Invariant Distributions and Gelfand Pairs

A. Aizenbud and D. Gourevitch
http : //www.wisdom.weizmann.ac.il/ ~ aizenr/

Gelfand Pairs and distributional criterion

Definition

A pair of groups $(G \supset H)$ is called a Gelfand pair if for any irreducible "admissible" representation ρ of G

$$
\operatorname{dimHom}_{H}(\rho, \mathbb{C}) \leq 1
$$

Gelfand Pairs and distributional criterion

Definition

A pair of groups $(G \supset H)$ is called a Gelfand pair if for any irreducible "admissible" representation ρ of G

$$
\operatorname{dimHom}_{H}(\rho, \mathbb{C}) \leq 1
$$

Theorem (Gelfand-Kazhdan,...)
Let σ be an involutive anti-automorphism of G (i.e.
$\left.\sigma\left(g_{1} g_{2}\right)=\sigma\left(g_{2}\right) \sigma\left(g_{1}\right)\right)$ and $\sigma^{2}=I d$ and assume $\sigma(H)=H$. Suppose that $\sigma(\xi)=\xi$ for all bi H-invariant distributions ξ on G. Then (G, H) is a Gelfand pair.

Strong Gelfand Pairs

Definition

A pair of groups (G, H) is called a strong Gelfand pair if for any irreducible "admissible" representations ρ of G and τ of H
$\operatorname{dimHom}{ }_{H}\left(\left.\rho\right|_{H}, \tau\right) \leq 1$.

Strong Gelfand Pairs

Definition

A pair of groups (G, H) is called a strong Gelfand pair if for any irreducible "admissible" representations ρ of G and τ of H

$$
\operatorname{dimHom}_{H}\left(\left.\rho\right|_{H}, \tau\right) \leq 1
$$

Proposition

The pair (G, H) is a strong Gelfand pair if and only if the pair $(G \times H, \Delta H)$ is a Gelfand pair.

Strong Gelfand Pairs

Definition

A pair of groups (G, H) is called a strong Gelfand pair if for any irreducible "admissible" representations ρ of G and τ of H

$$
\operatorname{dimHom}_{H}\left(\left.\rho\right|_{H}, \tau\right) \leq 1
$$

Proposition

The pair (G, H) is a strong Gelfand pair if and only if the pair $(G \times H, \Delta H)$ is a Gelfand pair.

Corollary

Let σ be an involutive anti-automorphism of G s.t. $\sigma(H)=H$. Suppose $\sigma(\xi)=\xi$ for all distributions ξ on G invariant with respect to conjugation by H. Then (G, H) is a strong Gelfand pair.

Local fields of characteristic zero:

- Archimedean: \mathbb{R} and \mathbb{C}
- Non-archimedean(p-adic): \mathbb{Q}_{p} and its finite extensions.

Local fields of characteristic zero:

- Archimedean: \mathbb{R} and \mathbb{C}
- Non-archimedean(p-adic): \mathbb{Q}_{p} and its finite extensions.

Pair	Field	By
$\left(G L_{n+1}, G L_{n}\right)$		A.-G.-Sayag, van-Dijk
$(O(V \oplus F), O(V))$	any	van-Dijk-Bossmann-Aparicio,
		A.-G.-Sayag
		Flicker, A.-G.
$\left(G L_{n}(E), G L_{n}(F)\right)$		Jacquet-Rallis, A.-G.
$\left(G L_{n+k}, G L_{n} \times G L_{k}\right)$		A.-G.
$\left(O_{n+k}, O_{n} \times O_{k}\right)$	\mathbb{C}	
$\left(G L_{n}, O_{n}\right)$		
$\left(G L_{2 n}, S p_{2 n}\right)$	$F \neq \mathbb{R}$	Heumos - Rallis, Sayag
$\left(G L_{n+1}, G L_{n}\right)$ strong	\mathbb{R}, \mathbb{C}	Aizenbud-Gourevitch
		Aizenbud-Gourevitch-
$(O(V \oplus F), O(V))$ strong	p-adic	-Rallis-Schiffmann

Distributions on smooth manifolds and ℓ-spaces

Notation

Let M be a smooth manifold. We denote by $C_{c}^{\infty}(M)$ the space of smooth compactly supported functions on M. We denote by $\mathcal{D}(M):=\left(C_{c}^{\infty}(M)\right)^{*}$ the space of distributions on M.
Sometimes we will also consider the space $\mathcal{S}^{*}(M)$ of Schwartz distributions on M.

