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A D-module over a smooth affine algebraic variety X is a
module over the ring D(X) of differential operators on X.

A D-module M given by generators and relations can be
thought of as a system of PDE. A solution of M is a D-module
homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators my ... my. Define
Fi(D(X)) to be the space of differential operators of degree < i
and Fj(M) := Fi(D(X))(m; ... my). Define

SS(M) := supp(grr(M)) C T*X.

For a distribution £ on X(R) define
SS(€) .= SS(D(X)¢) = ﬂ Zeros(symbol(d)).
de=0
A D-module (or a distribution) ¢ is called holonomic if
dim(SS(¢)) = dim X.



Applications to analytic continuation

Theorem (Bernstein, cf. Sato)

(i) Holonomic D-modules have finite length.

(i) Letp € R[xq,...,Xn] be a non-negative polynomial, and let
¢ € S*(R") be a holonomic tempered distribution. Then the
family of distributions p*¢ defined for Re A > —1 has a
meromorphic continuation to A € C.
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Applications to analytic continuation

Theorem (Bernstein, cf. Sato)
(i) Holonomic D-modules have finite length.
(i) Letp € R[xq,...,Xn] be a non-negative polynomial, and let
¢ € S*(R") be a holonomic tempered distribution. Then the

family of distributions p*¢ defined for Re A > —1 has a
meromorphic continuation to A € C.

This implies analytic continuation of Knap-Stein intertwining
operators. Applied to symmetric pairs by van-den-Bahn,
Brylinski, Delorme, Moelers-Osrted-Oshima,....

Corollary (Gourevitch-Sahi-Sayag)

Let a solvable real algebraic group B act on an affine real
algebraic manifold X. Let x be a tempered character of B.
Then dim S*(X)BX is at least the number of open B-orbits in X
that possess (B, x)-equivariant measures.
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Theorem (Bernstein, cf. Sato)

Letp € R[x4, ..., Xn| be a non-negative polynomial, and let
¢ € S*(R") be a holonomic tempered distribution. Then the
family of distributions p ¢ defined for Re A > —1 has a
meromorphic continuation to A € C.

Let a solvable real algebraic group B act on an affine real
algebraic manifold X, and let O be an open orbit. Then 3 a
B-equivariant polynomial p # 0 on X with p|x\o = 0.

Corollary (Gourevitch-Sahi-Sayag)
v tempered x : B — C*, if S*(0)BX +£ 0 then S*(X)Bx #£ 0.
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Let solvable B act on affine X, and let O be an open orbit.

Corollary (G.-Sahi-Sayag)

v tempered x : B — C*, if S*(0)BX +£ 0 then S*(X)Bx #£ 0.

For ¢ € S*(0)BX and n >> 0, p¢ extends to € S*(X)B¥"x,
In the family p*n, take A\ = —n. If this is a pole - take the
principal part. O

More generally, X can be quasiprojective and B can be MAN.

Corollary (G.-Sahi-Sayag, in progress)

Let G be a real reductive group and H C G be a real spherical
subgroup. Let C c Py C G be closed subgroup and let V be
tempered fin. dim. rep. of C x H. Let U C G be open
G-invariant subset. Thendim S*(G, V)¢*H > dim S*(U, V)¢*H.
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Corollary (G.-Sahi-Sayag)
v tempered x : B — C*, if S*(0)BX +£ 0 then S*(X)Bx #£ 0.

For ¢ € S*(0)BX and n >> 0, p¢ extends to € S*(X)B¥"x,
In the family p*n, take A\ = —n. If this is a pole - take the
principal part. O

More generally, X can be quasiprojective and B can be MAN.

Corollary (G.-Sahi-Sayag, in progress)

Let G be a real reductive group and H C G be a real spherical
subgroup. Let C c Py C G be closed subgroup and let V be
tempered fin. dim. rep. of C x H. Let U C G be open
G-invariant subset. Thendim S*(G, V)¢*H > dim S*(U, V)¢*H.

This gives Knap-Stein operators on spherical spaces and
(degenerate) Whittaker models for (degenerate) principal series.
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Theorem (Bernstein, cf. Kashiwara )

Let X be a real algebraic manifold. Let M be a holonomic right
Dx-module. Then dim Hom(M,S*(X)) < oo.
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Theorem (Bernstein, cf. Kashiwara )

Let X be a real algebraic manifold. Let M be a holonomic right
Dx-module. Then dim Hom(M,S*(X)) < oo.

Theorem (Bernstein, Kashiwara, Aizenbud- G.- Minchenko)

Let X, Y be smooth algebraic varieties and M be a family of
holonomic Dx-modules parameterized by Y. Then
dim Hom(M,, S*(X)) is bounded when y ranges over Y.
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Theorem (Bernstein, cf. Kashiwara )

Let X be a real algebraic manifold. Let M be a holonomic right
Dx-module. Then dim Hom(M,S*(X)) < oo.

