Recent applications of classical theorems on holonomic distributions

Dmitry Gourevitch

Weizmann Institute of Science

Singapore, March 2016

http://www.wisdom.weizmann.ac.il/~dimagur/

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X.

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \dots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree $\leq i$ and $F_i(M) := F_i(D(X))(m_1 \dots m_k)$. Define

$$SS(M) := supp(gr_F(M)) \subset T^*X.$$

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree $\leq i$ and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := supp(gr_F(M)) \subset T^*X.$$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi)$$

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree $\leq i$ and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := supp(gr_F(M)) \subset T^*X.$$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} Zeros(symbol(d)).$$

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree $\leq i$ and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := supp(gr_F(M)) \subset T^*X.$$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} Zeros(symbol(d)).$$

A *D*-module (or a distribution) ξ is called holonomic if

Theorem (Bernstein, cf. Sato)

- (i) Holonomic D-modules have finite length.
- (ii) Let $p \in \mathbb{R}[x_1, ..., x_n]$ be a non-negative polynomial, and let $\xi \in \mathcal{S}^*(\mathbb{R}^n)$ be a holonomic tempered distribution. Then the family of distributions $p^{\lambda}\xi$ defined for $\text{Re }\lambda > -1$ has a meromorphic continuation to $\lambda \in \mathbb{C}$.

Theorem (Bernstein, cf. Sato)

- (i) Holonomic D-modules have finite length.
- (ii) Let $p \in \mathbb{R}[x_1, ..., x_n]$ be a non-negative polynomial, and let $\xi \in \mathcal{S}^*(\mathbb{R}^n)$ be a holonomic tempered distribution. Then the family of distributions $p^{\lambda}\xi$ defined for $\text{Re }\lambda > -1$ has a meromorphic continuation to $\lambda \in \mathbb{C}$.

This implies analytic continuation of Knap-Stein intertwining operators.

Theorem (Bernstein, cf. Sato)

- (i) Holonomic D-modules have finite length.
- (ii) Let $p \in \mathbb{R}[x_1, \dots, x_n]$ be a non-negative polynomial, and let $\xi \in \mathcal{S}^*(\mathbb{R}^n)$ be a holonomic tempered distribution. Then the family of distributions $p^{\lambda}\xi$ defined for $\text{Re }\lambda > -1$ has a meromorphic continuation to $\lambda \in \mathbb{C}$.

This implies analytic continuation of Knap-Stein intertwining operators. Applied to symmetric pairs by van-den-Bahn, Brylinski, Delorme, Moelers-Osrted-Oshima,....

Theorem (Bernstein, cf. Sato)

- (i) Holonomic D-modules have finite length.
- (ii) Let $p \in \mathbb{R}[x_1, \dots, x_n]$ be a non-negative polynomial, and let $\xi \in \mathcal{S}^*(\mathbb{R}^n)$ be a holonomic tempered distribution. Then the family of distributions $p^{\lambda}\xi$ defined for $\text{Re }\lambda > -1$ has a meromorphic continuation to $\lambda \in \mathbb{C}$.

This implies analytic continuation of Knap-Stein intertwining operators. Applied to symmetric pairs by van-den-Bahn, Brylinski, Delorme, Moelers-Osrted-Oshima,....

Corollary (Gourevitch-Sahi-Sayag)

Let a solvable real algebraic group B act on an affine real algebraic manifold X. Let χ be a tempered character of B. Then $\dim \mathcal{S}^*(X)^{B,\chi}$ is at least the number of open B-orbits in X that possess (B,χ) -equivariant measures.

Theorem (Bernstein, cf. Sato)

Let $p \in \mathbb{R}[x_1, \dots, x_n]$ be a non-negative polynomial, and let $\xi \in \mathcal{S}^*(\mathbb{R}^n)$ be a holonomic tempered distribution. Then the family of distributions $p^{\lambda}\xi$ defined for $\text{Re }\lambda > -1$ has a meromorphic continuation to $\lambda \in \mathbb{C}$.

Let a solvable real algebraic group B act on an affine real algebraic manifold X, and let $\mathcal O$ be an open orbit. Then \exists a B-equivariant polynomial $p\neq 0$ on X with $p|_{X\setminus \mathcal O}=0$.