Distributions on smooth manifolds and ℓ-spaces

Notation

Let M be a smooth manifold. We denote by $C_{c}^{\infty}(M)$ the space of smooth compactly supported functions on M. We denote by $\mathcal{D}(M):=\left(C_{c}^{\infty}(M)\right)^{*}$ the space of distributions on M.
Sometimes we will also consider the space $\mathcal{S}^{*}(M)$ of Schwartz distributions on M.

Definition

An ℓ-space is a Hausdorff locally compact totally disconnected topological space. For an ℓ-space X we denote by $\mathcal{S}(X)$ the space of compactly supported locally constant functions on X. We let $\mathcal{S}^{*}(X):=\mathcal{D}(X):=\mathcal{S}(X)^{*}$ be the space of distributions on X.

Distributions supported in a closed subset

For a closed subset $Z \subset X$ we denote by $\mathcal{D}_{X}(Z)$ the space of distributions on X supported in Z.

Proposition

Let $Z \subset X$ be a closed subset and $U:=X-Z$. Then we have the exact sequence

$$
0 \rightarrow \mathcal{D}_{X}(Z) \rightarrow \mathcal{D}(X) \rightarrow \mathcal{D}(U)
$$

Distributions supported in a closed subset

For a closed subset $Z \subset X$ we denote by $\mathcal{D}_{X}(Z)$ the space of distributions on X supported in Z.

Proposition

Let $Z \subset X$ be a closed subset and $U:=X-Z$. Then we have the exact sequence

$$
0 \rightarrow \mathcal{D}_{X}(Z) \rightarrow \mathcal{D}(X) \rightarrow \mathcal{D}(U)
$$

For ℓ-spaces, $\mathcal{D}_{X}(Z) \cong \mathcal{D}(Z)$.

Distributions supported in a closed subset

For a closed subset $Z \subset X$ we denote by $\mathcal{D}_{X}(Z)$ the space of distributions on X supported in Z.

Proposition

Let $Z \subset X$ be a closed subset and $U:=X-Z$. Then we have the exact sequence

$$
0 \rightarrow \mathcal{D}_{X}(Z) \rightarrow \mathcal{D}(X) \rightarrow \mathcal{D}(U)
$$

For ℓ-spaces, $\mathcal{D}_{X}(Z) \cong \mathcal{D}(Z)$.
For smooth manifolds, $\mathcal{D}_{X}(Z)$ has an infinite filtration whose factors are $\mathcal{D}\left(Z, \operatorname{Sym}^{k}\left(C N_{Z}^{X}\right)\right)$, where $\operatorname{Sym}^{k}\left(C N_{Z}^{X}\right)$ denote symmetric powers of the conormal bundle to Z.

Geometric conditions

Setting

Let G be an algebraic group over a local field F. Let H be a closed algebraic subgroup. Let $\sigma: G \rightarrow G$ be an antiinvolution. We want to show that every $H \times H$ invariant distribution on G is σ-invariant.

Geometric conditions

Setting

Let G be an algebraic group over a local field F. Let H be a closed algebraic subgroup. Let $\sigma: G \rightarrow G$ be an antiinvolution. We want to show that every $H \times H$ invariant distribution on G is σ-invariant.

A necessary condition for that is :
" σ preserves every closed double coset (which carries $\mathrm{H} \times \mathrm{H}$ invariant distribution)".

Geometric conditions

Setting

Let G be an algebraic group over a local field F. Let H be a closed algebraic subgroup. Let $\sigma: G \rightarrow G$ be an antiinvolution. We want to show that every $H \times H$ invariant distribution on G is σ-invariant.

A necessary condition for that is :
" σ preserves every closed double coset (which carries $\mathrm{H} \times \mathrm{H}$ invariant distribution)".

Over p -adic fields, it is sufficient (but not necessary) to prove that σ preserves every double coset.

Reformulation of the problem

Notation

Let σ act on $H \times H$ by $\sigma\left(h_{1}, h_{2}\right):=\left(\sigma\left(h_{2}^{-1}\right), \sigma\left(h_{1}^{-1}\right)\right)$. Denote

$$
\widetilde{H \times H}:=(H \times H) \rtimes\{1, \sigma\} .
$$

It has a natural action on G. Define a character χ of $\widetilde{H \times H}$ by

$$
\chi(H \times H)=\{1\}, \chi(\widetilde{H \times H}-(H \times H))=\{-1\}
$$

Now our problem becomes equivalent to $\mathcal{D}(G)^{\widetilde{H \times H}, \chi}=0$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{D}(X)^{G, \chi}=0$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{D}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{D}(U)^{G, \chi}=0$ and $\mathcal{D}_{X}(Z)^{G, \chi}=0$. Then $\mathcal{D}(X)^{G, \chi}=0$.

