Holonomicity of spherical characters and applications to multiplicity bounds

Dmitry Gourevitch

Weizmann Institute of Science

J. w. Avraham Aizenbud and Andrey Minchenko

http://www.wisdom.weizmann.ac.il/~dimagur/
A holonomic D-module over a smooth affine algebraic variety X is a D-module over the ring $D(X)$ of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define $SS(M) := \text{supp}(\text{gr} F_i(M)) \subset T^*X$.

For a distribution ξ on $X(\mathbb{R})$ define $SS(\xi) := SS(D(\mathbb{R}) \xi) = \bigcap_{d \xi = 0} \text{Zeros}(\text{symbol}(d))$.

A distribution (or a D-module) ξ is called holonomic if $\dim(SS(\xi)) = \dim X$.
A D-module over a smooth affine algebraic variety X is a module over the ring $D(X)$ of differential operators on X.

Definition

Let M be a D-module over X with generators $m_1, ..., m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1, ..., m_k)$. Define $SS(M) := supp(\text{gr} F(M)) \subset T^*X$.

For a distribution ξ on $X(\mathbb{R})$ define $SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi = 0} \text{Zeros}(\text{symbol}(d))$.

A distribution (or a D-module) ξ is called holonomic if $\dim(\text{SS}(\xi)) = \dim X$.
Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring $D(X)$ of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.
Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring $D(X)$ of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := supp(gr_{F}(M)) \subset T^*X.$$
A D-module over a smooth affine algebraic variety X is a module over the ring $D(X)$ of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := \text{supp}(\text{gr}_F(M)) \subset T^*X.$$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi)$$
Holonomic D-modules and distributions

A \(D \)-module over a smooth affine algebraic variety \(X \) is a module over the ring \(D(X) \) of differential operators on \(X \). A \(D \)-module \(M \) given by generators and relations can be thought of as a system of PDE. A solution of \(M \) is a \(D \)-module homomorphism of \(M \) to an appropriate space of functions.

Definition

Let \(M \) be a \(D \)-module over \(X \) with generators \(m_1 \ldots m_k \). Define \(F_i(D(X)) \) to be the space of differential operators of degree \(i \) and \(F_i(M) := F_i(D(X))(m_1 \ldots m_k) \). Define

\[
SS(M) := \text{supp}(\text{gr}_F(M)) \subset T^*X.
\]

For a distribution \(\xi \) on \(X(\mathbb{R}) \) define

\[
SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} \text{Zeros}(\text{symbol}(d)).
\]
Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring $D(X)$ of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := \text{supp}(\text{gr}_F(M)) \subset T^*X.$$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} \text{Zeros}(\text{symbol}(d)).$$

A distribution (or a D-module) ξ is called holonomic if

$$\dim(SS(\xi)) = \dim X.$$
Main results

Theorem (Aizenbud, G., Minchenko 2015)
Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups (i.e. $H_i \backslash G / B$ is finite). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center $z(u(g))$ of the universal enveloping algebra of the Lie algebra of G.

Corollary
Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)_{H_1}$, $v_2 \in (\tilde{V}^*)_{H_2}$. Let ξ be the corresponding spherical character:

$$\langle \xi, f \rangle := \langle \pi^*(f)v_1, v_2 \rangle.$$
Then ξ is a holonomic distribution.
Theorem (Aizenbud, G., Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups (i.e. $H_i \backslash G/B$ is finite). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center $z(u)(g)$ of the universal enveloping algebra of the Lie algebra of G.