Corollary (Gourevitch-Sahi-Sayag)

 \forall tempered $\chi: B \to \mathbb{C}^{\times}$, if $S^*(\mathcal{O})^{B,\chi} \neq 0$ then $S^*(X)^{B,\chi} \neq 0$.

Theorem (Bernstein, cf. Sato)

Let $p \in \mathbb{R}[x_1, \dots, x_n]$ be a non-negative polynomial, and let $\xi \in \mathcal{S}^*(\mathbb{R}^n)$ be a holonomic tempered distribution. Then the family of distributions $p^{\lambda}\xi$ defined for $\text{Re }\lambda > -1$ has a meromorphic continuation to $\lambda \in \mathbb{C}$.

Let a solvable real algebraic group B act on an affine real algebraic manifold X, and let $\mathcal O$ be an open orbit. Then \exists a B-equivariant polynomial $p\neq 0$ on X with $p|_{X\setminus \mathcal O}=0$.

Corollary (Gourevitch-Sahi-Sayag)

 \forall tempered $\chi: B \to \mathbb{C}^{\times}$, if $S^*(\mathcal{O})^{B,\chi} \neq 0$ then $S^*(X)^{B,\chi} \neq 0$.

Proof.

For $\xi \in \mathcal{S}^*(\mathcal{O})^{B,\chi}$ and n >> 0, $p^n \xi$ extends to $\eta \in \mathcal{S}^*(X)^{B,\psi^n \chi}$. In the family $p^{\lambda} \eta$, take $\lambda = -n$. If this is a pole - take the principal part.

Theorem (Bernstein, cf. Sato)

Let $p \in \mathbb{R}[x_1, \dots, x_n]$ be a non-negative polynomial, and let $\xi \in \mathcal{S}^*(\mathbb{R}^n)$ be a holonomic tempered distribution. Then the family of distributions $p^{\lambda}\xi$ defined for $\text{Re }\lambda > -1$ has a meromorphic continuation to $\lambda \in \mathbb{C}$.

Let a solvable real algebraic group B act on an affine real algebraic manifold X, and let $\mathcal O$ be an open orbit. Then \exists a B-equivariant polynomial $p\neq 0$ on X with $p|_{X\setminus \mathcal O}=0$.

Corollary (Gourevitch-Sahi-Sayag)

 \forall tempered $\chi: B \to \mathbb{C}^{\times}$, if $S^*(\mathcal{O})^{B,\chi} \neq 0$ then $S^*(X)^{B,\chi} \neq 0$.

Proof.

For $\xi \in \mathcal{S}^*(\mathcal{O})^{B,\chi}$ and n >> 0, $p^n \xi$ extends to $\eta \in \mathcal{S}^*(X)^{B,\psi^n \chi}$. In the family $p^{\lambda} \eta$, take $\lambda = -n$. If this is a pole - take the principal part.

More generally, X can be quasiprojective and B can be MAN. ₹ ೨९९०

Let solvable B act on affine X, and let \mathcal{O} be an open orbit.

Corollary (G.-Sahi-Sayag)

 \forall tempered $\chi: B \to \mathbb{C}^{\times}$, if $S^*(\mathcal{O})^{B,\chi} \neq 0$ then $S^*(X)^{B,\chi} \neq 0$.

Proof.

For $\xi \in \mathcal{S}^*(\mathcal{O})^{B,\chi}$ and n >> 0, $p^n \xi$ extends to $\eta \in \mathcal{S}^*(X)^{B,\psi^n \chi}$. In the family $p^{\lambda} \eta$, take $\lambda = -n$. If this is a pole - take the principal part.

More generally, X can be quasiprojective and B can be MAN.

Corollary (G.-Sahi-Sayag, in progress)

Let G be a real reductive group and $H \subset G$ be a real spherical subgroup. Let $C \subset P_0 \subset G$ be closed subgroup and let V be tempered fin. dim. rep. of $C \times H$. Let $U \subset G$ be open G-invariant subset. Then $\dim \mathcal{S}^*(G, V)^{C \times H} \geq \dim \mathcal{S}^*(U, V)^{C \times H}$.

Let solvable B act on affine X, and let \mathcal{O} be an open orbit.

