Recent applications of classical theorems on holonomic distributions

Dmitry Gourevitch

Weizmann Institute of Science

Singapore, March 2016

http://www.wisdom.weizmann.ac.il/~dimagur/
A D-module over a smooth affine algebraic variety X is a module over the ring $D(X)$ of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree $\leq i$ and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := supp(gr_F(M)) \subset T^* X.$$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} Zeros(symbol(d)).$$

A D-module (or a distribution) ξ is called holonomic if

$$\dim(SS(\xi)) = \dim X.$$
Theorem (Bernstein, cf. Sato)

(i) Holonomic D-modules have finite length.

(ii) Let $p \in \mathbb{R}[x_1, \ldots, x_n]$ be a non-negative polynomial, and let $\xi \in S^* (\mathbb{R}^n)$ be a holonomic tempered distribution. Then the family of distributions $p^\lambda \xi$ defined for $\text{Re} \lambda > -1$ has a meromorphic continuation to $\lambda \in \mathbb{C}$.

This implies analytic continuation of Knap-Stein intertwining operators. Applied to symmetric pairs by van-den-Bahn, Brylinski, Delorme, Moelers-Osrted-Oshima,....

Corollary (Gourevitch-Sahi-Sayag)

Let a solvable real algebraic group B act on an affine real algebraic manifold X. Let χ be a tempered character of B. Then $\dim S^* (X)^{B, \chi}$ is at least the number of open B-orbits in X that possess (B, χ)-equivariant measures.
Theorem (Bernstein, cf. Sato)

Let \(p \in \mathbb{R}[x_1, \ldots, x_n] \) be a non-negative polynomial, and let \(\xi \in S^*(\mathbb{R}^n) \) be a holonomic tempered distribution. Then the family of distributions \(p^\lambda \xi \) defined for \(\text{Re} \lambda > -1 \) has a meromorphic continuation to \(\lambda \in \mathbb{C} \).

Let a solvable real algebraic group \(B \) act on an affine real algebraic manifold \(X \), and let \(\mathcal{O} \) be an open orbit. Then \(\exists \) a \(B \)-equivariant polynomial \(p \neq 0 \) on \(X \) with \(p|_{X\setminus \mathcal{O}} = 0 \).

Corollary (Gourevitch-Sahi-Sayag)

\(\forall \) tempered \(\chi : B \rightarrow \mathbb{C}^\times \), if \(S^*(\mathcal{O})^B,\chi \neq 0 \) then \(S^*(X)^B,\chi \neq 0 \).

Proof.

For \(\xi \in S^*(\mathcal{O})^B,\chi \) and \(n \gg 0 \), \(p^n \xi \) extends to \(\eta \in S^*(X)^B,\psi^n\chi \). In the family \(p^\lambda \eta \), take \(\lambda = -n \). If this is a pole - take the principal part.

More generally, \(X \) can be quasiprojective and \(B \) can be MAN.
Let solvable B act on affine X, and let \mathcal{O} be an open orbit.

Corollary (G.-Sahi-Sayag)

$$\forall \text{ tempered } \chi : B \to \mathbb{C}^\times, \text{ if } S^\ast (\mathcal{O})^{B,\chi} \neq 0 \text{ then } S^\ast (X)^{B,\chi} \neq 0.$$

Proof.

For $\xi \in S^\ast (\mathcal{O})^{B,\chi}$ and $n \gg 0$, $p^n \xi$ extends to $\eta \in S^\ast (X)^{B,\psi^n \chi}$. In the family $p^\lambda \eta$, take $\lambda = -n$. If this is a pole - take the principal part.

More generally, X can be quasiprojective and B can be MAN.

Corollary (G.-Sahi-Sayag, in progress)

Let G be a real reductive group and $H \subset G$ be a real spherical subgroup. Let $C \subset P_0 \subset G$ be closed subgroup and let V be tempered fin. dim. rep. of $C \times H$. Let $U \subset G$ be open G-invariant subset. Then $\dim S^\ast (G, V)^{C \times H} \geq \dim S^\ast (U, V)^{C \times H}$.

This gives Knap-Stein operators on spherical spaces and (degenerate) Whittaker models for (degenerate) principal series.
Theorem (Bernstein, cf. Kashiwara)

Let X be a real algebraic manifold. Let M be a holonomic right D_X-module. Then $\dim \text{Hom}(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud-G.-Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of holonomic D_X-modules parameterized by Y. Then $\dim \text{Hom}(\mathcal{M}_y, S^*(X))$ is bounded when y ranges over Y.