Corollary

Let (π, V) be an admissible representation of G over \mathbb{R} and $v_1 \in (V^*)^{H_1}, v_2 \in (\tilde{V}^*)^{H_2}$. Let ξ be the corresponding spherical character:

$$\langle \xi, f \rangle := \langle \pi^* (f) v_1, v_2 \rangle.$$

Then ξ is a holonomic distribution.
Theorem (Aizenbud, G., Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups (i.e. $H_i \backslash G/B$ is finite). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant

Corollary

Let (π, V) be an admissible representation of G and $v_1 \in (V^*)_{H_1}, v_2 \in (\tilde{V}^*)_{H_2}$. Let ξ be the corresponding spherical character:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Then ξ is a holonomic distribution.
Main results

Theorem (Aizenbud, G., Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups (i.e. $H_i \backslash G/B$ is finite). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
Theorem (Aizenbud, G., Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups (i.e. $H_i \backslash G/B$ is finite). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center $\mathfrak{z}(u(g))$ of the universal enveloping algebra of the Lie algebra of G.

Corollary

Let (π, V) be an admissible representation of G and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Let ξ be the corresponding spherical character:

$$\langle \xi, f \rangle = \langle \pi(\pi^* f) v_1, v_2 \rangle.$$

Then ξ is a holonomic distribution.
Main results

Theorem (Aizenbud, G., Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups (i.e. $H_i \backslash G/B$ is finite). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center $\mathfrak{z}(\mathfrak{u}(g))$ of the universal enveloping algebra of the Lie algebra of G.

Corollary

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $\nu_1 \in (V^*)^{H_1}$, $\nu_2 \in (\tilde{V}^*)^{H_2}$. Let ξ be the corresponding spherical character:

$$\langle \xi, f \rangle := \langle \pi^*(f) \nu_1, \nu_2 \rangle.$$

Then ξ is a holonomic distribution.
Corollary (Aizenbud, G., Minchenko, Sayag)

Let F be a local field of characteristic zero. Then the wave front set of any spherical character of an admissible representation of $G(F)$ is included in a conic subvariety of T^*G of middle dimension. If $F = \mathbb{R}$ then the subvariety is Lagrangian.

Corollary

Any spherical character of an admissible representation of $G(F)$ is smooth in a Zariski open dense set.
Corollary (Aizenbud, G., Minchenko, Sayag)

Let F be a local field of characteristic zero. Then the wave front set of any spherical character of an admissible representation of $G(F)$ is included in a conic subvariety of T^*G of middle dimension. If $F = \mathbb{R}$ then the subvariety is Lagrangian.
Corollary (Aizenbud, G., Minchenko, Sayag)

Let F be a local field of characteristic zero. Then the wave front set of any spherical character of an admissible representation of $G(F)$ is included in a conic subvariety of $T^* G$ of middle dimension. If $F = \mathbb{R}$ then the subvariety is Lagrangian.

Corollary

Any spherical character of an admissible representation of $G(F)$ is smooth in a Zariski open dense set.
Theorem (Bernstein, Kashiwara ~1974)

Let X be a real algebraic manifold. Let M be a holonomic right D_X-module. Then $\dim \text{Hom}(M, S^*(X)) < \infty$.

Corollary (Aizenbud, G., Minchenko)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let E be an algebraic G-equivariant bundle on X and χ be a character of g. Then, $\dim S^*(X, E_g, \chi) < \infty$. Moreover, it remains bounded when we change χ or tensor E with a representation of g of a fixed dimension.
Bernstein-Kashiwara Theorem

Theorem (Bernstein, Kashiwara ∼1974)

Let X be a real algebraic manifold. Let M be a holonomic right \mathcal{D}_X-module. Then $\dim \operatorname{Hom}(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud, Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of \mathcal{D}_X-modules parameterized by Y. Suppose that \mathcal{M}_y is holonomic. Then $\dim \operatorname{Hom}(\mathcal{M}_y, S^*(X))$ is bounded when y ranges over Y.

