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Gelfand Pairs

Definition
A pair of compact topological groups (G ⊃ H) is called a
Gelfand pair if the following equivalent conditions hold:

L2(G/H) decomposes to direct sum of distinct irreducible
representations of G.
for any irreducible representation ρ of G dimρH ≤ 1.
for any irreducible representation ρ of G
dimHomH(ρ,C) ≤ 1.
the algebra of bi-H-invariant functions on G, C(H\G/H), is
commutative w.r.t. convolution.
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Strong Gelfand Pairs

Definition
A pair of compact topological groups (G ⊃ H) is called a
strong Gelfand pair if one of the following equivalent
conditions is satisfied:

the pair (G × H ⊃ ∆H) is a Gelfand pair
for any irreducible representations ρ of G and τ of H

dimHomH(ρ|H , τ) ≤ 1.

the algebra of Ad(H)-invariant functions on G, C(G//H), is
commutative w.r.t. convolution.
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Some classical aplications

Harmonic analysis:

(SO(3,R),SO(2,R)) is a Gelfand pair -
spherical harmonics.
Gelfand-Zeitlin basis:
(Sn,Sn−1) is a strong Gelfand pair -
basis for irreducible representations of Sn
The same for O(n,R) and U(n).
Classification of representations:
(GL(n,R),O(n,R)) is a Gelfand pair -
the irreducible representations of GL(n,R) which have an
O(n,R)-invariant vector are the same as characters of the
algebra C(O(n,R)\GL(n,R)/O(n,R)).
The same for the pair (GL(n,C),U(n)).
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Gelfand trick

Proposition (Gelfand)
Let σ be an involutive anti-automorphism of G (i.e.
σ(g1g2) = σ(g2)σ(g1) and σ2 = Id) and assume σ(H) = H.
Suppose that σ(f ) = f for all bi H-invariant functions
f ∈ C(H\G/H). Then (G,H) is a Gelfand pair.

Proposition (Gelfand)
Let σ be an involutive anti-automorphism of G (i.e.
σ(g1g2) = σ(g2)σ(g1)) and σ2 = Id and assume σ(H) = H.
Suppose that σ(f ) = f for all Ad(H)-invariant functions
f ∈ C(G//H). Then (G,H) is a strong Gelfand pair.
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Sum up

Rep. theory:
∀ρdim ρH ≤ 1

ks +3
Algebra:
C(H\G/H) is
commutative

ks

"Analysis":
∃ anti-involution σ
s.t. f = σ(f )
∀f ∈ C(H\G/H)

KS

��
Geometry:
∃ anti-involution σ
that preserves
H double cosets
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Classical examples

Pair Anti-involution
(G ×G,∆G) (g,h) 7→ (h−1,g−1)

(O(n + k),O(n)×O(k))
(U(n + k),U(n)× U(k)) g 7→ g−1

(GL(n,R),O(n)) g 7→ gt

(G,Gθ), where
G - Lie group, θ- involution, g 7→ θ(g−1)

Gθ is compact
(G,K ), where

G - is a reductive group, Cartan anti-involution
K - maximal compact subgroup
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Non compact setting

Setting
In the non compact case we will consider complex smooth
admissible representations of algebraic reductive groups over
local fields.

Definition
A local field is a locally compact non-discrete topological field.
There are 3 types of local fields:

Archimedean: R and C
p-adic: Qp and their finite extensions
positive characteristic: Fq((t))

Definition
A linear algebraic group is a subgroup of GLn defined by
polynomial equations.
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Reductive groups

Examples
GLn, semisimple groups, On, Un, Sp2n,...

Fact
Any algebraic representation of a reductive group decomposes
to a direct sum of irreducible representations.

Fact
Reductive groups are unimodular.
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Smooth representations

Definition
Over Archimedean F , by smooth representation V we mean a
complex Fréchet representation V such that for any v ∈ V the
map G → V defined by v is smooth.

Definition
Over non-Archimedean F , by smooth representation V we
mean a complex linear representation V such that any v ∈ V
has open stabilizer.
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Distributions

Notation
Let M be a smooth manifold. We denote by C∞c (M) the space
of smooth compactly supported functions on M. We will
consider the space (C∞c (M))∗ of distributions on M. Sometimes
we will also consider the space S∗(M) of Schwartz distributions
on M.

Definition
An `-space is a Hausdorff locally compact totally disconnected
topological space. For an `-space X we denote by S(X ) the
space of compactly supported locally constant functions on X .
We let S∗(X ) := S(X )∗ be the space of distributions on X .
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Gelfand Pairs

Definition
A pair of reductive groups (G ⊃ H) is called a Gelfand pair if
for any irreducible admissible representation ρ of G

dimHomH(ρ,C) · dimHomH(ρ̃,C) ≤ 1

usually, this implies that

dimHomH(ρ,C) ≤ 1.
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Gelfand-Kazhdan distributional criterion

Theorem (Gelfand-Kazhdan,...)
Let σ be an involutive anti-automorphism of G and assume
σ(H) = H.
Suppose that σ(ξ) = ξ for all bi H-invariant distributions ξ on G.
Then (G,H) is a Gelfand pair.
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Strong Gelfand Pairs

Definition
A pair of reductive groups (G,H) is called a strong Gelfand
pair if for any irreducible admissible representations ρ of G and
τ of H

dimHomH(ρ, τ) · dimHomH(ρ̃, τ̃) ≤ 1

usually, this implies that dimHomH(ρ, τ) ≤ 1.

Proposition

The pair (G,H) is a strong Gelfand pair if and only if the pair
(G × H,∆H) is a Gelfand pair.

Corollary

Let σ be an involutive anti-automorphism of G s.t. σ(H) = H.
Suppose σ(ξ) = ξ for all distributions ξ on G invariant with
respect to conjugation by H. Then (G,H) is a strong Gelfand
pair.
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Rep. theory:
∀ρdim ρH ≤ 1

ks +3
Algebra:
C(H\G/H)
is commutative
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"Analysis":
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Compact case
Geometry:
∃ σ that preserves
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Analysis:
∃ σ s.t. ξ = σ(ξ)
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Results on Gelfand pairs

Pair p-adic charF > 0 real
(GLn(E),GLn(F )) Flicker Flicker

(GLn+k ,GLn ×GLk ) Jacquet- Aizenbud- Aizenbud-
Rallis Avni-G. G.

(On+k ,On ×Ok ) over C
(GLn,On) over C

(GL2n,Sp2n) Heumos- Heumos- Aizenbud-
Rallis Rallis Sayag

(GL2n,

{(
g u
0 g

)}
, ψ) Jacquet- Aizenbud-

Rallis G.-Jacquet
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Results on strong Gelfand pairs

Pair p-adic charF > 0 real
(GLn+1,GLn) Aizenbud- Aizenbud- Aizenbud-G.

G.- Avni-G. Sun-Zhu
(O(V ⊕ F ),O(V )) Rallis- ?
(U(V ⊕ F ),U(V )) Schiffmann ? Sun-Zhu

real: R and C
p-adic: Qp and its finite extensions.
charF > 0: Fq((t)).

Remark
The results from the last two slides are used to prove splitting of
periods of automorphic forms.
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