Invariant Distributions and Gelfand Pairs

A. Aizenbud and D. Gourevitch

http://www.wisdom.weizmann.ac.il/~aizenr/

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Gelfand Pairs and distributional criterion

Definition

A pair of groups $(G \supset H)$ is called a **Gelfand pair** if for any irreducible "admissible" representation ρ of *G*

 $dimHom_H(\rho, \mathbb{C}) \leq 1.$

く 同 と く ヨ と く ヨ と

1

Gelfand Pairs and distributional criterion

Definition

A pair of groups $(G \supset H)$ is called a **Gelfand pair** if for any irreducible "admissible" representation ρ of *G*

 $dimHom_H(\rho, \mathbb{C}) \leq 1.$

Theorem (Gelfand-Kazhdan,...)

Let σ be an involutive anti-automorphism of G (i.e. $\sigma(g_1g_2) = \sigma(g_2)\sigma(g_1)$) and $\sigma^2 = Id$ and assume $\sigma(H) = H$. Suppose that $\sigma(\xi) = \xi$ for all bi H-invariant distributions ξ on G. Then (G, H) is a Gelfand pair.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

Strong Gelfand Pairs

Definition

A pair of groups (*G*, *H*) is called a **strong Gelfand pair** if for any irreducible "admissible" representations ρ of *G* and τ of *H*

 $dimHom_H(\rho|_H, \tau) \leq 1.$

Strong Gelfand Pairs

Definition

A pair of groups (*G*, *H*) is called a **strong Gelfand pair** if for any irreducible "admissible" representations ρ of *G* and τ of *H*

 $dimHom_H(\rho|_H, \tau) \leq 1.$

Proposition

The pair (G, H) is a strong Gelfand pair if and only if the pair $(G \times H, \Delta H)$ is a Gelfand pair.

<ロト <四ト <注入 <注下 <注下 <

Strong Gelfand Pairs

Definition

A pair of groups (*G*, *H*) is called a **strong Gelfand pair** if for any irreducible "admissible" representations ρ of *G* and τ of *H*

 $dimHom_H(\rho|_H, \tau) \leq 1.$

Proposition

The pair (G, H) is a strong Gelfand pair if and only if the pair $(G \times H, \Delta H)$ is a Gelfand pair.

Corollary

Let σ be an involutive anti-automorphism of G s.t. $\sigma(H) = H$. Suppose $\sigma(\xi) = \xi$ for all distributions ξ on G invariant with respect to conjugation by H. Then (G, H) is a strong Gelfand pair.

Results

Local fields of characteristic zero:

- \bullet Archimedean: $\mathbb R$ and $\mathbb C$
- Non-archimedean(p-adic): \mathbb{Q}_p and its finite extensions.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Results

Local fields of characteristic zero:

- Archimedean: $\mathbb R$ and $\mathbb C$
- Non-archimedean(p-adic): \mathbb{Q}_p and its finite extensions.

Pair	Field	Ву
(GL_{n+1}, GL_n)		AGSayag, van-Dijk
$(O(V \oplus F), O(V))$		van-Dijk-Bossmann-Aparicio,
	any	AGSayag
$(GL_n(E), GL_n(F))$		Flicker, AG.
$(GL_{n+k}, GL_n \times GL_k)$		Jacquet-Rallis, AG.
$(O_{n+k}, O_n \times O_k)$	C	AG.
(GL_n, O_n)		
(GL_{2n}, Sp_{2n})	$F \neq \mathbb{R}$	Heumos - Rallis, Sayag
(GL_{n+1}, GL_n) strong	\mathbb{R},\mathbb{C}	Aizenbud-Gourevitch
		Aizenbud-Gourevitch-
$(O(V \oplus F), O(V))$ strong	p-adic	-Rallis-Schiffmann
$(U(V \oplus F), U(V))$ strong		

Notation

Let *M* be a smooth manifold. We denote by $C_c^{\infty}(M)$ the space of smooth compactly supported functions on *M*. We denote by $\mathcal{D}(M) := (C_c^{\infty}(M))^*$ the space of distributions on *M*. Sometimes we will also consider the space $S^*(M)$ of Schwartz distributions on *M*.

Notation

Let M be a smooth manifold. We denote by $C_c^{\infty}(M)$ the space of smooth compactly supported functions on M. We denote by $\mathcal{D}(M) := (C_c^{\infty}(M))^*$ the space of distributions on M. Sometimes we will also consider the space $\mathcal{S}^*(M)$ of Schwartz distributions on M.

Definition

An ℓ -space is a Hausdorff locally compact totally disconnected topological space. For an ℓ -space X we denote by $\mathcal{S}(X)$ the space of compactly supported locally constant functions on X. We let $\mathcal{S}^*(X) := \mathcal{D}(X) := \mathcal{S}(X)^*$ be the space of distributions on X.

・ロット (雪) () () () ()

For a closed subset $Z \subset X$ we denote by $\mathcal{D}_X(Z)$ the space of distributions on X supported in Z.

Proposition

Let $Z \subset X$ be a closed subset and U := X - Z. Then we have the exact sequence

$$0 \rightarrow \mathcal{D}_X(Z) \rightarrow \mathcal{D}(X) \rightarrow \mathcal{D}(U).$$

For a closed subset $Z \subset X$ we denote by $\mathcal{D}_X(Z)$ the space of distributions on X supported in Z.

Proposition

Let $Z \subset X$ be a closed subset and U := X - Z. Then we have the exact sequence

$$0 \to \mathcal{D}_X(Z) \to \mathcal{D}(X) \to \mathcal{D}(U).$$

For ℓ -spaces, $\mathcal{D}_X(Z) \cong \mathcal{D}(Z)$.

(雪) (ヨ) (ヨ)

For a closed subset $Z \subset X$ we denote by $\mathcal{D}_X(Z)$ the space of distributions on X supported in Z.

