit sphere. Consider the function ψ on S×Z×R

defined by ψ(s, z, t) := φ(z + ts). From Lemma 12.3.10 we see that

ψ(s, z, t) = tn
∂n

(∂t)n
ψ(x, s, t)|t=θ

for some θ ∈ [0, t]. As φ is Schwartz, it is easy to see that ∂n

(∂t)n ψ(x, s, t) is

bounded on Z × S × R. Therefore |ψ(s, z, t)| ≤ C|t|n for some constant C

and hence φ/rn is bounded on RN for any n.

Let h be a Nash function on U . By Lemma 12.3.8, rnh extends by 0

to a continuous semi-algebraic function on RN for n big enough. It can be

majorated by f ∈ N (RN ). Therefore

|φh| = |(φ/rn)rnh| ≤ |φf |/rn.

φf ∈W, thus |φf |/rn is bounded and hence |φh| is bounded.

For any Nash differential operator D on RN , Dφ ∈ W . Hence hDφ is

bounded. By Lemma 12.3.9, every Nash differential operator on U is a sum

of differential operators of the form hD|U , where D is a Nash differential

operator on RN and h a Nash function on U . Hence φ|U ∈ S(U).
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Case 2 M is affine.

Follows from the previous case and property (3) (extension from a closed

Nash submanifold).

Case 3 General case.

Choose an affine cover of M . The theorem now follows from the previous

case and partition of unity.

�

Recall that this property implies, by the Hahn-Banach theorem, that the restriction

S∗(M)→ S∗(U) is onto (Corollary 12.3.3). Let us demonstrate a classical corollary

of this fact.

Corollary 12.3.11. Any tempered generalized function on Rn has the form

k∑

i=1

∂|αi|

(∂x)αi
fdx,

where αi are multi-indexes, dx is a Lebesgue measure and f is a continuous function

on Rn, with |f | bounded by a polynomial.

For example, δ0 ∈ S∗(R) is the second derivative of |x|.

Proof. Embed R into S1. This defines an embedding of Rn into Tn = (S1)n. Let

ξ ∈ S∗(Rn). By Corollary 12.3.3, ξ extends to η on Tn. Let us use Fourier series.

Distributions correspond under these to sequences indexed by n numbers that are

bounded by some polynomial. Absolutely summable sequences define continuous

functions. Partial derivatives of functions correspond to multiplications of sequences

by polynomials in the indices. Thus, ξ corresponds to a sequence αi1,...,in
bounded

by the product ij11 ∙ ∙ ∙ i
jn
n . Let q(i1, . . . , in) := ij1+2

1 ∙ ∙ ∙ ijn+2
n and let D be the

corresponding differential operator with constant coefficients. Arguing by induction

on n we can assume that if one of the numbers i1, . . . , in vanishes then so does the

corresponding coefficient αi1,...,in
. Let β := α/q and let h ∈ C(Tn) be the function

with the Fourier series β. Then η = D(hdt), where dt is the Haar probability

measure on Tn. Thus ξ = D|Rn(h|Rn). Now, h is bounded as a function on Tn and

thus h|Rn is also bounded. When we take the stereographic projection into account

we get that D|Rn does not have constant coefficients. However, its coefficients are

rational functions with nowhere vanishing denominator. Similarly, dt|Rn = pdx,

where p is a rational function with nowhere vanishing denominator. Altogether,

we get that there exists a differential operator Δ with constant coefficients and a

continuous function f bounded by a polynomial such that

ξ = D|Rn(h|Rndt|Rn) = Δfdx.

�
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Corollary 12.3.12. Let M be an affine Nash manifold and let ξ be a tempered

generalized function on M . Then there exists a Nash differential operator D on M

and a bounded continuous function f ∈ C(M) such that ξ = Df .

Proof. For the affine case embed M in Rn and extend ξ to Rn. There find f and

D from the previous corollary and restrict them to M . The general case follows by

partition of unity. �

Let us demonstrate how to use ?? on a simple example.

Lemma 12.3.13. For any homogeneity degree α, the space of α-homogeneous even

distributions on F is one-dimensional.

Proof. By applying Fourier transform, we can assume α ≥ 1. To prove the non-

vanishing, let ξ be |x|α−1dx.