Theorem (Bernstein, Kashiwara, Aizenbud- G.- Minchenko)

Let X, Y be smooth algebraic varieties and M be a family of
holonomic Dx-modules parameterized by Y. Then
dim Hom(M,, S*(X)) is bounded when y ranges over Y.

Corollary (Aizenbud-G.-Minchenko 2015)

Let a real algebraic group G act on a real algebraic manifold X with
finitely many orbits. Let & be an algebraic G-equivariant bundle on X
and x be a character of g. Then,

dim S*(X, £)8 < oo.

Moreover, it remains bounded when we change x or tensor € with a
representation of g of a fixed dimension.
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Theorem (Aizenbud-G.-Krétz-Liu 2016)

Let a real algebraic group G act on a real algebraic manifold X
with finitely many orbits. Let £ be an algebraic G-equivariant
bundle on X and x be a tempered character of G. Then,

a(S(X, &) @x) CS(X, &) ®x

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup,
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@ Automatic continuity: ((mHC)*)b = (7*)"
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Let G be a real reductive group, H be a Zariski closed
subgroup, and b be the Lie algebra of H.
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Applications to multiplicities

We reprove the following theorem

Theorem (Kobayashi-Oshima, Krétz-Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed
subgroup, and b be the Lie algebra of H.

@ IfH is a spherical subgroup (i.e. HB is open for some Borel
subgroup B) then there exists C € N such that
dim(7*)%Xx < C for any = € Irr(G) and any character x of b.

© IfH is a real spherical subgroup (i.e. HP is open for some
minimal parabolic subgroup P) then, for every irreducible
admissible representation = € Irr(G), and natural number
n € N there exists C, € N such that for every
n-dimensional representation T of b we have

dim Homy (7, 7) < Cp.
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@ Stone von-Neumann: The group Sp(T*(X)) acts on the
category of D-modules on X stabilizing S*(X).
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@ For g € Sp(T*(X)) we have, g(SSp(M)) = SSp(gM)
@ Jg € Sp(T*(X)) s.t. g(SSp(M))n X*=0
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@ For g € Sp(T*(X)) we have, g(SSp(M)) = SSp(gM)
@ Jg € Sp(T*(X)) s.t. g(SSp(M))n X*=0

@ This implies that p : g(SSp(M)) — X is finite.
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Sketch of the proof of Bernstein-Kashiwara theorem

@ Enough to prove for the case X is a vector space.

@ Stone von-Neumann: The group Sp(T*(X)) acts on the
category of D-modules on X stabilizing S*(X).

@ dim SS, = dim SSy

@ For g € Sp(T*(X)) we have, g(SSp(M)) = SSp(gM)
@ Jg € Sp(T*(X)) s.t. g(SSp(M))n X*=0

@ This implies that p : g(SSp(M)) — X is finite.

@ This implies that gM is smooth.
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Relation with multiplicity

Theorem (Aizenbud-G.-Minchenko 2015)

Let G be an algebraic reductive group, Hy, H> C G be spherical

subgroups. The following system of equations on a distribution
& on G is holonomic:
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Let G be an algebraic reductive group, Hy, H> C G be spherical
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& on G is holonomic:

@ ¢ is left Hy invariant
@ ¢ is right Hy invariant
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Relation with multiplicity

Theorem (Aizenbud-G.-Minchenko 2015)

Let G be an algebraic reductive group, Hy, H> C G be spherical

subgroups. The following system of equations on a distribution
& on G is holonomic:

@ ¢ is left Hy invariant
@ ¢ is right Hy invariant

@ ¢ is eigen w.r.t. the center 3(u(g)) of the universal
enveloping algebra of the Lie algebra of G.
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The spherical character

Definition

Let (7, V) be an admissible representation of G(R) and

vi € (V)M v, € (V*)"2. Define the spherical character of
w.r.t. v; and v, by:

(& f) = (" (v, va).
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The spherical character

Definition
Let (7, V) be an admissible representation of G(R) and

vi € (V)M v, € (V*)"2. Define the spherical character of
w.r.t. v4 and v» by:

(& f) = (" (v, va).

| \

Corollary

A spherical character of admissible representation w.r.t. pair of
spherical groups is a holonomic distribution.

A\
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The spherical character

Definition
Let (7, V) be an admissible representation of G(R) and

vi € (V)M v, € (V*)"2. Define the spherical character of
w.r.t. v4 and v» by:

(& f) = (" (v, va).

Corollary

A spherical character of admissible representation w.r.t. pair of
spherical groups is a holonomic distribution.

Corollary (Aizenbud, Gourevitch, Minchenko, Sayag)

For any local field F, any spherical character of an admissible
representation of G(F) is smooth in a Zariski open dense set.
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Lemma (Aizenbud-Gourevitch-Krétz-Liu)
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