Proposition

Let $Z \subset X$ be a closed subset and U := X - Z. Then we have the exact sequence

$$0 \rightarrow \mathcal{D}_X(Z) \rightarrow \mathcal{D}(X) \rightarrow \mathcal{D}(U).$$

For ℓ -spaces, $\mathcal{D}_X(Z) \cong \mathcal{D}(Z)$. For smooth manifolds, $\mathcal{D}_X(Z)$ has an infinite filtration whose factors are $\mathcal{D}(Z, Sym^k(CN_Z^X))$, where $Sym^k(CN_Z^X)$ denote symmetric powers of the conormal bundle to Z.

・ 回 ト ・ ヨ ト ・ ヨ ト

Setting

Let G be an algebraic group over a local field F. Let H be a closed algebraic subgroup. Let $\sigma : G \to G$ be an antiinvolution. We want to show that every $H \times H$ invariant distribution on G is σ -invariant.

Setting

Let G be an algebraic group over a local field F. Let H be a closed algebraic subgroup. Let $\sigma : G \rightarrow G$ be an antiinvolution. We want to show that every $H \times H$ invariant distribution on G is σ -invariant.

A necessary condition for that is :

" σ preserves every closed double coset (which carries $H \times H$ invariant distribution)".

Setting

Let G be an algebraic group over a local field F. Let H be a closed algebraic subgroup. Let $\sigma : G \rightarrow G$ be an antiinvolution. We want to show that every $H \times H$ invariant distribution on G is σ -invariant.

A necessary condition for that is :

" σ preserves every closed double coset (which carries $H \times H$ invariant distribution)".

Over p-adic fields, it is sufficient (but not necessary) to prove that σ preserves every double coset.

Notation

Let σ act on $H \times H$ by $\sigma(h_1, h_2) := (\sigma(h_2^{-1}), \sigma(h_1^{-1}))$. Denote

$$\widetilde{H \times H} := (H \times H) \rtimes \{1, \sigma\}.$$

It has a natural action on G. Define a character χ of $H \times H$ by

$$\chi(H \times H) = \{1\}, \ \chi(\widetilde{H \times H} - (H \times H)) = \{-1\}.$$

Now our problem becomes equivalent to $\mathcal{D}(G)^{\widetilde{H \times H},\chi} = 0$.

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{D}(X)^{G,\chi} = 0$.

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{D}(X)^{G,\chi} = 0$.

Proposition

Let $U \subset X$ be an open *G*-invariant subset and Z := X - U. Suppose that $\mathcal{D}(U)^{G,\chi} = 0$ and $\mathcal{D}_X(Z)^{G,\chi} = 0$. Then $\mathcal{D}(X)^{G,\chi} = 0$.

→ E > < E >

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{D}(X)^{G,\chi} = 0$.

Proposition

Let $U \subset X$ be an open *G*-invariant subset and Z := X - U. Suppose that $\mathcal{D}(U)^{G,\chi} = 0$ and $\mathcal{D}_X(Z)^{G,\chi} = 0$. Then $\mathcal{D}(X)^{G,\chi} = 0$.

Proof.

$$0 \to \mathcal{D}_X(Z)^{G,\chi} \to \mathcal{D}(X)^{G,\chi} \to \mathcal{D}(U)^{G,\chi}.$$

イロト イポト イヨト イヨト

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{D}(X)^{G,\chi} = 0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and Z := X - U. Suppose that $\mathcal{D}(U)^{G,\chi} = 0$ and $\mathcal{D}_X(Z)^{G,\chi} = 0$. Then $\mathcal{D}(X)^{G,\chi} = 0$.

Proof.

$$0 \to \mathcal{D}_X(Z)^{G,\chi} \to \mathcal{D}(X)^{G,\chi} \to \mathcal{D}(U)^{G,\chi}.$$

For ℓ -spaces, $\mathcal{D}_X(Z)^{G,\chi} \cong \mathcal{D}(Z)^{G,\chi}$. For smooth manifolds, to show $\mathcal{D}_X(Z)^{G,\chi}$ it is enough to show that $\mathcal{D}(Z, Sym^k(CN_Z^{\chi}))^{G,\chi} = 0$ for any k.

Frobenius reciprocity

Theorem (Bernstein, Baruch, ...)

Let $\psi : X \to Z$ be a map. Let a G act on X and Z such that $\psi(gx) = g\psi(x)$. Suppose that the action of G on Z is transitive. Suppose that both G and $Stab_G(z)$ are unimodular. Then

$$\mathcal{D}(X)^{G,\chi} \cong \mathcal{D}(X_z)^{Stab_G(z),\chi}.$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Example

 GL_n , semisimple groups, O_n , U_n , Sp_{2n} ,...

Fact

Any algebraic representation of a reductive group decomposes to a direct sum of irreducible representations.

Fact

Reductive groups are unimodular.

・ 回 ト ・ ヨ ト ・ ヨ ト

Luna's slice theorem

We say that $x \in X$ is *G*-semisimple if its orbit is closed.

Theorem (Luna's slice theorem)

Let a reductive group G act on a smooth affine algebraic variety X. Let $x \in X$ be G-semisimple. Then there exist (i) an open G-invariant neighborhood U of Gx in X with a G-equivariant retract $p: U \to Gx$ and (ii) a G_x-equivariant embedding $\psi: p^{-1}(x) \hookrightarrow N_{Gx,x}^X$ with open image such that $\psi(x) = 0$.

Generalized Harish-Chandra descent

Theorem

Let a reductive group G act on a smooth affine algebraic variety X. Let χ be a character of G. Suppose that for any G-semisimple $x \in X$ we have

$$\mathcal{D}(N_{Gx,x}^{\chi})^{G_{x},\chi}=0.$$

Then $\mathcal{D}(X)^{G,\chi} = 0$.

A stronger version

Let V be an algebraic finite dimensional representation over F of a reductive group G.

- Q(V) := (V/V^G). Since G is reductive, there is a canonical splitting V = Q(V) ⊕ V^G.
- $\Gamma(V) := \{ v \in Q(V) | \overline{Gv} \ni 0 \}.$
- $R(V) := Q(V) \Gamma(V)$.