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{D}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{D}(U)^{G, \chi}=0$ and $\mathcal{D}_{X}(Z)^{G, \chi}=0$. Then $\mathcal{D}(X)^{G, \chi}=0$.

Proof.

$$
0 \rightarrow \mathcal{D}_{X}(Z)^{G, \chi} \rightarrow \mathcal{D}(X)^{G, \chi} \rightarrow \mathcal{D}(U)^{G, \chi}
$$

First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $\mathcal{D}(X)^{G, \chi}=0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z:=X-U$. Suppose that $\mathcal{D}(U)^{G, \chi}=0$ and $\mathcal{D}_{X}(Z)^{G, \chi}=0$. Then $\mathcal{D}(X)^{G, \chi}=0$.

Proof.

$$
0 \rightarrow \mathcal{D}_{X}(Z)^{G, \chi} \rightarrow \mathcal{D}(X)^{G, \chi} \rightarrow \mathcal{D}(U)^{G, \chi}
$$

For ℓ-spaces, $\mathcal{D}_{X}(Z)^{G, \chi} \cong \mathcal{D}(Z)^{G, \chi}$.
For smooth manifolds, to show $\mathcal{D}_{X}(Z)^{G, \chi}$ it is enough to show that $\mathcal{D}\left(Z, \operatorname{Sym}^{k}\left(C N_{Z}^{X}\right)\right)^{G, \chi}=0$ for any k.

Frobenius reciprocity

Theorem (Bernstein, Baruch, ...)

Let $\psi: X \rightarrow Z$ be a map.
Let a G act on X and Z such that $\psi(g x)=g \psi(x)$.
Suppose that the action of G on Z is transitive.
Suppose that both G and $\operatorname{Stab}_{G}(z)$ are unimodular. Then

$$
\mathcal{D}(X)^{G, \chi} \cong \mathcal{D}\left(X_{z}\right)^{\operatorname{Stab}_{G}(z), \chi}
$$

Reductive groups

Example

$G L_{n}$, semisimple groups, $O_{n}, U_{n}, S p_{2 n}, \ldots$

Fact

Any algebraic representation of a reductive group decomposes to a direct sum of irreducible representations.

Fact

Reductive groups are unimodular.

Luna's slice theorem

We say that $x \in X$ is G-semisimple if its orbit is closed.

Theorem (Luna's slice theorem)

Let a reductive group G act on a smooth affine algebraic variety X. Let $x \in X$ be G-semisimple. Then there exist
(i) an open G-invariant neighborhood U of $G x$ in X with a

G-equivariant retract $p: U \rightarrow G x$ and
(ii) a G_{x}-equivariant embedding $\psi: p^{-1}(x) \hookrightarrow N_{G x, x}^{X}$ with open image such that $\psi(x)=0$.

Generalized Harish-Chandra descent

Theorem

Let a reductive group G act on a smooth affine algebraic variety X. Let χ be a character of G. Suppose that for any G-semisimple $x \in X$ we have

$$
\mathcal{D}\left(N_{G x, x}^{X}\right)^{G_{x}, \chi}=0 .
$$

Then $\mathcal{D}(X)^{G, \chi}=0$.

A stronger version

Let V be an algebraic finite dimensional representation over F of a reductive group G.

- $Q(V):=\left(V / V^{G}\right)$. Since G is reductive, there is a canonical splitting $V=Q(V) \oplus V^{G}$.
- $\Gamma(V):=\{v \in Q(V) \mid \overline{G v} \ni 0\}$.
- $R(V):=Q(V)-\Gamma(V)$.

A stronger version

Let V be an algebraic finite dimensional representation over F of a reductive group G.

- $Q(V):=\left(V / V^{G}\right)$. Since G is reductive, there is a canonical splitting $V=Q(V) \oplus V^{G}$.
- $\Gamma(V):=\{v \in Q(V) \mid \overline{G v} \ni 0\}$.
- $R(V):=Q(V)-\Gamma(V)$.

Theorem

Let a reductive group G act on a smooth affine variety X. Let χ be a character of G. Suppose that for any G-semisimple $x \in X$ such that

$$
\mathcal{D}\left(R\left(N_{G x, x}^{X}\right)\right)^{G_{x}, \chi}=0
$$

we have

$$
\mathcal{D}\left(Q\left(N_{G x, x}^{X}\right)\right)^{G_{x}, \chi}=0
$$

Then $\mathcal{D}(X)^{G, \chi}=0$.

Fourier transform

Let V be a finite dimensional vector space over F and B be a non-degenerate quadratic form on V. Let $\widehat{\xi}$ denote the Fourier transform of ξ defined using B.