Corollary (G.-Sahi-Sayag)

 \forall tempered $\chi: B \to \mathbb{C}^{\times}$, if $S^*(\mathcal{O})^{B,\chi} \neq 0$ then $S^*(X)^{B,\chi} \neq 0$.

Proof.

For $\xi \in \mathcal{S}^*(\mathcal{O})^{B,\chi}$ and n >> 0, $p^n \xi$ extends to $\eta \in \mathcal{S}^*(X)^{B,\psi^n \chi}$. In the family $p^{\lambda} \eta$, take $\lambda = -n$. If this is a pole - take the principal part.

More generally, X can be quasiprojective and B can be MAN.

Corollary (G.-Sahi-Sayag, in progress)

Let G be a real reductive group and $H \subset G$ be a real spherical subgroup. Let $C \subset P_0 \subset G$ be closed subgroup and let V be tempered fin. dim. rep. of $C \times H$. Let $U \subset G$ be open G-invariant subset. Then $\dim \mathcal{S}^*(G,V)^{C \times H} \geq \dim \mathcal{S}^*(U,V)^{C \times H}$.

This gives Knap-Stein operators on spherical spaces and (degenerate) Whittaker models for (degenerate) principal series.

Theorem (Bernstein, cf. Kashiwara)

Let X be a real algebraic manifold. Let M be a holonomic right D_X -module. Then $\dim Hom(M, \mathcal{S}^*(X)) < \infty$.

Theorem (Bernstein, cf. Kashiwara)

Let X be a real algebraic manifold. Let M be a holonomic right D_X -module. Then dim $Hom(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud- G.- Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of holonomic D_X -modules parameterized by Y. Then $\dim Hom(\mathcal{M}_y, \mathcal{S}^*(X))$ is bounded when y ranges over Y.

Theorem (Bernstein, cf. Kashiwara)

Let X be a real algebraic manifold. Let M be a holonomic right D_X -module. Then dim $Hom(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud- G.- Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of holonomic D_X -modules parameterized by Y. Then dim $Hom(\mathcal{M}_Y, \mathcal{S}^*(X))$ is bounded when Y ranges over Y.

Corollary (Aizenbud-G.-Minchenko 2015)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a character of $\mathfrak g$. Then,

$$\dim \mathcal{S}^*(X,\mathcal{E})^{\mathfrak{g},\chi} < \infty.$$

Moreover, it remains bounded when we change χ or tensor $\mathcal E$ with a representation of $\mathfrak g$ of a fixed dimension.

Theorem (Aizenbud-G.-Krötz-Liu 2016)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Theorem (Aizenbud-G.-Krötz-Liu 2016)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H.

2000

Theorem (Aizenbud-G.-Krötz-Liu 2016)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$.

1990

Theorem (Aizenbud-G.-Krötz-Liu 2016)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$. In particular, the following conj. of Casselman are equivalent

Theorem (Aizenbud-G.-Krötz-Liu 2016)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$. In particular, the following conj. of Casselman are equivalent

Automatic continuity:

Theorem (Aizenbud-G.-Krötz-Liu 2016)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$. In particular, the following conj. of Casselman are equivalent

• Automatic continuity: $((\pi^{HC})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}}$

Theorem (Aizenbud-G.-Krötz-Liu 2016)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$. In particular, the following conj. of Casselman are equivalent

- Automatic continuity: $((\pi^{HC})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}}$
- Comparison:

Theorem (Aizenbud-G.-Krötz-Liu 2016)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h, -\chi}$. In particular, the following conj. of Casselman are equivalent

- Automatic continuity: $((\pi^{HC})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}}$
- Comparison: $H_0(\mathfrak{h}, \pi^{HC}) \cong H_0(\mathfrak{h}, \pi)$

We reprove the following theorem

We reprove the following theorem

Theorem (Kobayashi-Oshima, Krötz-Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

We reprove the following theorem

Theorem (Kobayashi-Oshima, Krötz-Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

If H is a spherical subgroup

We reprove the following theorem

Theorem (Kobayashi-Oshima, Krötz-Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B)

We reprove the following theorem

Theorem (Kobayashi-Oshima, Krötz-Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

• If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists $C \in \mathbb{N}$ such that $\dim(\pi^*)^{\mathfrak{h},\chi} \leq C$ for any $\pi \in Irr(G)$ and any character χ of \mathfrak{h} .

