Holonomicity of spherical characters and applications to multiplicity bounds

Dmitry Gourevitch

Weizmann Institute of Science

J. w. Avraham Aizenbud and Andrey Minchenko

http://www.wisdom.weizmann.ac.il/~dimagur/

Holonomic D-modules and distributions

A D-module over a smooth affine algebraic variety X is a module over the ring D(X) of differential operators on X. A D-module M given by generators and relations can be thought of as a system of PDE. A solution of M is a D-module homomorphism of M to an appropriate space of functions.

Definition

Let M be a D-module over X with generators $m_1 \ldots m_k$. Define $F_i(D(X))$ to be the space of differential operators of degree i and $F_i(M) := F_i(D(X))(m_1 \ldots m_k)$. Define

$$SS(M) := supp(gr_F(M)) \subset T^*X$$
.

For a distribution ξ on $X(\mathbb{R})$ define

$$SS(\xi) := SS(D(X)\xi) = \bigcap_{d\xi=0} Zeros(symbol(d)).$$

A distribution (or a *D*-module) ξ is called holonomic if $\dim(SS(\xi)) = \dim X$.

Main results

Theorem (Aizenbud, G., Minchenko 2015)

Let G be an algebraic reductive group, $H_1, H_2 \subset G$ be spherical subgroups (i.e. $H_i \setminus G/B$ is finite). The following system of equations on a distribution ξ on G is holonomic:

- ξ is left H_1 invariant
- ξ is right H_2 invariant
- ξ is eigen w.r.t. the center $\mathfrak{z}(u(\mathfrak{g}))$ of the universal enveloping algebra of the Lie algebra of G.

Corollary

Let (π, V) be an admissible representation of $G(\mathbb{R})$ and $v_1 \in (V^*)^{H_1}$, $v_2 \in (\tilde{V}^*)^{H_2}$. Let ξ be the corresponding spherical character:

$$\langle \xi, f \rangle := \langle \pi^*(f) v_1, v_2 \rangle.$$

Then ξ is a holonomic distribution.

Applications to the spherical character

Corollary (Aizenbud, G., Minchenko, Sayag)

Let F be a local field of characteristic zero. Then the wave front set of any spherical character of an admissible representation of G(F) is included in a conic subvariety of T^*G of middle dimension. If $F = \mathbb{R}$ then the subvariety is Lagrangian.

Corollary

Any spherical character of an admissible representation of G(F) is smooth in a Zariski open dense set.

Bernstein-Kashiwara theorem

Theorem (Bernstein, Kashiwara ~1974)

Let X be a real algebraic manifold. Let M be a holonomic right D_X -module. Then dim $Hom(M, S^*(X)) < \infty$.

Theorem (Bernstein, Kashiwara, Aizenbud, G., Minchenko)

Let X, Y be smooth algebraic varieties and \mathcal{M} be a family of D_X -modules parameterized by Y. Suppose that \mathcal{M}_y is holonomic. Then dim $Hom(\mathcal{M}_y, \mathcal{S}^*(X))$ is bounded when y ranges over Y.

Corollary (Aizenbud, G., Minchenko)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a character of $\mathfrak g$. Then,

$$\dim \mathcal{S}^*(X,\mathcal{E})^{\mathfrak{g},\chi} < \infty.$$

Moreover, it remains bounded when we change χ or tensor $\mathcal E$ with a representation of $\mathfrak g$ of a fixed dimension.

Applications to multiplicities

We reprove the following theorem

Theorem (Kobayashi, Krötz, Oshima, Schlichtkrull 2013)

Let G be a real reductive group, H be a Zariski closed subgroup, and h be the Lie algebra of H.

- If H is a spherical subgroup then there exists $C \in \mathbb{N}$ such that $\dim(\pi^*)^{\mathfrak{h},\chi} \leq C$ for any $\pi \in Irr(G)$ and any character χ of \mathfrak{h} .
- If H is a real spherical subgroup then, for every irreducible admissible representation $\pi \in Irr(G)$, and natural number $n \in \mathbb{N}$ there exists $C_n \in \mathbb{N}$ such that for every n-dimensional representation τ of \mathfrak{h} we have

 $\dim Hom_{\mathfrak{h}}(\pi,\tau) \leq C_n$.

