Holonomicity of spherical characters and applications to multiplicity bounds

Dmitry Gourevitch

Weizmann Institute of Science

J. w. Avraham Aizenbud and Andrey Minchenko

http://www.wisdom.weizmann.ac.il/~dimagur/
Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring $D(X)$ of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := \text{supp}(\text{gr}_F(M)) \subset T^*X.$$

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} \text{Zeros}(\text{symbol}(d)).$$

A distribution (or a D-module) ξ is called holonomic if

$$\dim(SS(\xi)) = \dim X.$$
Main results

Theorem (Aizenbud, G., Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups (i.e. $H_i \backslash G/B$ is finite). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center $\mathfrak{z}(u(\mathfrak{g}))$ of the universal enveloping algebra of the Lie algebra of G.

Corollary

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Let ξ be the corresponding spherical character:

$$\langle \xi, f \rangle := \langle \pi^*(f)v_1, v_2 \rangle.$$

Then ξ is a holonomic distribution.
Corollary (Aizenbud, G., Minchenko, Sayag)

Let F be a local field of characteristic zero. Then the wave front set of any spherical character of an admissible representation of $G(F)$ is included in a conic subvariety of $T^* G$ of middle dimension. If $F = \mathbb{R}$ then the subvariety is Lagrangian.

Corollary

Any spherical character of an admissible representation of $G(F)$ is smooth in a Zariski open dense set.
Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)

Let X be a real algebraic manifold. Let M be a holonomic right D_X-module. Then \(\dim \text{Hom}(M, S^*(X)) < \infty \).

Theorem (Bernstein, Kashiwara, Aizenbud, G., Minchenko)

Let X, Y be smooth algebraic varieties and M be a family of D_X-modules parameterized by Y. Suppose that M_y is holonomic. Then \(\dim \text{Hom}(M_y, S^*(X)) \) is bounded when y ranges over Y.

Corollary (Aizenbud, G., Minchenko)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a character of \mathfrak{g}. Then,

\[
\dim S^*(X, \mathcal{E})^{\mathfrak{g}, \chi} < \infty.
\]

Moreover, it remains bounded when we change χ or tensor \mathcal{E} with a representation of \mathfrak{g} of a fixed dimension.
We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and \mathfrak{h} be the Lie algebra of H.

1. If H is a spherical subgroup then there exists $C \in \mathbb{N}$ such that $\dim(\pi^* \mathfrak{h}, \chi) \leq C$ for any $\pi \in \text{Irr}(G)$ and any character χ of \mathfrak{h}.

2. If H is a real spherical subgroup then, for every irreducible admissible representation $\pi \in \text{Irr}(G)$, and natural number $n \in \mathbb{N}$ there exists $C_n \in \mathbb{N}$ such that for every n-dimensional representation τ of \mathfrak{h} we have

$$\dim \text{Hom}_{\mathfrak{h}}(\pi, \tau) \leq C_n.$$
Corollaries for homologies

Theorem (Aizenbud, G., Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let \mathcal{E} be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then, the homology $H_0(g, S(X, \mathcal{E}) \otimes \chi)$ is separated and is non-degenerately paired with $S^*(X, \mathcal{E})^g, -\chi$. I.e.

$$gS(X, \mathcal{E}) \otimes \chi \subset S(X, \mathcal{E}) \otimes \chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and \mathfrak{h} be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak{h}, \pi \otimes \chi)$ is separated and is non-degenerately paired with $(\pi^*)^\mathfrak{h}, -\chi$.
Theorem (A., Gourevitch, Minchenko 2015)

Let

\[S = \{ g \in G, x \in g^* \mid x \in \mathfrak{h}_1^\perp, \text{ad}(g)(x) \in \mathfrak{h}_2^\perp, x \text{ is nilpotent} \} = \]

\[= G \times \mathcal{N} \cap \bigcup_{g \in G} \text{CN}_{H_1gH_2,g}^G \]

Then

\[\dim S = \dim G. \]
Assume $H_1 = H_2 = H$, diagonally embedded in $G = H \times H$. Translating the problem to $H = G/H$ we obtain:

\[S' = \{ g \in H, x \in \mathfrak{h}^* | \text{Ad}(g)(x) = x, x \in \mathcal{N}_H \} = H \times \mathcal{N}_H \cap \bigcup_{g \in H} \mathcal{C}N_{\text{ad}(G)g,g}^H \]

passing to the Lie algebra

\[S' = \{ g \in \mathfrak{h}, x \in \mathfrak{h} | [x, g] = 0, x \text{ is nilpotent} \} \]

So

\[S' \subset \bigcup_{x \in \mathcal{N}_H} \mathcal{C}N_{\text{ad}(G)x,x}^\mathfrak{h} \]
Let \mathcal{B} be the flag variety. $T^*\mathcal{B} \cong \{B \in \mathcal{B}, x \in b^\perp\}$. We have a natural map $\mu : T^*\mathcal{B} \to \mathcal{N}$. It is called the Springer resolution.

Theorem (Steinberg 1976)

\[\forall \eta \in \mathcal{N} \ we \ have \ \dim G_\eta - 2 \dim \mu^{-1}(\eta) = \text{rk} G. \]
Idea of the proof

\[T^*B \times T^*B \xrightarrow{\mu \times \mu} G \times N \]

\[(g, x) \mapsto (x, \text{Ad}^*(g^{-1})x) \]

\[N \times N \xrightarrow{\text{res}} h^*_1 \times h^*_2 \]

Passing to the fiber of \(0 \in h^*_1 \times h^*_2\) we get:

\[L_1 \times L_2 \]

Where

\[N_{h_i} := N \cap h_i^\perp\]

and

\[L_i := \left\{ (B, X) \in T^*B \mid X \in h_i^\perp \right\} = \bigcup_{x \in B} CN_{h_i | x, x}^B \]

The estimate on \(\dim S\) follows from the Steinberg theorem and:

\[\dim L_i = \dim B. \]