A stronger version

Let V be an algebraic finite dimensional representation over F of a reductive group G.

Q(V) := (V/V^G). Since G is reductive, there is a canonical splitting V = Q(V) ⊕ V^G.

•
$$\Gamma(V) := \{ v \in Q(V) | \overline{Gv} \ni 0 \}.$$

• $R(V) := Q(V) - \Gamma(V).$

Theorem

Let a reductive group G act on a smooth affine variety X. Let χ be a character of G. Suppose that for any G-semisimple $x \in X$ such that

$$\mathcal{D}(\boldsymbol{R}(\boldsymbol{N}_{Gx,x}^{\chi}))^{G_{\chi,\chi}}=0$$

we have

$$\mathcal{D}(Q(N_{Gx,x}^{\chi}))^{G_{x},\chi}=0.$$

Then $\mathcal{D}(X)^{G,\chi} = 0$.

Let *V* be a finite dimensional vector space over *F* and *B* be a non-degenerate quadratic form on *V*. Let $\hat{\xi}$ denote the Fourier transform of ξ defined using *B*.

Proposition

Let G act on V linearly and preserving B. Let $\xi \in S^*(V)^{G,\chi}$. Then $\hat{\xi} \in S^*(V)^{G,\chi}$.

Fourier transform and homogeneity

 We call a distribution ξ ∈ S*(V) abs-homogeneous of degree d if for any t ∈ F[×],

$$h_t(\xi) = u(t)|t|^d\xi,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

where h_t denotes the homothety action on distributions and *u* is some unitary character of F^{\times} .

Fourier transform and homogeneity

 We call a distribution ξ ∈ S*(V) abs-homogeneous of degree d if for any t ∈ F[×],

 $h_t(\xi) = u(t)|t|^d\xi,$

where h_t denotes the homothety action on distributions and *u* is some unitary character of F^{\times} .

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is **non-archimedean**. Let $\xi \in S^*_V(Z(B))$ be s. t. $\widehat{\xi} \in S^*_V(Z(B))$. Then ξ is abs-homogeneous of degree $\frac{1}{2}$ dimV.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Fourier transform and homogeneity

 We call a distribution ξ ∈ S*(V) abs-homogeneous of degree d if for any t ∈ F[×],

 $h_t(\xi) = u(t)|t|^d\xi,$

where h_t denotes the homothety action on distributions and *u* is some unitary character of F^{\times} .

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is **non-archimedean**. Let $\xi \in S^*_V(Z(B))$ be s. t. $\widehat{\xi} \in S^*_V(Z(B))$. Then ξ is abs-homogeneous of degree $\frac{1}{2}$ dimV.

Theorem (archimedean homogeneity)

Let F be any local field. Let $L \subset S_V^*(Z(B))$ be a non-zero linear subspace s. t. $\forall \xi \in L$ we have $\hat{\xi} \in L$ and $B\xi \in L$. Then there exists a non-zero distribution $\xi \in L$ which is abs-homogeneous of degree $\frac{1}{2}$ dimV or of degree $\frac{1}{2}$ dimV + 1.

Localization principle

Theorem (Aizenbud-Gourevitch-Sayag)

Let a reductive group G act on a smooth affine variety X. Let Y be an algebraic variety and $\phi : X \to Y$ be an algebraic G-invariant map. Let χ be a character of G. Suppose that for any $y \in Y$ we have $\mathcal{D}_X(X_y)^{G,\chi} = 0$. Then $\mathcal{D}(X)^{G,\chi} = 0$.

< 回 > < 回 > < 回 > … 回

Localization principle

Theorem (Aizenbud-Gourevitch-Sayag)

Let a reductive group G act on a smooth affine variety X. Let Y be an algebraic variety and $\phi : X \to Y$ be an algebraic G-invariant map. Let χ be a character of G. Suppose that for any $y \in Y$ we have $\mathcal{D}_X(X_y)^{G,\chi} = 0$. Then $\mathcal{D}(X)^{G,\chi} = 0$.

For ℓ -spaces, a stronger version of this principle was proven by J. Bernstein 30 years ago.

イロン 不良 とくほう 不良 とうほ

- A symmetric pair is a triple (G, H, θ) where H ⊂ G are reductive groups, and θ is an involution of G such that H = G^θ.
- We call (G, H, θ) connected if G/H is Zariski connected.
- Define an antiinvolution $\sigma : G \to G$ by $\sigma(g) := \theta(g^{-1})$.

Symmetric Gelfand pairs

 A symmetric pair (G, H, θ) is called good if σ preserves all closed H × H double cosets.

(雪) (ヨ) (ヨ)

æ

Symmetric Gelfand pairs

 A symmetric pair (G, H, θ) is called good if σ preserves all closed H × H double cosets.

Proposition

Any connected symmetric pair over \mathbb{C} is good.

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ
A symmetric pair (G, H, θ) is called good if σ preserves all closed H × H double cosets.

Proposition

Any connected symmetric pair over $\mathbb C$ is good.

Conjecture

Any good symmetric pair is a Gelfand pair.

프 > - 프 > ·

A symmetric pair (G, H, θ) is called good if σ preserves all closed H × H double cosets.

Proposition

Any connected symmetric pair over $\mathbb C$ is good.

Conjecture

Any good symmetric pair is a Gelfand pair.

To check that a symmetric pair is Gelfand

Prove that it is good

프 🖌 🛪 프 🕨

A symmetric pair (G, H, θ) is called good if σ preserves all closed H × H double cosets.

Proposition

Any connected symmetric pair over $\mathbb C$ is good.

Conjecture

Any good symmetric pair is a Gelfand pair.

To check that a symmetric pair is Gelfand

- Prove that it is good
- Prove that there are no equivariant distributions supported on the singular set in the Lie algebra g.

→ E > < E >

A symmetric pair (G, H, θ) is called good if σ preserves all closed H × H double cosets.