Corollaries for homologies

Theorem (Aizenbud, G., Krötz, Liu)

Let a real algebraic group G act on a real algebraic manifold X with finitely many orbits. Let $\mathcal E$ be an algebraic G-equivariant bundle on X and χ be a tempered character of G. Then, the homology $\mathrm{H}_0(\mathfrak g,\mathcal S(X,\mathcal E)\otimes\chi))$ is separated and is non-degenerately paired with $\mathcal S^*(X,\mathcal E)^{\mathfrak g,-\chi}$. I.e.

$$\mathfrak{g}\mathcal{S}(X,\mathcal{E})\otimes\chi\subset\mathcal{S}(X,\mathcal{E})\otimes\chi$$

is closed and has finite codimension.

Corollary

Let G be a real reductive group, H be a real spherical subgroup, and $\mathfrak h$ be the Lie algebra of H. Let χ be a tempered character of H. Then for any admissible representation π of G, $H_0(\mathfrak h,\pi\otimes\chi)$ is separated and is non-degenerately paired with $(\pi^*)^{\mathfrak h,-\chi}$.

Geometric formulation

Theorem (A., Gourevitch, Minchenko 2015)

Let

$$\begin{split} S &= \{g \in G, x \in \mathfrak{g}^* | x \in \mathfrak{h}_1^\perp, ad(g)(x) \in \mathfrak{h}_2^\perp, x \text{ is nilpotent}\} = \\ &= G \times \mathcal{N} \cap \bigcup_{g \in G} \mathit{CN}_{H_1gH_2,g}^G \end{split}$$

Then

$$\dim S = \dim G$$
.

The group case

Assume $H_1 = H_2 = H$, diagonally embedded in $G = H \times H$. Translating the problem to H = G/H we obtain:

$$S' = \{g \in H, x \in \mathfrak{h}^* | Ad(g)(x) = x, x \in \mathcal{N}_H\} = H \times \mathcal{N}_H \cap \bigcup_{g \in H} CN_{ad(G)g,g}^H$$

passing to the Lie algebra

$$S' = \{g \in \mathfrak{h}, x \in \mathfrak{h} | [x, g] = 0, x \text{ is nilpotent}\}\$$

So

$$\mathcal{S}' \subset \bigcup_{x \in \mathcal{N}_H} \mathit{CN}^{\mathfrak{h}}_{\mathit{ad}(G)x,x}$$

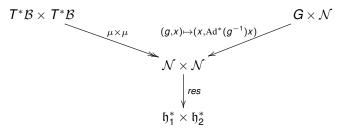
Springer resolution and Steinberg theorem

Let \mathcal{B} be the flag variety. $T^*\mathcal{B} \cong \{B \in \mathcal{B}, x \in \mathfrak{b}^{\perp}\}$. We have a natural map $\mu: T^*\mathcal{B} \to \mathcal{N}$. It is called the Springer resolution.

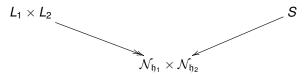
Theorem (Steinberg 1976)

 $\forall \eta \in \mathcal{N}$ we have dim $G_{\eta} - 2 \dim \mu^{-1}(\eta) = \operatorname{rk} G$.

Idea of the proof



Passing to the fiber of $0 \in \mathfrak{h}_1^* \times \mathfrak{h}_2^*$ we get:



Where

$$\mathcal{N}_{\mathfrak{h}_i} := \mathcal{N} \cap \mathfrak{h}_i^{\perp}$$
 and $L_i := \{(B, X) \in T^*\mathcal{B} \mid X \in \mathfrak{h}_i^{\perp}\} = \bigcup_{x \in \mathcal{B}} CN_{H_i x, x}^{\mathcal{B}}$. The estimate on dim S follows from the Steinberg theorem and:

 $\dim L_i = \dim \mathcal{B}.$