Proposition

Let G act on V linearly and preserving B. Let $\xi \in \mathcal{S}^{*}(V)^{G, \chi}$. Then $\widehat{\xi} \in \mathcal{S}^{*}(V)^{G, \chi}$.

Fourier transform and homogeneity

- We call a distribution $\xi \in \mathcal{S}^{*}(V)$ abs-homogeneous of degree d if for any $t \in F^{\times}$,

$$
h_{t}(\xi)=u(t)|t|^{d} \xi
$$

where h_{t} denotes the homothety action on distributions and u is some unitary character of F^{\times}.

Fourier transform and homogeneity

- We call a distribution $\xi \in \mathcal{S}^{*}(V)$ abs-homogeneous of degree d if for any $t \in F^{\times}$,

$$
h_{t}(\xi)=u(t)|t|^{d} \xi
$$

where h_{t} denotes the homothety action on distributions and u is some unitary character of F^{\times}.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let $\xi \in \mathcal{S}_{V}^{*}(Z(B))$ be s. t. $\widehat{\xi} \in \mathcal{S}_{V}^{*}(Z(B))$. Then ξ is abs-homogeneous of degree $\frac{1}{2} \operatorname{dim} V$.

Fourier transform and homogeneity

- We call a distribution $\xi \in \mathcal{S}^{*}(V)$ abs-homogeneous of degree d if for any $t \in F^{\times}$,

$$
h_{t}(\xi)=u(t)|t|^{d} \xi,
$$

where h_{t} denotes the homothety action on distributions and u is some unitary character of F^{\times}.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let $\xi \in \mathcal{S}_{V}^{*}(Z(B))$ be s. t. $\widehat{\xi} \in \mathcal{S}_{V}^{*}(Z(B))$. Then ξ is abs-homogeneous of degree $\frac{1}{2} \operatorname{dim} V$.

Theorem (archimedean homogeneity)

Let F be any local field. Let $L \subset \mathcal{S}_{V}^{*}(Z(B))$ be a non-zero linear subspace s. $t . \forall \xi \in L$ we have $\widehat{\xi} \in L$ and $B \xi \in L$.
Then there exists a non-zero distribution $\xi \in L$ which is abs-homogeneous of degree $\frac{1}{2} \operatorname{dim} V$ or of degree $\frac{1}{2} \operatorname{dim} V+1$.

Localization principle

Theorem (Aizenbud-Gourevitch-Sayag)

Let a reductive group G act on a smooth affine variety X. Let Y be an algebraic variety and $\phi: X \rightarrow Y$ be an algebraic G-invariant map. Let χ be a character of G. Suppose that for any $y \in Y$ we have $\mathcal{D}_{X}\left(X_{y}\right)^{G, \chi}=0$. Then $\mathcal{D}(X)^{G, \chi}=0$.

Localization principle

Theorem (Aizenbud-Gourevitch-Sayag)

Let a reductive group G act on a smooth affine variety X. Let Y be an algebraic variety and $\phi: X \rightarrow Y$ be an algebraic G-invariant map. Let χ be a character of G. Suppose that for any $y \in Y$ we have $\mathcal{D}_{X}\left(X_{y}\right)^{G, \chi}=0$. Then $\mathcal{D}(X)^{G, \chi}=0$.

For ℓ-spaces, a stronger version of this principle was proven by J. Bernstein 30 years ago.

Symmetric pairs

- A symmetric pair is a triple (G, H, θ) where $H \subset G$ are reductive groups, and θ is an involution of G such that $H=G^{\theta}$.
- We call (G, H, θ) connected if G / H is Zariski connected.
- Define an antiinvolution $\sigma: G \rightarrow G$ by $\sigma(g):=\theta\left(g^{-1}\right)$.

Symmetric Gelfand pairs

- A symmetric pair (G, H, θ) is called good if σ preserves all closed $H \times H$ double cosets.

Symmetric Gelfand pairs

- A symmetric pair (G, H, θ) is called good if σ preserves all closed $H \times H$ double cosets.

Proposition

Any connected symmetric pair over \mathbb{C} is good.

Symmetric Gelfand pairs

- A symmetric pair (G, H, θ) is called good if σ preserves all closed $H \times H$ double cosets.

Proposition

Any connected symmetric pair over \mathbb{C} is good.

Conjecture

Any good symmetric pair is a Gelfand pair.

Symmetric Gelfand pairs

- A symmetric pair (G, H, θ) is called good if σ preserves all closed $H \times H$ double cosets.

Proposition

Any connected symmetric pair over \mathbb{C} is good.

Conjecture

Any good symmetric pair is a Gelfand pair.
To check that a symmetric pair is Gelfand
(1) Prove that it is good

Symmetric Gelfand pairs

- A symmetric pair (G, H, θ) is called good if σ preserves all closed $H \times H$ double cosets.