Proposition

Any connected symmetric pair over $\mathbb C$ is good.

Conjecture

Any good symmetric pair is a Gelfand pair.

To check that a symmetric pair is Gelfand

- Prove that it is good
- Prove that there are no equivariant distributions supported on the singular set in the Lie algebra g.
- Compute all the "descendants" of the pair and prove (2) for them.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Results for GL and U

Corollary

The pairs $(GL_n(E), GL_n(F))$ and $(GL_{n+k}, GL_n \times GL_k)$ are Gelfand pairs.

ヘロン 人間 とくほ とくほ とう

Corollary

For $F = \mathbb{C}$, the pairs $(O(V \oplus W), O(V) \times O(W))$ and (GL(V), O(V)) are Gelfand pairs.

《曰》《御》《臣》《臣》 [臣]

Let F be a **p-adic** field. Then the following pairs are **strong** Gelfand pairs

(E) < E)</p>

Formulation

Let *F* be a p-adic field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every $GL_n(F)$ -invariant distribution on $GL_{n+1}(F)$ is transposition invariant.

ヘロン 人間 とくほ とくほ とう

Formulation

Let F be a p-adic field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every $GL_n(F)$ -invariant distribution on $GL_{n+1}(F)$ is transposition invariant.

- $G := G_n := GL_n(F)$
- $\widetilde{G} := G \rtimes \{1, \sigma\}$
- Define a character χ of \widetilde{G} by $\chi(G) = \{1\}$, $\chi(\widetilde{G} - G) = \{-1\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Formulation

Let F be a p-adic field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every $GL_n(F)$ -invariant distribution on $GL_{n+1}(F)$ is transposition invariant.

•
$$G_{\sim} := G_n := GL_n(F)$$

•
$$G := G \rtimes \{1, \sigma\}$$

• Define a character
$$\chi$$
 of \tilde{G} by $\chi(G) = \{1\}$, $\chi(\tilde{G} - G) = \{-1\}.$

Equivalent formulation:

Theorem

$$\mathcal{S}^*(GL_{n+1}(F))^{\widetilde{G},\chi}=0.$$

ヘロア 人間 アメヨア 人口 ア

Theorem

$$\mathcal{S}^*(gl_{n+1}(F))^{\widetilde{G},\chi}=0.$$

Theorem

$$\mathcal{S}^*(gl_{n+1}(F))^{\widetilde{G},\chi}=0.$$

Theorem

$$\mathcal{S}^*(gl_{n+1}(F))^{\widetilde{G},\chi}=0.$$

• *V* := *F*^{*n*}

•
$$X := sl(V) \times V \times V^*$$

•
$$G$$
 acts on X by
 $g(A, v, \phi) = (gAg^{-1}, gv, (g^*)^{-1}\phi)$
 $\sigma(A, v, \phi) = (A^t, \phi^t, v^t).$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem

$$\mathcal{S}^*(gl_{n+1}(F))^{\widetilde{G},\chi}=0.$$

•
$$V := F^n$$

•
$$X := sl(V) \times V \times V^*$$

• G acts on X by

$$g(A, v, \phi) = (gAg^{-1}, gv, (g^*)^{-1}\phi)$$

 $\sigma(A, v, \phi) = (A^t, \phi^t, v^t).$

Equivalent formulation:

Theorem

$$\mathcal{S}^*(X)^{\widetilde{G},\chi}=0.$$

Theorem

$$\mathcal{S}^*(gl_{n+1}(F))^{\widetilde{G},\chi}=0.$$

•
$$V := F^n$$

•
$$X := sl(V) \times V \times V^*$$

• G acts on X by

$$g(A, v, \phi) = (gAg^{-1}, gv, (g^*)^{-1}\phi)$$

 $\sigma(A, v, \phi) = (A^t, \phi^t, v^t).$

Equivalent formulation:

Theorem

$$\mathcal{S}^*(X)^{\widetilde{G},\chi} = 0.$$

Reason:

$$g\begin{pmatrix} A_{n\times n} & v_{n\times 1} \\ \phi_{1\times n} & \lambda \end{pmatrix}g^{-1} = \begin{pmatrix} gAg^{-1} & gv \\ (g^*)^{-1}\phi & \lambda \end{pmatrix} \text{ and } \begin{pmatrix} A & v \\ \phi & \lambda \end{pmatrix}^t = \begin{pmatrix} A^t & \phi^t \\ v^t & \lambda \end{pmatrix}$$

Let *N* ⊂ *sl_n* be the cone of nilpotent elements Γ := {*v* ∈ *V*, φ ∈ *V** | φ(*v*) = 0}

(雪) (ヨ) (ヨ)

By Harish-Chandra descent we can assume that any $\xi \in S^*(X)^{\widetilde{G},\chi}$ is supported in $\mathcal{N} \times \Gamma$.

ヨトメヨト

By Harish-Chandra descent we can assume that any $\xi \in S^*(X)^{\widetilde{G},\chi}$ is supported in $\mathcal{N} \times \Gamma$.

•
$$\mathcal{N}_i := \{ a \in \mathcal{N} | \dim Ga \le i \} \subset \mathcal{N}$$

ヨトメヨト

By Harish-Chandra descent we can assume that any $\xi \in S^*(X)^{\widetilde{G},\chi}$ is supported in $\mathcal{N} \times \Gamma$.

•
$$\mathcal{N}_i := \{ a \in \mathcal{N} | \dim Ga \le i \} \subset \mathcal{N}$$

We prove by descending induction on *i* that $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_i \times \Gamma)^{\widetilde{G},\chi}.$

We assume $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_i \times \Gamma)^{\widetilde{G},\chi}$. We want to prove that $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_{i-1} \times \Gamma)^{\widetilde{G},\chi}$.

