Recent applications of classical theorems on holonomic distributions

Dmitry Gourevitch

Weizmann Institute of Science

Singapore, March 2016

http://www.wisdom.weizmann.ac.il/~dimagur/

Holonomic D-modules and distributions

A *D*-module over a smooth affine algebraic variety *X* is a module over the ring D(X) of differential operators on *X*. A *D*-module *M* given by generators and relations can be thought of as a system of PDE. A solution of *M* is a *D*-module homomorphism of *M* to an appropriate space of functions.

Definition

Let *M* be a *D*-module over *X* with generators $m_1 \dots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree $\leq i$ and $F_i(M) := F_i(D(X))(m_1 \dots m_k)$. Define

 $SS(M) := supp(gr_F(M)) \subset T^*X.$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} Zeros(symbol(d)).$$

A *D*-module (or a distribution) ξ is called holonomic if

 $\dim(SS(\xi)) = \dim X.$

Applications to analytic continuation

Theorem (Bernstein, cf. Sato)

(i) Holonomic D-modules have finite length.

 (ii) Let p ∈ ℝ[x₁,...,x_n] be a non-negative polynomial, and let ξ ∈ S*(ℝⁿ) be a holonomic tempered distribution. Then the family of distributions p^λξ defined for Re λ > −1 has a meromorphic continuation to λ ∈ ℂ.

This implies analytic continuation of Knap-Stein intertwining operators. Applied to symmetric pairs by van-den-Bahn, Brylinski, Delorme, Moelers-Osrted-Oshima,....

Corollary (Gourevitch-Sahi-Sayag)

Let a solvable real algebraic group B act on an affine real algebraic manifold X. Let χ be a tempered character of B. Then dim $S^*(X)^{B,\chi}$ is at least the number of open B-orbits in X that possess (B, χ) -equivariant measures.

Theorem (Bernstein, cf. Sato)

Let $p \in \mathbb{R}[x_1, ..., x_n]$ be a non-negative polynomial, and let $\xi \in S^*(\mathbb{R}^n)$ be a holonomic tempered distribution. Then the family of distributions $p^{\lambda}\xi$ defined for $\operatorname{Re} \lambda > -1$ has a meromorphic continuation to $\lambda \in \mathbb{C}$.

Let a solvable real algebraic group *B* act on an affine real algebraic manifold *X*, and let \mathcal{O} be an open orbit. Then \exists a *B*-equivariant polynomial $p \neq 0$ on *X* with $p|_{X \setminus \mathcal{O}} = 0$.

Corollary (Gourevitch-Sahi-Sayag)

 \forall tempered $\chi : \mathbf{B} \to \mathbb{C}^{\times}$, if $\mathcal{S}^*(\mathcal{O})^{\mathbf{B},\chi} \neq 0$ then $\mathcal{S}^*(\mathbf{X})^{\mathbf{B},\chi} \neq 0$.

Proof.

For $\xi \in S^*(\mathcal{O})^{B,\chi}$ and n >> 0, $p^n \xi$ extends to $\eta \in S^*(X)^{B,\psi^n \chi}$. In the family $p^\lambda \eta$, take $\lambda = -n$. If this is a pole - take the principal part.

More generally, X can be quasiprojective and B can be MAN.

Let solvable *B* act on affine *X*, and let O be an open orbit.

Corollary (G.-Sahi-Sayag)

 $\forall \text{ tempered } \chi : B \to \mathbb{C}^{\times} \text{, if } \mathcal{S}^*(\mathcal{O})^{B,\chi} \neq 0 \text{ then } \mathcal{S}^*(X)^{B,\chi} \neq 0.$

Proof.

For $\xi \in S^*(\mathcal{O})^{B,\chi}$ and n >> 0, $p^n \xi$ extends to $\eta \in S^*(X)^{B,\psi^n \chi}$. In the family $p^{\lambda} \eta$, take $\lambda = -n$. If this is a pole - take the principal part.

More generally, X can be quasiprojective and B can be MAN.