Corollary (Aizenbud, Minchenko)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let E be an algebraic G-equivariant bundle on X and χ be a character of g. Then, $\dim S^*(X, E^g, \chi) < \infty$. Moreover, it remains bounded when we change χ or tensor E with a representation of g of a fixed dimension.
Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)

Let X be a real algebraic manifold. Let M be a holonomic right D_X-module. Then $\dim \text{Hom}(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud, G., Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of D_X-modules parameterized by Y. Suppose that \mathcal{M}_y is holonomic. Then $\dim \text{Hom}(\mathcal{M}_y, S^*(X))$ is bounded when y ranges over Y.

Corollary (Aizenbud, G., Minchenko)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a character of \mathfrak{g}. Then,

$$\dim S^*(X, \mathcal{E})^{\mathfrak{g}, \chi} < \infty.$$

Moreover, it remains bounded when we change χ or tensor \mathcal{E} with a representation of \mathfrak{g} of a fixed dimension.
We reprove the following theorem
We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H. If H is a spherical subgroup then there exists $C \in \mathbb{N}$ such that $\dim(\pi^ \mathfrak{h}, \chi) \leq C$ for any $\pi \in \text{Irr}(G)$ and any character χ of \mathfrak{h}. If H is a real spherical subgroup then, for every irreducible admissible representation $\pi \in \text{Irr}(G)$, and natural number $n \in \mathbb{N}$ there exists $C_n \in \mathbb{N}$ such that for every n-dimensional representation τ of \mathfrak{h} we have $\dim \text{Hom}_\mathfrak{h}(\pi, \tau) \leq C_n$.***
Applications to multiplicities

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

1. If H is a spherical subgroup then there exists $C \in \mathbb{N}$ such that $\dim(\pi^*\mathfrak{h},\chi) \leq C$ for any $\pi \in \text{Irr}(G)$ and any character χ of \mathfrak{h}.
We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

1. If H is a spherical subgroup then there exists $C \in \mathbb{N}$ such that $\dim(\pi^* \mathfrak{h}, \chi) \leq C$ for any $\pi \in \text{Irr}(G)$ and any character χ of \mathfrak{h}.

2. If H is a real spherical subgroup then, for every irreducible admissible representation $\pi \in \text{Irr}(G)$, and natural number $n \in \mathbb{N}$ there exists $C_n \in \mathbb{N}$ such that for every n-dimensional representation τ of \mathfrak{h} we have

\[
\dim \text{Hom}_\mathfrak{h}(\pi, \tau) \leq C_n.
\]
Theorem (Aizenbud, G., Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then, the homology $H_0(g, S(X, \mathcal{E}) \otimes \chi)$ is separated and is non-degenerately paired with $S^*(X, \mathcal{E})^{g, -\chi}$. I.e.

$$gS(X, \mathcal{E}) \otimes \chi \subset S(X, \mathcal{E}) \otimes \chi$$

is closed and has finite codimension.
Theorem (Aizenbud, G., Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then, the homology $H_0(\mathfrak{g}, S(X, \mathcal{E}) \otimes \chi))$ is separated and is non-degenerately paired with $S^*(X, \mathcal{E})^{\mathfrak{g}, \chi}$. I.e.

$$\mathfrak{g}S(X, \mathcal{E}) \otimes \chi \subset S(X, \mathcal{E}) \otimes \chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and \mathfrak{h} be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak{h}, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^\mathfrak{h}, \chi$.
Theorem (A., Gourevitch, Minchenko 2015)

Let

\[S = \{ g \in G, x \in g^* | x \in \mathfrak{h}_1^\perp, \text{ad}(g)(x) \in \mathfrak{h}_2^\perp, x \text{ is nilpotent} \} = G \times \mathcal{N} \cap \bigcup_{g \in G} \mathcal{CN}_G^{\mathcal{H}_1}g \mathcal{H}_2, g \]