個 とくき とくき とう

We assume $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_i \times \Gamma)^{\widetilde{G},\chi}$. We want to prove that $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_{i-1} \times \Gamma)^{\widetilde{G},\chi}$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}, \phi) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \phi - \frac{\lambda}{n} \phi(\boldsymbol{v}) \boldsymbol{I} \boldsymbol{d}, \boldsymbol{v}, \phi)$$

個 とく ヨ とく ヨ とう

We assume $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_i \times \Gamma)^{\widetilde{G},\chi}$. We want to prove that $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_{i-1} \times \Gamma)^{\widetilde{G},\chi}$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}, \phi) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \phi - \frac{\lambda}{n} \phi(\boldsymbol{v}) \boldsymbol{I} \boldsymbol{d}, \boldsymbol{v}, \phi)$$

Let $\xi \in \mathcal{S}^*(X)^{\widetilde{G},\chi}$. We know that for any λ , $\xi \in \mathcal{S}^*(\nu_{\lambda}(\mathcal{N}_i \times \Gamma))^{\widetilde{G},\chi}$.

通 と く ヨ と く ヨ と

We assume $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_i \times \Gamma)^{\widetilde{G},\chi}$. We want to prove that $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_{i-1} \times \Gamma)^{\widetilde{G},\chi}$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}, \phi) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \phi - \frac{\lambda}{n} \phi(\boldsymbol{v}) \boldsymbol{l} \boldsymbol{d}, \boldsymbol{v}, \phi)$$

Let $\xi \in S^*(X)^{\widetilde{G},\chi}$. We know that for any λ , $\xi \in S^*(\nu_{\lambda}(\mathcal{N}_i \times \Gamma))^{\widetilde{G},\chi}$. • $\widetilde{\mathcal{N}}_i := \bigcap_{\lambda \in F} \nu_{\lambda}(\mathcal{N}_i \times \Gamma)$

We assume $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_i \times \Gamma)^{\widetilde{G},\chi}$. We want to prove that $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_{i-1} \times \Gamma)^{\widetilde{G},\chi}$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}, \phi) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \phi - \frac{\lambda}{n} \phi(\boldsymbol{v}) \boldsymbol{I} \boldsymbol{d}, \boldsymbol{v}, \phi)$$

Let $\xi \in S^*(X)^{\widetilde{G},\chi}$. We know that for any λ , $\xi \in S^*(\nu_{\lambda}(\mathcal{N}_i \times \Gamma))^{\widetilde{G},\chi}$. • $\widetilde{\mathcal{N}}_i := \bigcap_{\lambda \in F} \nu_{\lambda}(\mathcal{N}_i \times \Gamma)$

We know that $\xi \in \mathcal{S}^*(\widetilde{\mathcal{N}}_i)^{\widetilde{G},\chi}$.

We assume $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_i \times \Gamma)^{\widetilde{G},\chi}$. We want to prove that $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_{i-1} \times \Gamma)^{\widetilde{G},\chi}$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}, \phi) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \phi - \frac{\lambda}{n} \phi(\boldsymbol{v}) \boldsymbol{I} \boldsymbol{d}, \boldsymbol{v}, \phi)$$

Let $\xi \in S^*(X)^{\widetilde{G},\chi}$. We know that for any λ , $\xi \in S^*(\nu_{\lambda}(\mathcal{N}_i \times \Gamma))^{\widetilde{G},\chi}$. • $\widetilde{\mathcal{N}}_i := \bigcap_{\lambda \in F} \nu_{\lambda}(\mathcal{N}_i \times \Gamma)$

We know that $\xi \in \mathcal{S}^*(\widetilde{\mathcal{N}}_i)^{\widetilde{G},\chi}$.

• Let $O \subset N_i - N_{i-1}$ be an open orbit.

通 とう ほうとう ほうとう

We assume $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_i \times \Gamma)^{\widetilde{G},\chi}$. We want to prove that $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_{i-1} \times \Gamma)^{\widetilde{G},\chi}$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}, \phi) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \phi - \frac{\lambda}{n} \phi(\boldsymbol{v}) \boldsymbol{l} \boldsymbol{d}, \boldsymbol{v}, \phi)$$

Let $\xi \in S^*(X)^{\widetilde{G},\chi}$. We know that for any λ , $\xi \in S^*(\nu_{\lambda}(\mathcal{N}_i \times \Gamma))^{\widetilde{G},\chi}$. • $\widetilde{\mathcal{N}}_i := \bigcap_{\lambda \in F} \nu_{\lambda}(\mathcal{N}_i \times \Gamma)$

We know that $\xi \in \mathcal{S}^*(\widetilde{\mathcal{N}}_i)^{\widetilde{G},\chi}$.

- Let $O \subset \mathcal{N}_i \mathcal{N}_{i-1}$ be an open orbit.
- $\widetilde{O} := (O \times V \times V^*) \cap \widetilde{\mathcal{N}}_i$

We assume $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_i \times \Gamma)^{\widetilde{G},\chi}$. We want to prove that $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_{i-1} \times \Gamma)^{\widetilde{G},\chi}$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}, \phi) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \phi - \frac{\lambda}{n} \phi(\boldsymbol{v}) \boldsymbol{I} \boldsymbol{d}, \boldsymbol{v}, \phi)$$

Let
$$\xi \in S^*(X)^{\widetilde{G},\chi}$$
. We know that for any λ ,
 $\xi \in S^*(\nu_{\lambda}(\mathcal{N}_i \times \Gamma))^{\widetilde{G},\chi}$.
• $\widetilde{\mathcal{N}}_i := \bigcap_{\lambda \in F} \nu_{\lambda}(\mathcal{N}_i \times \Gamma)$

We know that $\xi \in \mathcal{S}^*(\widetilde{\mathcal{N}}_i)^{G,\chi}$.