Proposition

Any connected symmetric pair over \mathbb{C} is good.

Conjecture

Any good symmetric pair is a Gelfand pair.
To check that a symmetric pair is Gelfand
(1) Prove that it is good
(2) Prove that there are no equivariant distributions supported on the singular set in the Lie algebra \mathfrak{g}.

Symmetric Gelfand pairs

- A symmetric pair (G, H, θ) is called good if σ preserves all closed $H \times H$ double cosets.

Proposition

Any connected symmetric pair over \mathbb{C} is good.

Conjecture

Any good symmetric pair is a Gelfand pair.
To check that a symmetric pair is Gelfand
(1) Prove that it is good
(2) Prove that there are no equivariant distributions supported on the singular set in the Lie algebra \mathfrak{g}.
(3) Compute all the "descendants" of the pair and prove (2) for them.

Corollary
The pairs $\left(G L_{n}(E), G L_{n}(F)\right)$ and $\left(G L_{n+k}, G L_{n} \times G L_{k}\right)$ are Gelfand pairs.

$(O(V \oplus W), O(V) \times O(W))$

Corollary

For $F=\mathbb{C}$, the pairs $(O(V \oplus W), O(V) \times O(W))$ and $(G L(V), O(V))$ are Gelfand pairs.

Results for non-symmetric pairs

Let F be a p-adic field. Then the following pairs are strong Gelfand pairs

Formulation

Let F be a p-adic field of characteristic zero.
Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)
Every $G L_{n}(F)$-invariant distribution on $G L_{n+1}(F)$ is transposition invariant.

Formulation

Let F be a p-adic field of characteristic zero.
Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)
Every $G L_{n}(F)$-invariant distribution on $G L_{n+1}(F)$ is transposition invariant.

- $G:=G_{n}:=G L_{n}(F)$
- $\widetilde{G}:=G \rtimes\{1, \sigma\}$
- Define a character χ of \widetilde{G} by $\chi(G)=\{1\}$,
$\chi(\widetilde{G}-G)=\{-1\}$.

Formulation

Let F be a p-adic field of characteristic zero.
Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)
Every $G L_{n}(F)$-invariant distribution on $G L_{n+1}(F)$ is transposition invariant.

- $G:=G_{n}:=G L_{n}(F)$
- $\widetilde{G}:=G \rtimes\{1, \sigma\}$
- Define a character χ of \widetilde{G} by $\chi(G)=\{1\}$,

$$
\chi(\widetilde{G}-G)=\{-1\} .
$$

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(G L_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.

- $V:=F^{n}$
- $X:=s l(V) \times V \times V^{*}$

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.

- $V:=F^{n}$
- $X:=s l(V) \times V \times V^{*}$
- \widetilde{G} acts on X by

$$
\begin{aligned}
& g(A, v, \phi)=\left(g A g^{-1}, g v,\left(g^{*}\right)^{-1} \phi\right) \\
& \sigma(A, v, \phi)=\left(A^{t}, \phi^{t}, v^{t}\right) .
\end{aligned}
$$

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\tilde{G}, \chi}=0$.

- $V:=F^{n}$
- $X:=s l(V) \times V \times V^{*}$
- \widetilde{G} acts on X by

$$
\begin{aligned}
& g(A, v, \phi)=\left(g A g^{-1}, g v,\left(g^{*}\right)^{-1} \phi\right) \\
& \sigma(A, v, \phi)=\left(A^{t}, \phi^{t}, v^{t}\right) .
\end{aligned}
$$

Equivalent formulation:
Theorem
$\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=0$.

Equivalent formulation:

Theorem

$\mathcal{S}^{*}\left(g I_{n+1}(F)\right)^{\widetilde{G}, \chi}=0$.

- $V:=F^{n}$
- $X:=s l(V) \times V \times V^{*}$
- \widetilde{G} acts on X by

$$
\begin{aligned}
& g(A, v, \phi)=\left(g A g^{-1}, g v,\left(g^{*}\right)^{-1} \phi\right) \\
& \sigma(A, v, \phi)=\left(A^{t}, \phi^{t}, v^{t}\right)
\end{aligned}
$$

Equivalent formulation:

Theorem

$\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=0$.
Reason:

$$
g\left(\begin{array}{cc}
A_{n \times n} & v_{n \times 1} \\
\phi_{1 \times n} & \lambda
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
g A g^{-1} & g v \\
\left(g^{*}\right)^{-1} \phi & \lambda
\end{array}\right) \text { and }\left(\begin{array}{ll}
A & v \\
\phi & \lambda
\end{array}\right)^{t}=\left(\begin{array}{cc}
A^{t} & \phi^{t} \\
v^{t} & \lambda
\end{array}\right)
$$

Harish-Chandra descent

- Let $\mathcal{N} \subset s I_{n}$ be the cone of nilpotent elements
- $\Gamma:=\left\{v \in V, \phi \in V^{*} \mid \phi(v)=0\right\}$

Harish-Chandra descent

- Let $\mathcal{N} \subset s I_{n}$ be the cone of nilpotent elements
- 「 $:=\left\{v \in V, \phi \in V^{*} \mid \phi(v)=0\right\}$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in $\mathcal{N} \times \Gamma$.