Corollary (G.-Sahi-Sayag, in progress)

Let G be a real reductive group and $H \subset G$ be a real spherical subgroup. Let $C \subset P_0 \subset G$ be closed subgroup and let V be tempered fin. dim. rep. of $C \times H$. Let $U \subset G$ be open G-invariant subset. Then dim $S^*(G, V)^{C \times H} \ge \dim S^*(U, V)^{C \times H}$.

This gives Knap-Stein operators on spherical spaces and (degenerate) Whittaker models for (degenerate) principal series.

Bernstein-Kashiwara theorem

Theorem (Bernstein, cf. Kashiwara)

Let *X* be a real algebraic manifold. Let *M* be a holonomic right D_X -module. Then dim $Hom(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud- G.- Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of holonomic D_X -modules parameterized by Y. Then dim $Hom(\mathcal{M}_y, \mathcal{S}^*(X))$ is bounded when y ranges over Y.

Corollary (Aizenbud-G.-Minchenko 2015)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a character of \mathfrak{g} . Then,

 $\dim \mathcal{S}^*(X,\mathcal{E})^{\mathfrak{g},\chi} < \infty.$

Moreover, it remains bounded when we change χ or tensor \mathcal{E} with a representation of g of a fixed dimension.

Theorem (Aizenbud-G.-Krötz-Liu 2016)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then,

$$\mathfrak{g}(\mathcal{S}(X,\mathcal{E})\otimes\chi)\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and \mathfrak{h} be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, H₀($\mathfrak{h}, \pi \otimes \chi$) is separated and is non-degenerately paired with (π^*)^{$\mathfrak{h}, -\chi$}. In particular, the following conj. of Casselman are equivalent

- Automatic continuity: $((\pi^{HC})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}}$
- Comparison: $H_0(\mathfrak{h}, \pi^{HC}) \cong H_0(\mathfrak{h}, \pi)$

We reprove the following theorem

Theorem (Kobayashi-Oshima, Krötz-Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

- If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists C ∈ N such that dim(π*)^{𝔥,χ} ≤ C for any π ∈ Irr(G) and any character χ of 𝔥.
- If H is a real spherical subgroup (i.e. HP is open for some minimal parabolic subgroup P) then, for every irreducible admissible representation *π* ∈ Irr(*G*), and natural number *n* ∈ ℕ there exists *C_n* ∈ ℕ such that for every *n*-dimensional representation *τ* of 𝔥 we have

dim $Hom_{\mathfrak{h}}(\pi, \tau) \leq C_n$.

- Enough to prove for the case *X* is a vector space.
- Stone von-Neumann: The group Sp(T*(X)) acts on the category of D-modules on X stabilizing S*(X).
- dim $SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X)) \text{ s.t. } g(SS_b(M)) \cap X^* = 0$
- This implies that $p: g(SS_b(M)) \rightarrow X$ is finite.
- This implies that *gM* is smooth.

Theorem (Aizenbud-G.-Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center
 ₃(u(g)) of the universal enveloping algebra of the Lie algebra of G.

The spherical character

Definition

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Define the spherical character of π w.r.t. v_1 and v_2 by:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Corollary

A spherical character of admissible representation w.r.t. pair of spherical groups is a holonomic distribution.

Corollary (Aizenbud, Gourevitch, Minchenko, Sayag)

For any local field F, any spherical character of an admissible representation of G(F) is smooth in a Zariski open dense set.

Relation with Hausdorffness

Theorem: If $\#X/G < \infty$ then $\mathfrak{gS}(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud-Gourevitch-Krötz-Liu)

 $H_*(\mathfrak{g}, \mathcal{S}(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $\mathfrak{g}(\mathcal{S}(X)/\mathcal{S}(Z)) \subset \mathcal{S}(X)/\mathcal{S}(Z)$ is closed and of finite co-dimension. Let $V := (\mathcal{S}(X)/\mathcal{S}(Z))$. The Borel's lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Lemma

Such inverse limit commutes with homologies.

On the other hand the Bernstein-Kashiwara theorem implies that $\dim(V^*)^{\mathfrak{g}} \leq S^*(X)^{\mathfrak{g}} < \infty$.