個 とく ヨ とく ヨ とう

We assume $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_i \times \Gamma)^{\widetilde{G},\chi}$. We want to prove that $\mathcal{S}^*(X)^{\widetilde{G},\chi} = \mathcal{S}^*(\mathcal{N}_{i-1} \times \Gamma)^{\widetilde{G},\chi}$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}, \phi) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \phi - \frac{\lambda}{n} \phi(\boldsymbol{v}) \boldsymbol{l} \boldsymbol{d}, \boldsymbol{v}, \phi)$$

Let
$$\xi \in S^*(X)^{\widetilde{G},\chi}$$
. We know that for any λ ,
 $\xi \in S^*(\nu_{\lambda}(\mathcal{N}_i \times \Gamma))^{\widetilde{G},\chi}$.
• $\widetilde{\mathcal{N}}_i := \bigcap_{\lambda \in F} \nu_{\lambda}(\mathcal{N}_i \times \Gamma)$

We know that $\xi \in \mathcal{S}^*(\widetilde{\mathcal{N}}_i)^{G,\chi}$.

We have to show $\eta = 0$.

通 とく ヨ とく ヨ とう

æ

Key Lemma

It is enough to prove

Lemma (Key)

Any $\eta \in S^*(O \times V \times V^*)^{\widetilde{G},\chi}$ such that both η and $\widehat{\eta}$ are supported in \widetilde{O} is zero.

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs

・ロト ・ 理 ト ・ ヨ ト ・

Key Lemma

It is enough to prove

Lemma (Key)

Any $\eta \in S^*(O \times V \times V^*)^{\widetilde{G},\chi}$ such that both η and $\widehat{\eta}$ are supported in \widetilde{O} is zero.

Apply Frobenius reciprocity:

- $A \in O$
- $\widetilde{O}_{\mathcal{A}} := \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | (\boldsymbol{A}, \boldsymbol{v}, \phi) \in \widetilde{O} \}$
- Let $G_A := Stab_G(A)$ denote the centralizer of A.
- $\widetilde{G}_A := Stab_{\widetilde{G}}(A)$

御 とくほとくほとう

Reformulation

Equivalent formulation:

Lemma (Key')

Any $\zeta \in S^*(V \times V^*)^{\widetilde{G}_{A,\chi}}$ such that both ζ and $\widehat{\zeta}$ are supported in \widetilde{O}_A is zero.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Reformulation

Equivalent formulation:

Lemma (Key')

Any $\zeta \in S^*(V \times V^*)^{\widetilde{G}_A, \chi}$ such that both ζ and $\widehat{\zeta}$ are supported in \widetilde{O}_A is zero.

•
$$Q_{\mathcal{A}} := \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \boldsymbol{v} \otimes \phi \in [\mathcal{A}, gl_n] \}$$

Proposition $\widetilde{O}_A \subset Q_A$

・ロト ・ 理 ト ・ ヨ ト ・

Reformulation

Equivalent formulation:

Lemma (Key')

Any $\zeta \in S^*(V \times V^*)^{\widetilde{G}_{A,\chi}}$ such that both ζ and $\widehat{\zeta}$ are supported in \widetilde{O}_A is zero.

•
$$Q_A := \{(v, \phi) \in V \times V^* | v \otimes \phi \in [A, gl_n]\}$$

Proposition

 $\widetilde{\textit{O}}_{\textit{A}} \subset \textit{Q}_{\textit{A}}$

Now it is enough to prove

Lemma (Key")

Any $\zeta \in S^*(V \times V^*)^{\widetilde{G}_{A},\chi}$ such that both ζ and $\widehat{\zeta}$ are supported in Q_A is zero.

Reduction to Jordan block

Proposition

 $Q_{A\oplus B} \subset Q_A imes Q_B$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proposition

 $Q_{A\oplus B} \subset Q_A imes Q_B$

Proof.

$$\begin{pmatrix} \mathbf{v} \\ \mathbf{w} \end{pmatrix} \otimes \begin{pmatrix} \phi & \psi \end{pmatrix} = \begin{pmatrix} \mathbf{v} \otimes \phi & * \\ * & \mathbf{w} \otimes \psi \end{pmatrix}$$
$$\begin{bmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{pmatrix}, \begin{pmatrix} \mathbf{X} & \mathbf{Y} \\ \mathbf{Z} & \mathbf{W} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \mathbf{A}, \mathbf{X} \end{bmatrix} & * \\ * & \begin{bmatrix} \mathbf{B}, \mathbf{W} \end{bmatrix} \end{pmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proposition

 $Q_{A\oplus B} \subset Q_A imes Q_B$

Proof.

$$\begin{pmatrix} \mathbf{v} \\ \mathbf{w} \end{pmatrix} \otimes \begin{pmatrix} \phi & \psi \end{pmatrix} = \begin{pmatrix} \mathbf{v} \otimes \phi & * \\ * & \mathbf{w} \otimes \psi \end{pmatrix}$$
$$\begin{bmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & B \end{pmatrix}, \begin{pmatrix} \mathbf{X} & \mathbf{Y} \\ \mathbf{Z} & \mathbf{W} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \mathbf{A}, \mathbf{X} \end{bmatrix} & * \\ * & \begin{bmatrix} B, \mathbf{W} \end{bmatrix}$$

Hence we can assume that $A = J_n$ is one Jordan block.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●
$Q_{A} = \{ (v, \phi) \in V \times V^{*} | v \otimes \phi \in [A, gl_{n}] \}$

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

$$Q_{A} = \{ (v, \phi) \in V \times V^{*} | v \otimes \phi \in [A, gl_{n}] \} = \\ = \{ (v, \phi) \in V \times V^{*} | v \otimes \phi \bot \mathfrak{g}_{A} \}$$

A. Aizenbud and D. Gourevitch Invariant Distributions and Gelfand Pairs

ヘロン 人間 とくほとく ほとう

$$\begin{aligned} \mathcal{Q}_{\mathcal{A}} &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \boldsymbol{v} \otimes \phi \in [\mathcal{A}, \mathcal{g}I_n] \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \boldsymbol{v} \otimes \phi \bot \mathfrak{g}_{\mathcal{A}} \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \phi(\boldsymbol{C}\boldsymbol{v}) = \boldsymbol{0} \ \forall \boldsymbol{C} \in \mathfrak{g}_{\mathcal{A}} \} \end{aligned}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

$$\begin{aligned} \mathcal{Q}_{\mathcal{A}} &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \boldsymbol{v} \otimes \phi \in [\boldsymbol{A}, \boldsymbol{gl}_n] \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \boldsymbol{v} \otimes \phi \bot \mathfrak{g}_{\mathcal{A}} \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \phi(\boldsymbol{C}\boldsymbol{v}) = \boldsymbol{0} \ \forall \boldsymbol{C} \in \mathfrak{g}_{\mathcal{A}} \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \phi(\boldsymbol{A}^i \boldsymbol{v}) = \boldsymbol{0} \ \forall i \geq \boldsymbol{0} \} \end{aligned}$$