To prove that any distribution in this space has to be a multiple of |x|α−1dx,

it is enough to prove that the restriction to F× is an embedding. Indeed, any

distribution supported at 0 is a combination of derivatives of the δ0 and thus has

negative homogeneity degree. �

The same statement with the same proof holds for odd distributions. Here, even

distribution means invariant under the coordinate change x 7→ −x, and odd means

anti-invariant.

Finally, we would like to remark on a different, extrinsic, approach to Schwartz

functions, applied in [CHM] and [KS]. We can compactify our manifold and de-

fine Schwartz functions on it as smooth functions on the (smooth) compactification

that vanish to infinite order on the complement to M . If both M and the com-

pactification are Nash manifolds then this definition will be equivalent, by Theorem

12.3.2(2,4). This allows to define Schwartz functions on non-Nash (say, subanalytic)

manifolds, but this space will depend on the compactification.

Schwartz functions on non-smooth algebraic varieties and more generally on Nash

varieties (i.e. varieties that can be locally described as zeros of Nash functions) can

be locally defined by restriction from a smooth ambient space, see [ESh, Ela].

Another realm in which one can define Schwartz functions is the category of tem-

pered manifolds. Indeed, our only use of (semi-)algebraicity was to have a scale of

infinitesimals. Such a scale exists in the wider generality of tempered manifolds -

manifolds that can be covered by open subsets that are identified with open subsets

in Rn, and coordinate changes between these subsets are tempered functions. A

tempered manifold is said to be of finite type if this cover is finite. Many properties

of Schwartz functions listed above continue to hold for tempered manifolds of finite

type, see [Sha].
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13. Invariant distributions

Let gln(F ) denote the vector space of all square matrices of order n with coefficients

in F and GLn(F ) ⊂ gln(F ) denote the group of all invertible matrices of order n.

Consider also the embedding of GLn(F ) into GLn+1(F ) by g 7→

(
g 0

0 1

)

.

For a distribution ξ ∈ S∗(GLn+1(F )) denote by ξt the distribution given by 〈ξt, f〉 :=

〈ξ, f t〉, where f t(X) = f(Xt) and Xt denotes the transposed matrix. We let

GLn(F ) act on GLn+1(F ) by conjugation via the embedding above. This action

defines an action on Schwartz functions and thus also on tempered distributions.

Denote by S∗(GLn+1(F ))GLn(F ) the subspace of distributions invariant under this

action. In this section we sketch the proof of the following theorem

Theorem 13.0.1. For any ξ ∈ S∗(GLn+1(F ))GLn(F ), we have ξ = ξt.

13.1. Proof for n = 1. Note that GL1(F ) = F× and denote by G := F× n {±1},

where −1 acts on F× by λ 7→ λ−1. Extend the action of F× on GL2(F ) to the

action of G by letting (1,−1) act by transposition. Let χ be the character of G

given by projection on the second coordinate. Let S∗(GL2(F ))G,χ denote the space

of tempered distributions that change under the action of G by the character χ.

Then the theorem is equivalent to the statement S∗(GL2(F ))G,χ = 0.

Proposition 13.1.1. If S∗(gl2)
G,χ = 0 then S∗(GL2)G,χ = 0.

Proof. Let ξ ∈ S∗(GL2(F ))G,χ. We have to prove ξ = 0. Assume the contrary.

Take p ∈ Supp(ξ). Let t = det(p). Let f ∈ S(F ) be such that f vanishes in a

neighborhood of zero and f(t) 6= 0. Consider the determinant map det : GL2(F )→

F . Consider ξ′ := (f ◦ det) ∙ ξ. It is easy to check that ξ′ ∈ S∗(GL2(F ))G,χ and

p ∈ Supp(ξ′). However, we can extend ξ′ by zero to ξ′′ ∈ S∗(gl2(F ))G,χ, which is

zero by the assumption. Hence ξ′ is also zero. Contradiction. �

Now, note that the action of G on gl2(F ) is isomorphic to the action on F 2 × F 2,

where on the first copy the action is trivial and on the second copy it is given by

(λ, 1) ∙ (x, y) = (λx, λ−1y), and (1,−1) ∙ (x, y) = (y, x).