Then

\[\dim S = \dim G . \]
Assume $H_1 = H_2 = H$, diagonally embedded in $G = H \times H$.
Assume $H_1 = H_2 = H$, diagonally embedded in $G = H \times H$. Translating the problem to $H = G/H$ we obtain:

$$S' = \{ g \in H, x \in \mathfrak{h}^* | \text{Ad}(g)(x) = x, x \in \mathcal{N}_H \} = H \times \mathcal{N}_H \cap \bigcup_{g \in H} \mathcal{C}N^H_{\text{ad}(G)g,g}$$
Assume $H_1 = H_2 = H$, diagonally embedded in $G = H \times H$. Translating the problem to $H = G/H$ we obtain:

$$S' = \{ g \in H, x \in \mathfrak{h}^*| Ad(g)(x) = x, x \in \mathcal{N}_H \} = H \times \mathcal{N}_H \cap \bigcup_{g \in H} \mathcal{C}N_{ad(G)g,g}^H$$

passing to the Lie algebra

$$S' = \{ g \in \mathfrak{h}, x \in \mathfrak{h}| [x, g] = 0, x \text{ is nilpotent} \}$$
Assume $H_1 = H_2 = H$, diagonally embedded in $G = H \times H$. Translating the problem to $H = G/H$ we obtain:

$$S' = \{ g \in H, x \in \mathfrak{h}^* | \text{Ad}(g)(x) = x, x \in \mathcal{N}_H \} = H \times \mathcal{N}_H \cap \bigcup_{g \in H} \mathcal{C}N^H_{\text{ad}(G)g,g}$$

passing to the Lie algebra

$$S' = \{ g \in \mathfrak{h}, x \in \mathfrak{h} | [x, g] = 0, x \text{ is nilpotent} \}$$

So

$$S' \subset \bigcup_{x \in \mathcal{N}_H} \mathcal{C}N^h_{\text{ad}(G)x,x}$$
Let \mathcal{B} be the flag variety.
Let \mathcal{B} be the flag variety. $T^*\mathcal{B} \cong \{ B \in \mathcal{B}, x \in b^\perp \}$.

Theorem (Steinberg 1976) \(\forall \eta \in N \) we have \[\dim \mathfrak{g}_\eta - 2 \dim \mu - 1 (\eta) = \mathrm{rk} \mathfrak{g}. \]
Let \mathcal{B} be the flag variety. $T^*\mathcal{B} \cong \{ B \in \mathcal{B}, x \in \mathfrak{b}^\perp \}$. We have a natural map $\mu : T^*\mathcal{B} \to N$. It is called the Springer resolution.

Theorem (Steinberg 1976)

$\forall \eta \in N$ we have $\dim G_\eta - 2 \dim \mu - 1(\eta) = \text{rk } G_\eta$.
Let \mathcal{B} be the flag variety. $T^*\mathcal{B} \cong \{ B \in \mathcal{B}, x \in b^\perp \}$. We have a natural map $\mu : T^*\mathcal{B} \to \mathcal{N}$. It is called the Springer resolution.

Theorem (Steinberg 1976)

$\forall \eta \in \mathcal{N}$ we have $\dim G_\eta - 2 \dim \mu^{-1}(\eta) = \text{rk} G$.
Idea of the proof

\[T^*B \times T^*B \times \mu \times \mu \to G \times N \]
\[(g, x) \mapsto (x, \text{Ad}^{-1}(g)x) \]

Passing to the fiber of \(0 \in h^*1 \times h^*2 \) we get:
\[L^1 \times L^2 \to S \]
\[N^*h_1 \times N^*h_2 \]

Where \(N^*h_i = N \cap h_i^\perp \) and \(L_i = \{ (B, X) \in T^*B | X \in h_i^\perp \} = \bigcup_{x \in B} C_{N^*B} H_i x, x \).