ヘロン 人間 とくほとく ほとう

$$\begin{aligned} \mathcal{Q}_{\mathcal{A}} &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \boldsymbol{v} \otimes \phi \in [\mathcal{A}, gl_n] \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \boldsymbol{v} \otimes \phi \bot \mathfrak{g}_{\mathcal{A}} \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \phi(\boldsymbol{C}\boldsymbol{v}) = \mathbf{0} \ \forall \boldsymbol{C} \in \mathfrak{g}_{\mathcal{A}} \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^* | \phi(\boldsymbol{A}^i \boldsymbol{v}) = \mathbf{0} \ \forall i \ge \mathbf{0} \} \subset \boldsymbol{Z}(\boldsymbol{B}) \end{aligned}$$

where $B(\mathbf{v}, \phi) := \phi(\mathbf{v})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{aligned} Q_{A} &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^{*} | \boldsymbol{v} \otimes \phi \in [\boldsymbol{A}, \boldsymbol{gl_n}] \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^{*} | \boldsymbol{v} \otimes \phi \bot \mathfrak{g_A} \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^{*} | \phi(\boldsymbol{C}\boldsymbol{v}) = \boldsymbol{0} \ \forall \boldsymbol{C} \in \mathfrak{g_A} \} = \\ &= \{ (\boldsymbol{v}, \phi) \in \boldsymbol{V} \times \boldsymbol{V}^{*} | \phi(\boldsymbol{A}^{i}\boldsymbol{v}) = \boldsymbol{0} \ \forall i \geq \boldsymbol{0} \} \subset \boldsymbol{Z}(\boldsymbol{B}) \end{aligned}$$

where $B(\mathbf{v}, \phi) := \phi(\mathbf{v})$. Supp (ζ) , Supp $(\widehat{\zeta}) \subset Z(B) \Rightarrow \zeta$ is abs-homogeneous of degree *n*.

▲□ → ▲ 三 → ▲ 三 → つく(~

• Denote
$$U := (V - KerA^{n-1}) \times V^*$$

ヘロン 人間 とくほとく ほとう

• Denote
$$U := (V - KerA^{n-1}) \times V^*$$

We have

 $U \cap Q_A \subset V \times 0.$

ヘロト 人間 とくほとくほとう

₹ 990

• Denote
$$U := (V - KerA^{n-1}) \times V^*$$

We have

 $U \cap Q_A \subset V \times 0.$

Hence $\zeta|_U = 0$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• Denote
$$U := (V - KerA^{n-1}) \times V^*$$

We have

$$U \cap Q_A \subset V \times 0.$$

Hence $\zeta|_U = 0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{Ker} A^{n-1} \times V^*$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• Denote
$$U := (V - KerA^{n-1}) \times V^*$$

We have

$$U \cap Q_A \subset V \times 0.$$

Hence $\zeta|_U = 0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{Ker} A^{n-1} \times V^*$. Similarly, $\operatorname{Supp}(\zeta) \subset \operatorname{Ker} A^{n-1} \times \operatorname{Ker} (A^*)^{n-1}$.

通 と く ヨ と く ヨ と

э.

• Denote
$$U := (V - KerA^{n-1}) \times V^*$$

We have

$$U \cap Q_A \subset V \times 0.$$

Hence $\zeta|_U = 0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{Ker} A^{n-1} \times V^*$. Similarly, $\operatorname{Supp}(\zeta) \subset \operatorname{Ker} A^{n-1} \times \operatorname{Ker} (A^*)^{n-1}$. Similarly, $\operatorname{Supp}(\zeta) \subset \operatorname{Ker} A^{n-1} \times \operatorname{Ker} (A^*)^{n-1}$.

★ E ► ★ E ►

æ

• Denote
$$U := (V - KerA^{n-1}) \times V^*$$

We have

$$U\cap Q_A\subset V imes 0.$$

Hence $\zeta|_U = 0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}A^{n-1} \times V^*$. Similarly, $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}A^{n-1} \times \operatorname{Ker}(A^*)^{n-1}$. Similarly, $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}A^{n-1} \times \operatorname{Ker}(A^*)^{n-1}$. Hence ζ is invariant with respect to shifts by $\operatorname{Im}A^{n-1} \times \operatorname{Im}(A^*)^{n-1}$.

★ E ► ★ E ►

• Denote
$$U := (V - KerA^{n-1}) \times V^*$$

We have

$$U \cap Q_A \subset V \times 0.$$

Hence $\zeta|_U = 0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}A^{n-1} \times V^*$. Similarly, $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}A^{n-1} \times \operatorname{Ker}(A^*)^{n-1}$. Similarly, $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}A^{n-1} \times \operatorname{Ker}(A^*)^{n-1}$. Hence ζ is invariant with respect to shifts by $\operatorname{Im}A^{n-1} \times \operatorname{Im}(A^*)^{n-1}$. Therefore

$$\zeta \in \mathcal{S}^*(\mathit{KerA^{n-1}}/\mathit{ImA^{n-1}} \times \mathit{Ker}(A^*)^{n-1}/\mathit{Im}(A^*)^{n-1}) = \mathcal{S}^*(\mathit{V_{n-2}} \times \mathit{V_{n-2}^*}).$$