We can thus consider the second copy only, and prove S∗(F 2)G,χ = 0.

Let U := {(x, y) ∈ F 2 |xy 6= 0}. Then U is locally isomorphic as a G-manifold to

F××F×, where the action on the first F× is trivial, and the action on the second one

is given by (λ, ε)∙z = (λ2z)ε. Clearly, with this action we have S∗(F××F×)G,χ = 0

and thus we obtain

(10) S∗(U)G,χ = 0.

Now, denote by ρ the action of F× on F 2 given by λ(x, y) = (λx, λy). It defines

an action on S(F 2) and S∗(F 2).
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Lemma 13.1.2. Let ξ ∈ S∗(F 2)G,χ and let σ : F× → C be a character. Suppose

that for any λ ∈ F× and f ∈ S(F 2) we have 〈ξ, ρ(λ−1)f〉 = σ(λ)〈ξ, f〉. Then

|σ(λ)| = |λ|−n, where n ≥ 0.

Proof. Assume first that F is p-adic and consider the restriction of ξ to F× × F .

This restriction is supported on F× × {0} and thus is defined on F× × {0}. Since

it is F×-invariant, it is a multiple of the Haar measure. If it is a non-zero multiple,

then n = 0. Now suppose that this restriction is 0. Similarly we get that either

n = 0 or ξ is supported at the origin. In the latter case we again get n = 0.

Now, let F be R or C and consider the restriction of ξ to F××F , again supported

on F× × {0}. By ?? the space S∗(F× × F )F××{0} has a filtration by the order of

transversal derivatives. The elements in the 0-th filtra are homogeneous as before.

Since the derivation operators have negative homogeneity degrees, for other filtras

we can have only negative degrees. �

Now, note that the Fourier transform preserves the space S∗(F 2)G,χ. By (10), for

any S∗(F 2)G,χ ⊂ S∗Z(F 2), where Z is the zero set of the quadratic form q(x, y) = xy.

Thus, by Corollary 11.0.6, Proposition 11.0.9 and 13.1.2 we have S∗(F 2)G,χ = 0.

13.2. Luna slice theorem, Frobenius reciprocity and Harish-Chandra de-

scent. ??

13.3. Sketch of Proof for all n. ??

References

[AG08] A. Aizenbud, D. Gourevitch: Schwartz functions on Nash Manifolds, International

Mathematics Research Notices IMRN 2008, no. 5, Art. ID rnm 155, 37 pp. See also

arXiv:0704.2891v3 [math.AG].

[AG10] A. Aizenbud, D. Gourevitch:.: De-Rham theorem and Shapiro lemma for Schwartz func-

tions on Nash manifolds, Israel Journal of Mathematics 177 (2010), pp 155-188. See also

arXiv:0802.3305[math.AG].

[AG09] A. Aizenbud, D. Gourevitch:Generalized Harish-Chandra descent, Gelfand pairs and an

Archimedean analog of Jacquet-Rallis’ Theorem, Duke Mathematical Journal, 149, n. 3,

509-567 (2009). See also arXiv: 0812.5063[math.RT].

[AG13] A. Aizenbud, D. Gourevitch: Smooth Transfer of Kloostermann Integrals, American Jour-

nal of Mathematics 135, 143-182 (2013). See also arXiv:1001.2490[math.RT].

[AT08] A. Arhangel’skii and M. Tkachenko, Topological groups and related structures, Atlantis

Studies in Mathematics, Vol 1, Atlantis Press, Paris; World Scientific Publishing Co. Pte.

Ltd., Hackensack, NJ (2008).

[BCR] J. Bochnak; M. Coste, M-F. Roy: Real Algebraic Geometry Berlin: Springer, 1998.

[CHM] W. Casselman, H. Hecht, Henryk; D. Miličić: Bruhat filtrations and Whittaker vectors for

real groups. The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998), 151-190,

Proc. Sympos. Pure Math., 68, Amer. Math. Soc., Providence, RI, (2000).

[dCl] F. du Cloux: Sur les representations differentiables des groupes de Lie algebriques . Annales

scientifiques de l E.N.S. 4e serie, tome 24, no 3, p. 257-318 (1991).