Harish-Chandra descent

- Let $\mathcal{N} \subset s I_{n}$ be the cone of nilpotent elements
- 「 $:=\left\{v \in V, \phi \in V^{*} \mid \phi(v)=0\right\}$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in $\mathcal{N} \times \Gamma$.

- $\mathcal{N}_{i}:=\{a \in \mathcal{N} \mid \operatorname{dim} G a \leq i\} \subset \mathcal{N}$
- Let $\mathcal{N} \subset s l_{n}$ be the cone of nilpotent elements
- $\Gamma:=\left\{v \in V, \phi \in V^{*} \mid \phi(v)=0\right\}$

By Harish-Chandra descent we can assume that any
$\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in $\mathcal{N} \times \Gamma$.

- $\mathcal{N}_{i}:=\{a \in \mathcal{N} \mid \operatorname{dim} G a \leq i\} \subset \mathcal{N}$

We prove by descending induction on i that $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i} \times \Gamma\right)^{\widetilde{G}, \chi}$.

Reduction

We assume $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i} \times \Gamma\right)^{\widetilde{G}, \chi}$.
We want to prove that $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i-1} \times \Gamma\right)^{\widetilde{G}, \chi}$.

We assume $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i} \times \Gamma\right)^{\widetilde{G}, \chi}$.
We want to prove that $\mathcal{S}^{*}(X)^{\tilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i-1} \times \Gamma\right)^{\tilde{G}, \chi}$.

- $\nu_{\lambda}(A, v, \phi):=\left(A+\lambda v \otimes \phi-\frac{\lambda}{n} \phi(v) / d, v, \phi\right)$

We assume $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i} \times \Gamma\right)^{\widetilde{G}, \chi}$.
We want to prove that $\mathcal{S}^{*}(X)^{\tilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i-1} \times \Gamma\right)^{\tilde{G}, \chi}$.

- $\nu_{\lambda}(A, v, \phi):=\left(A+\lambda v \otimes \phi-\frac{\lambda}{n} \phi(v) / d, v, \phi\right)$

Let $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$. We know that for any λ, $\xi \in \mathcal{S}^{*}\left(\nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)\right)^{\widetilde{G}, \chi}$.

We assume $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i} \times \Gamma\right)^{\widetilde{G}, \chi}$.
We want to prove that $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i-1} \times \Gamma\right)^{\widetilde{G}, \chi}$.

- $\nu_{\lambda}(A, v, \phi):=\left(A+\lambda v \otimes \phi-\frac{\lambda}{n} \phi(v) / d, v, \phi\right)$

Let $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$. We know that for any λ, $\xi \in \mathcal{S}^{*}\left(\nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)\right)^{\widetilde{G}, \chi}$.

- $\widetilde{\mathcal{N}}_{i}:=\bigcap_{\lambda \in F} \nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)$

We assume $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i} \times \Gamma\right)^{\widetilde{G}, \chi}$.
We want to prove that $\mathcal{S}^{*}(X)^{\tilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i-1} \times \Gamma\right)^{\tilde{G}, \chi}$.

- $\nu_{\lambda}(A, v, \phi):=\left(A+\lambda v \otimes \phi-\frac{\lambda}{n} \phi(v) / d, v, \phi\right)$

Let $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$. We know that for any λ, $\xi \in \mathcal{S}^{*}\left(\nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)\right)^{\widetilde{G}, \chi}$.

- $\widetilde{\mathcal{N}}_{i}:=\bigcap_{\lambda \in F} \nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)$

We know that $\xi \in \mathcal{S}^{*}\left(\widetilde{\mathcal{N}_{i}}\right)^{\widetilde{G}, \chi}$.

We assume $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i} \times \Gamma\right)^{\widetilde{G}, \chi}$.
We want to prove that $\mathcal{S}^{*}(X)^{\tilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i-1} \times \Gamma\right)^{\tilde{G}, \chi}$.

- $\nu_{\lambda}(A, v, \phi):=\left(A+\lambda v \otimes \phi-\frac{\lambda}{n} \phi(v) / d, v, \phi\right)$

Let $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$. We know that for any λ, $\xi \in \mathcal{S}^{*}\left(\nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)\right)^{\widetilde{G}, \chi}$.