We reprove the following theorem

Theorem (Kobayashi-Oshima, Krötz-Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

- If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists $C \in \mathbb{N}$ such that $\dim(\pi^*)^{\mathfrak{h},\chi} \leq C$ for any $\pi \in Irr(G)$ and any character χ of \mathfrak{h} .
- If H is a real spherical subgroup

Applications to multiplicities

We reprove the following theorem

Theorem (Kobayashi-Oshima, Krötz-Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

- If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists $C \in \mathbb{N}$ such that $\dim(\pi^*)^{\mathfrak{h},\chi} \leq C$ for any $\pi \in Irr(G)$ and any character χ of \mathfrak{h} .
- ② If H is a real spherical subgroup (i.e. HP is open for some minimal parabolic subgroup P)

Applications to multiplicities

We reprove the following theorem

Theorem (Kobayashi-Oshima, Krötz-Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

- If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists $C \in \mathbb{N}$ such that $\dim(\pi^*)^{\mathfrak{h},\chi} \leq C$ for any $\pi \in Irr(G)$ and any character χ of \mathfrak{h} .
- If H is a real spherical subgroup (i.e. HP is open for some minimal parabolic subgroup P) then, for every irreducible admissible representation $\pi \in Irr(G)$, and natural number $n \in \mathbb{N}$ there exists $C_n \in \mathbb{N}$ such that for every n-dimensional representation τ of \mathfrak{h} we have

$$\dim Hom_{\mathfrak{h}}(\pi,\tau) \leq C_n$$
.

• Enough to prove for the case *X* is a vector space.

- Enough to prove for the case X is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- dim $SS_b = \dim SS_g$

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X))$ s.t. $g(SS_b(M)) \cap X^* = 0$

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X))$ s.t. $g(SS_b(M)) \cap X^* = 0$
- This implies that $p: g(SS_b(M)) \to X$ is finite.

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X))$ s.t. $g(SS_b(M)) \cap X^* = 0$
- This implies that $p: g(SS_b(M)) \to X$ is finite.
- This implies that gM is smooth.

Theorem (Aizenbud-G.-Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

Theorem (Aizenbud-G.-Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

ξ is left H₁ invariant

Theorem (Aizenbud-G.-Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant

Theorem (Aizenbud-G.-Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center $\mathfrak{z}(u(\mathfrak{g}))$ of the universal enveloping algebra of the Lie algebra of G.

Definition

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Define the spherical character of π w.r.t. v_1 and v_2 by:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Definition

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Define the spherical character of π w.r.t. v_1 and v_2 by:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Corollary

A spherical character of admissible representation w.r.t. pair of spherical groups is a holonomic distribution.

Definition

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Define the spherical character of π w.r.t. v_1 and v_2 by:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Corollary

A spherical character of admissible representation w.r.t. pair of spherical groups is a holonomic distribution.

Corollary (Aizenbud, Gourevitch, Minchenko, Sayag)

For any local field F, any spherical character of an admissible representation of G(F) is smooth in a Zariski open dense set.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud-Gourevitch-Krötz-Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud-Gourevitch-Krötz-Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud-Gourevitch-Krötz-Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud-Gourevitch-Krötz-Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud-Gourevitch-Krötz-Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X=U\cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z))\subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V:=(\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud-Gourevitch-Krötz-Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Lemma

Such inverse limit commutes with homologies.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud-Gourevitch-Krötz-Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Lemma

Such inverse limit commutes with homologies.

On the other hand the Bernstein-Kashiwara theorem implies that $\dim(V^*)^{\mathfrak{g}} \leq \mathcal{S}^*(X)^{\mathfrak{g}} < \infty$.

Theorem: If $\#X/G < \infty$ then $\mathfrak{g}S(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud-Gourevitch-Krötz-Liu)

 $H_*(\mathfrak{g},\mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Lemma

Such inverse limit commutes with homologies.

On the other hand the Bernstein-Kashiwara theorem implies that $\dim(V^*)^{\mathfrak{g}} \leq \mathcal{S}^*(X)^{\mathfrak{g}} < \infty$.