Corollary (Aizenbud-G.-Minchenko 2015)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a character of \mathfrak{g}. Then,

$$\dim S^*(X, \mathcal{E})^g,\chi < \infty.$$

Moreover, it remains bounded when we change χ or tensor \mathcal{E} with a representation of \mathfrak{g} of a fixed dimension.
Applications for co-invariants

Theorem (Aizenbud-G.-Krötz-Liu 2016)

Let a real algebraic group \(G \) act on a real algebraic manifold \(X \) with finitely many orbits. Let \(\mathcal{E} \) be an algebraic \(G \)-equivariant bundle on \(X \) and \(\chi \) be a tempered character of \(G \). Then,

\[
g(S(X, \mathcal{E}) \otimes \chi) \subset S(X, \mathcal{E}) \otimes \chi
\]

is closed and has finite codimension.

Corollary

Let \(G \) be a real reductive group, \(H \) be a real spherical subgroup, and \(\mathfrak{h} \) be the Lie algebra of \(H \). Let \(\chi \) be a tempered character of \(H \). Then for any admissible representation \(\pi \) of \(G \), \(H_0(\mathfrak{h}, \pi \otimes \chi) \) is separated and is non-degenerately paired with \((\pi^*)^{\mathfrak{h},-\chi} \). In particular, the following conj. of Casselman are equivalent

- **Automatic continuity**: \(((\pi^{HC})^*)^{\mathfrak{h}} \cong (\pi^*)^{\mathfrak{h}} \)
- **Comparison**: \(H_0(\mathfrak{h}, \pi^{HC}) \cong H_0(\mathfrak{h}, \pi) \)
We reprove the following theorem

Theorem (Kobayashi-Oshima, Krötz-Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

1. If H is a spherical subgroup (i.e. HB is open for some Borel subgroup B) then there exists $C \in \mathbb{N}$ such that $\dim(\pi^* \mathfrak{h}, \chi) \leq C$ for any $\pi \in \text{Irr}(G)$ and any character χ of \mathfrak{h}.

2. If H is a real spherical subgroup (i.e. HP is open for some minimal parabolic subgroup P) then, for every irreducible admissible representation $\pi \in \text{Irr}(G)$, and natural number $n \in \mathbb{N}$ there exists $C_n \in \mathbb{N}$ such that for every n-dimensional representation τ of \mathfrak{h} we have

$$\dim \text{Hom}_{\mathfrak{h}}(\pi, \tau) \leq C_n.$$
Sketch of the proof of Bernstein-Kashiwara theorem

- Enough to prove for the case X is a vector space.
- Stone von-Neumann: The group $Sp(T^*(X))$ acts on the category of D-modules on X stabilizing $S^*(X)$.
- $\dim SS_b = \dim SS_g$
- For $g \in Sp(T^*(X))$ we have, $g(SS_b(M)) = SS_b(gM)$
- $\exists g \in Sp(T^*(X))$ s.t. $g(SS_b(M)) \cap X^* = 0$
- This implies that $p : g(SS_b(M)) \to X$ is finite.
- This implies that gM is smooth.
Theorem (Aizenbud-G.-Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups. The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center $z(u(g))$ of the universal enveloping algebra of the Lie algebra of G.
The spherical character

Definition

Let \((\pi, V)\) be an admissible representation of \(G(\mathbb{R})\) and \(v_1 \in (V^*)^{H_1}, \ v_2 \in (\tilde{V}^*)^{H_2}\). Define the spherical character of \(\pi\) w.r.t. \(v_1\) and \(v_2\) by:

\[
\langle \xi, f \rangle := \langle \pi^*(f)v_1, v_2 \rangle.
\]

Corollary

A spherical character of admissible representation w.r.t. pair of spherical groups is a holonomic distribution.

Corollary (Aizenbud, Gourevitch, Minchenko, Sayag)

For any local field \(F\), any spherical character of an admissible representation of \(G(F)\) is smooth in a Zariski open dense set.
Theorem: If $\#X/G < \infty$ then $gS(X) \subset S(X)$ is closed and has finite codimension.

Proof:

Lemma (Aizenbud-Gourevitch-Krötz-Liu)

$H_*(g, S(G/H))$ are finite dimensional (and Hausdorff).

Assume that $X = U \cup Z$ is a union of an open orbit and a closed one. It is enough to prove that $g(S(X)/S(Z)) \subset S(X)/S(Z)$ is closed and of finite co-dimension. Let $V := (S(X)/S(Z))$. The Borel’s lemma and the lemma above implies that V is an inverse limit (with epimorphisms) of representations with finite dimensional co-homologies.

Lemma

Such inverse limit commutes with homologies.

On the other hand the Bernstein-Kashiwara theorem implies that $\dim(V^*)_g \leq S^*(X)_g < \infty$.