[Ela] B. Elazar: Schwartz functions on quasi-Nash varieties, preprint, arXiv:1711.05804.

http://arxiv.org/abs/0812.5063
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkMKrVjlG&keytype=ref


GENERALIZED FUNCTIONS LECTURES 95

[ESh] B. Elazar, A. Shaviv:Schwartz functions on real algebraic varieties, Canadian Journal of

Mathematics (to appear), DOI:10.4153/CJM-2017-042-6.

[Hör90] L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory

and Fourier analysis. Grundlehren der MathematischenWissenschaften 256. Springer-Verlag,

Berlin, 1990.

[Kan04] Kanwal, Ram P., Generalized functions: Theory and Applications, third edition,

Birkhäuser Boston, Inc., Boston, MA, xviii+476 (2004).

[KS] M. Kashiwara, P. Schapira: Ind-Sheaves. Asterisques 271, (2001).

[Mal] B. Malgrange: Ideals of differentiable functions. Oxford: Oxford University Press, 1966.

[Rud06] Walter Rudin: Functional Analysis, McGraw-Hill (2006) 424 pages.

[Sha] A. Shaviv: Tempered manifolds and Schwartz functions on them, in preparation.

[Shi] M. Shiota: Nash Manifolds Lecture Notes in Mathematics 1269. New York: Springer, 1987.

[Sun] B. Sun: Almost linear Nash groups, arxiv:1310.8011.

[Tre67] F. Treves: Topological vector spaces, distributions and kernels, Academic Press, New

York-London xvi+624 pp (1967).


	0. Preface
	1. The space of generalized functions on Rn
	1.1. Motivation
	1.2. Basic definitions
	1.3. Remarks on operations on distributions
	1.4. Translations of generalized functions
	1.5. Derivatives of generalized functions
	1.6. The support of generalized functions
	1.7. Products and convolutions of generalized functions
	1.8. Generalized functions on Rn
	1.9. Generalized functions and differential operators
	1.10. Regularization of generalized functions

	2. Topological properties of Cc(Rn)
	2.1. Normed spaces
	2.2. Topological vector spaces
	2.3. Defining completeness
	2.4. Fréchet spaces
	2.5. Sequence spaces
	2.6. Direct limits of Fréchet spaces
	2.7. Topologies on the space of distributions

	3. Geometric properties of C-(Rn)
	3.1. Sheaf of distributions
	3.2. Filtration on spaces of distributions
	3.3. Functions and distributions on a Cartesian product

	4. p-adic numbers and -spaces
	4.1. Defining p-adic numbers
	4.2. Misc. -not sure what to do with them (add to an appendix about p-adic numbers?)
	4.3. p-adic expansions
	4.4. Inverse limits
	4.5. Haar measure and local fields
	4.6. Some basic properties of -spaces.
	4.7. Distributions on -spaces
	4.8. Distributions supported on a subspace

	5. Vector valued distributions
	5.1. Smooth measures
	5.2. Generalized functions versus distributions
	5.3. Some linear algebra
	5.4. Generalized functions supported on a subspace

	6. Manifolds
	6.1. Tangent space of a manifold
	6.2. Types of maps between smooth manifolds.
	6.3. Analytic manifolds and vector bundles
	6.4. Sections of a bundle
	6.5. Another description of vector bundles

	7. Distributions on analytic manifolds and on smooth manifolds
	7.1. Smooth sections of a vector bundle. 
	7.2. Distributions on manifolds

	8. Operations on generalized functions
	9. Fourier transform
	10. Wave-front set
	10.1. Definition of the wave-front set
	10.2. Advanced properties of the wave-front set
	10.3. Sketch of proof of the invariance to isomorphisms in the p-adic case

	11. The Weil representation, the oscillator representation and an application
	12. Schwartz functions on Nash manifolds
	12.1. Semi-algebraic sets and the Seidenberg-Tarski theorem
	12.2. Nash manifolds
	12.3. Schwartz functions on Nash manifolds

	13. Invariant distributions
	13.1. Proof for n=1
	13.2. Luna slice theorem, Frobenius reciprocity and Harish-Chandra descent
	13.3. Sketch of Proof for all n

	References