The estimate on \(\dim S \) follows from the Steinberg theorem and:
\[\dim L_i = \dim B \]
Idea of the proof

\[T^*B \times T^*B \quad \begin{array}{c} \mu \times \mu \\
\end{array} \quad G \times N \]

\[(g,x) \mapsto (x, \text{Ad}^*(g^{-1})x) \]

\[\mathcal{N} \times \mathcal{N} \quad \begin{array}{c} \text{res} \\
\end{array} \quad \mathfrak{h}^*_1 \times \mathfrak{h}^*_2 \]

Passing to the fiber of 0 \(\in \mathfrak{h}^*_1 \times \mathfrak{h}^*_2 \) we get:

\[L^1 \times L^2 \rightarrow S \rightarrow N \quad \mathcal{h}_1^* \times \mathcal{h}_2^* \]

Where \(\mathcal{N}_h_i := \mathcal{N} \cap h_i^\perp \) and \(L_i := \{ (B, X) \in T^*B | X \in h_i^\perp \} = \bigcup_{x \in B} \mathbb{C}N_B H_i x, x \).

The estimate on \(\dim S \) follows from the Steinberg theorem and:

\[\dim L_i = \dim B. \]
Idea of the proof

\[T^*B \times T^*B \quad \rightarrow \quad G \times N \]

\[(g,x) \mapsto (x, \text{Ad}^*(g^{-1})x) \]

\[\mathcal{N} \times \mathcal{N} \]

\[\text{res} \]

\[\mathfrak{h}_1^* \times \mathfrak{h}_2^* \]

Passing to the fiber of \(0 \in \mathfrak{h}_1^* \times \mathfrak{h}_2^* \) we get:
Idea of the proof

\[T^*\mathcal{B} \times T^*\mathcal{B} \xrightarrow{\mu \times \mu} G \times \mathcal{N} \]

\[(g, x) \mapsto (x, \text{Ad}^* (g^{-1}) x) \]

\[\mathcal{N} \times \mathcal{N} \xrightarrow{\text{res}} h_1^* \times h_2^* \]

Passing to the fiber of \(0 \in h_1^* \times h_2^* \) we get:

\[L_1 \times L_2 \]

\[\mathcal{N}_{h_1} \times \mathcal{N}_{h_2} \rightarrow S \]

Where

\[\mathcal{N}_{h_i} := \mathcal{N} \cap \mathfrak{h}_i^\perp \text{ and } L_i := \{(B, X) \in T^*\mathcal{B} \mid X \in \mathfrak{h}_i^\perp\} \]
Idea of the proof

\[T^*B \times T^*B \xrightarrow{\mu \times \mu} G \times \mathcal{N} \]

\[(g, x) \mapsto (x, \text{Ad}^*(g^{-1})x) \]

\[\mathcal{N} \times \mathcal{N} \]

\[\text{res} \]

\[h_1^* \times h_2^* \]

Passing to the fiber of \(0 \in h_1^* \times h_2^*\) we get:

\[L_1 \times L_2 \]

\[\mathcal{N}_{h_1} \times \mathcal{N}_{h_2} \]

\[S \]

Where

\[\mathcal{N}_{h_i} := \mathcal{N} \cap h_i^+ \text{ and } L_i := \{(B, X) \in T^*B \mid X \in h_i^+\} = \bigcup_{x \in B} \text{CN}_{H_i, x, x}^B. \]
Idea of the proof

\[T^*B \times T^*B \xrightarrow{\mu \times \mu} G \times N \xrightarrow{(g,x) \mapsto (x, \text{Ad}^* (g^{-1}) x)} \]

\[N \times N \xrightarrow{\text{res}} h_1^* \times h_2^* \]

Passing to the fiber of \(0 \in h_1^* \times h_2^*\) we get:

\[L_1 \times L_2 \xrightarrow{\text{res}} S \]

Where

\[\mathcal{N}_{h_i} := \mathcal{N} \cap h_i^\perp \] and \(L_i := \{(B, X) \in T^*B \mid X \in h_i^\perp\} = \bigcup_{x \in B} \mathcal{C}N_{H_{h_i}x}^B. \]

The estimate on \(\text{dim } S\) follows from the Steinberg theorem and:

\[\text{dim } L_i = \text{dim } B. \]