- $\widetilde{\mathcal{N}}_{i}:=\bigcap_{\lambda \in F} \nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)$

We know that $\xi \in \mathcal{S}^{*}\left(\widetilde{\mathcal{N}_{i}}\right)^{\widetilde{G}, \chi}$.

- Let $O \subset \mathcal{N}_{i}-\mathcal{N}_{i-1}$ be an open orbit.

We assume $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i} \times \Gamma\right)^{\widetilde{G}, \chi}$.
We want to prove that $\mathcal{S}^{*}(X)^{\tilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i-1} \times \Gamma\right)^{\tilde{G}, \chi}$.

- $\nu_{\lambda}(A, v, \phi):=\left(A+\lambda v \otimes \phi-\frac{\lambda}{n} \phi(v) / d, v, \phi\right)$

Let $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$. We know that for any λ, $\xi \in \mathcal{S}^{*}\left(\nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)\right)^{\widetilde{G}, \chi}$.

- $\widetilde{\mathcal{N}}_{i}:=\bigcap_{\lambda \in F} \nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)$

We know that $\xi \in \mathcal{S}^{*}\left(\widetilde{\mathcal{N}_{i}}\right)^{\widetilde{G}, \chi}$.

- Let $O \subset \mathcal{N}_{i}-\mathcal{N}_{i-1}$ be an open orbit.
- $\widetilde{O}:=\left(O \times V \times V^{*}\right) \cap \widetilde{\mathcal{N}}_{i}$

We assume $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i} \times \Gamma\right)^{\widetilde{G}, \chi}$.
We want to prove that $\mathcal{S}^{*}(X)^{\tilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i-1} \times \Gamma\right)^{\tilde{G}, \chi}$.

- $\nu_{\lambda}(A, v, \phi):=\left(A+\lambda v \otimes \phi-\frac{\lambda}{n} \phi(v) / d, v, \phi\right)$

Let $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$. We know that for any λ, $\xi \in \mathcal{S}^{*}\left(\nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)\right)^{\widetilde{G}, \chi}$.

- $\widetilde{\mathcal{N}}_{i}:=\bigcap_{\lambda \in F} \nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)$

We know that $\xi \in \mathcal{S}^{*}\left(\widetilde{\mathcal{N}_{i}}\right)^{\widetilde{G}, \chi}$.

- Let $O \subset \mathcal{N}_{i}-\mathcal{N}_{i-1}$ be an open orbit.
- $\widetilde{O}:=\left(O \times V \times V^{*}\right) \cap \widetilde{\mathcal{N}_{i}}$
- $\eta:=\xi \mid O \times V \times V^{*}$.

We assume $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i} \times \Gamma\right)^{\widetilde{G}, \chi}$.
We want to prove that $\mathcal{S}^{*}(X)^{\widetilde{G}, \chi}=\mathcal{S}^{*}\left(\mathcal{N}_{i-1} \times \Gamma\right)^{\widetilde{G}, \chi}$.

- $\nu_{\lambda}(A, v, \phi):=\left(A+\lambda v \otimes \phi-\frac{\lambda}{n} \phi(v) / d, v, \phi\right)$

Let $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$. We know that for any λ, $\xi \in \mathcal{S}^{*}\left(\nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)\right)^{\widetilde{G}, \chi}$.

- $\widetilde{\mathcal{N}}_{i}:=\bigcap_{\lambda \in F} \nu_{\lambda}\left(\mathcal{N}_{i} \times \Gamma\right)$

We know that $\xi \in \mathcal{S}^{*}\left(\widetilde{\mathcal{N}_{i}}\right)^{\widetilde{G}, \chi}$.

- Let $O \subset \mathcal{N}_{i}-\mathcal{N}_{i-1}$ be an open orbit.
- $\widetilde{O}:=\left(O \times V \times V^{*}\right) \cap \widetilde{\mathcal{N}}_{i}$
- $\eta:=\xi \mid O \times V \times V *$.

We have to show $\eta=0$.

Key Lemma

It is enough to prove

Lemma (Key)

Any $\eta \in \mathcal{S}^{*}\left(O \times V \times V^{*}\right)^{\widetilde{G}, \chi}$ such that both η and $\widehat{\eta}$ are supported in O is zero.

Key Lemma

It is enough to prove

Lemma (Key)

Any $\eta \in \mathcal{S}^{*}\left(O \times V \times V^{*}\right)^{\widetilde{G}, \chi}$ such that both η and $\widehat{\eta}$ are supported in O is zero.