• Denote
$$U := (V - KerA^{n-1}) \times V^*$$

We have

$$U \cap Q_A \subset V \times 0.$$

Hence $\zeta|_U = 0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}A^{n-1} \times V^*$. Similarly, $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}A^{n-1} \times \operatorname{Ker}(A^*)^{n-1}$. Similarly, $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}A^{n-1} \times \operatorname{Ker}(A^*)^{n-1}$. Hence ζ is invariant with respect to shifts by $\operatorname{Im}A^{n-1} \times \operatorname{Im}(A^*)^{n-1}$. Therefore

$$\zeta \in \mathcal{S}^*(KerA^{n-1}/ImA^{n-1} \times Ker(A^*)^{n-1}/Im(A^*)^{n-1}) = \mathcal{S}^*(V_{n-2} \times V_{n-2}^*).$$

By induction $\zeta = 0.$

Flowchart

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let *D* be either *F* or a quadratic extension of *F*. Let *V* be a vector space over *D*. Let < , > be a non-degenerate hermitian form on *V*. Let $W := V \oplus D$. Extend < , > to *W* in the obvious way. Consider the embedding of U(V) into U(W).

Let *D* be either *F* or a quadratic extension of *F*. Let *V* be a vector space over *D*. Let < , > be a non-degenerate hermitian form on *V*. Let $W := V \oplus D$. Extend < , > to *W* in the obvious way. Consider the embedding of U(V) into U(W).

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every U(V)- invariant distribution on U(W) is invariant with respect to transposition.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *D* be either *F* or a quadratic extension of *F*. Let *V* be a vector space over *D*. Let < , > be a non-degenerate hermitian form on *V*. Let $W := V \oplus D$. Extend < , > to *W* in the obvious way. Consider the embedding of U(V) into U(W).

Theorem

Every U(V)- invariant distribution on U(W) is invariant with respect to transposition.

•
$$G := U(V)$$

•
$$G := G \rtimes \{1, \sigma\}, \chi$$
 as before.

• \widetilde{G} acts on X by $g(A, v) = (gAg^{-1}, gv), \sigma(A, v) = (-\overline{A}, -\overline{v}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Orthogonal and unitary groups

Let *D* be either *F* or a quadratic extension of *F*. Let *V* be a vector space over *D*. Let < , > be a non-degenerate hermitian form on *V*. Let $W := V \oplus D$. Extend < , > to *W* in the obvious way. Consider the embedding of U(V) into U(W).

Theorem

Every U(V)- invariant distribution on U(W) is invariant with respect to transposition.

•
$$G := U(V)$$

•
$$G := G \rtimes \{1, \sigma\}, \chi$$
 as before.

•
$$X := su(V) \times V$$

• \widetilde{G} acts on X by $g(A, v) = (gAg^{-1}, gv), \sigma(A, v) = (-\overline{A}, -\overline{v}).$

Equivalent formulation:

Theorem

$$\mathcal{S}^*(X)^{\widetilde{G},\chi} = 0.$$

ヘロン 人間 とくほ とくほ とう

Let *N* ⊂ *su*(*V*) be the cone of nilpotent elements
Γ := {*v* ∈ *V*, < *v*, *v* >= 0}

By Harish-Chandra descent we can assume that any $\xi \in S^*(X)^{\widetilde{G},\chi}$ is supported in $\mathcal{N} \times \Gamma$.

(雪) (ヨ) (ヨ)

Let *N* ⊂ *su*(*V*) be the cone of nilpotent elements
Γ := {*v* ∈ *V*, < *v*, *v* >= 0}

By Harish-Chandra descent we can assume that any $\xi \in S^*(X)^{\widetilde{G},\chi}$ is supported in $\mathcal{N} \times \Gamma$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \boldsymbol{v}^t - \frac{\lambda}{n} < \boldsymbol{v}, \boldsymbol{v} > \boldsymbol{ld}, \boldsymbol{v}), \ \overline{\lambda} = -\lambda.$$

(雪) (ヨ) (ヨ)

Let *N* ⊂ *su*(*V*) be the cone of nilpotent elements
Γ := {*v* ∈ *V*, < *v*, *v* >= 0}

By Harish-Chandra descent we can assume that any $\xi \in S^*(X)^{\widetilde{G},\chi}$ is supported in $\mathcal{N} \times \Gamma$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \boldsymbol{v}^{t} - \frac{\lambda}{n} < \boldsymbol{v}, \boldsymbol{v} > \boldsymbol{ld}, \boldsymbol{v}), \, \overline{\lambda} = -\lambda.$$

•
$$\mu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}) := (\boldsymbol{A} + \lambda(\boldsymbol{v} \otimes \boldsymbol{v}^{t}\boldsymbol{A} + \boldsymbol{A}\boldsymbol{v} \otimes \boldsymbol{v}^{t}), \boldsymbol{v})$$

(雪) (ヨ) (ヨ)

Let *N* ⊂ *su*(*V*) be the cone of nilpotent elements
Γ := {*v* ∈ *V*, < *v*, *v* >= 0}

By Harish-Chandra descent we can assume that any $\xi \in S^*(X)^{\widetilde{G},\chi}$ is supported in $\mathcal{N} \times \Gamma$.

•
$$\nu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}) := (\boldsymbol{A} + \lambda \boldsymbol{v} \otimes \boldsymbol{v}^{t} - \frac{\lambda}{n} < \boldsymbol{v}, \boldsymbol{v} > \boldsymbol{ld}, \boldsymbol{v}), \ \overline{\lambda} = -\lambda.$$

•
$$\mu_{\lambda}(\boldsymbol{A}, \boldsymbol{v}) := (\boldsymbol{A} + \lambda(\boldsymbol{v} \otimes \boldsymbol{v}^{t} \boldsymbol{A} + \boldsymbol{A} \boldsymbol{v} \otimes \boldsymbol{v}^{t}), \boldsymbol{v})$$

Lemma (Key)

Any $\zeta \in S^*(V)^{\widetilde{G}_A,\chi}$ such that both ζ and $\widehat{\zeta}$ are supported in Q_A is zero.

(画) (目) (目)