Apply Frobenius reciprocity:

- $A \in O$
- $\widetilde{O}_{A}:=\left\{(v, \phi) \in V \times V^{*} \mid(A, v, \phi) \in \widetilde{O}\right\}$
- Let $G_{A}:=\operatorname{Stab}_{G}(A)$ denote the centralizer of A.
- $\widetilde{G}_{A}:=\operatorname{Stab}_{\widetilde{G}}(A)$

Equivalent formulation:

Lemma (Key')

Any $\zeta \in \mathcal{S}^{*}\left(V \times V^{*}\right)^{\tilde{G}_{A}, \chi}$ such that both ζ and $\widehat{\zeta}$ are supported in \widetilde{O}_{A} is zero.

Reformulation

Equivalent formulation:

Lemma (Key')

Any $\zeta \in \mathcal{S}^{*}\left(V \times V^{*}\right)^{\tilde{G}_{A}, \chi}$ such that both ζ and $\widehat{\zeta}$ are supported in \widetilde{O}_{A} is zero.

- $Q_{A}:=\left\{(v, \phi) \in V \times V^{*} \mid v \otimes \phi \in\left[A, g l_{n}\right]\right\}$

Proposition

$$
\widetilde{O}_{A} \subset Q_{A}
$$

Reformulation

Equivalent formulation:

Lemma (Key')

Any $\zeta \in \mathcal{S}^{*}\left(V \times V^{*}\right)^{\tilde{G}_{A}, \chi}$ such that both ζ and $\widehat{\zeta}$ are supported in \widetilde{O}_{A} is zero.

- $Q_{A}:=\left\{(v, \phi) \in V \times V^{*} \mid v \otimes \phi \in\left[A, g l_{n}\right]\right\}$

Proposition

$\widetilde{O}_{A} \subset Q_{A}$

Now it is enough to prove

Lemma (Key")

Any $\zeta \in \mathcal{S}^{*}\left(V \times V^{*}\right)^{\tilde{G}_{A}, \chi}$ such that both ζ and $\widehat{\zeta}$ are supported in Q_{A} is zero.

Reduction to Jordan block

Proposition

$Q_{A \oplus B} \subset Q_{A} \times Q_{B}$

Proposition

$Q_{A \oplus B} \subset Q_{A} \times Q_{B}$

Proof.

$$
\begin{aligned}
& \binom{v}{w} \otimes\left(\begin{array}{ll}
\phi & \psi
\end{array}\right)=\left(\begin{array}{cc}
v \otimes \phi & * \\
* & w \otimes \psi
\end{array}\right) \\
& {\left[\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right),\left(\begin{array}{ll}
X & Y \\
Z & W
\end{array}\right)\right]=\left(\begin{array}{cc}
{[A, X]} & * \\
* & {[B, W]}
\end{array}\right)}
\end{aligned}
$$

Proposition

$$
Q_{A \oplus B} \subset Q_{A} \times Q_{B}
$$

Proof.

$$
\begin{aligned}
& \binom{v}{w} \otimes\left(\begin{array}{ll}
\phi & \psi
\end{array}\right)=\left(\begin{array}{cc}
v \otimes \phi & * \\
* & w \otimes \psi
\end{array}\right) \\
& {\left[\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right),\left(\begin{array}{ll}
X & Y \\
Z & W
\end{array}\right)\right]=\left(\begin{array}{cc}
{[A, X]} & * \\
* & {[B, W]}
\end{array}\right)}
\end{aligned}
$$

Hence we can assume that $A=J_{n}$ is one Jordan block.

$$
Q_{A}=\left\{(v, \phi) \in V \times V^{*} \mid v \otimes \phi \in\left[A, g g_{n}\right]\right\}
$$

$$
\begin{aligned}
Q_{A} & =\left\{(v, \phi) \in V \times V^{*} \mid v \otimes \phi \in\left[A, g I_{n}\right]\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid v \otimes \phi \perp \mathfrak{g}_{A}\right\}
\end{aligned}
$$

$$
\begin{aligned}
Q_{A} & =\left\{(v, \phi) \in V \times V^{*} \mid V \otimes \phi \in\left[A, g I_{n}\right]\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid \boldsymbol{V} \otimes \phi \perp \mathfrak{g}_{A}\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid \phi(C V)=0 \forall C \in \mathfrak{g}_{A}\right\}
\end{aligned}
$$

$$
\begin{aligned}
Q_{A} & =\left\{(v, \phi) \in V \times V^{*} \mid V \otimes \phi \in\left[A, g_{n}\right]\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid V \otimes \phi \perp \mathfrak{g}_{A}\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid \phi(C v)=0 \forall C \in \mathfrak{g}_{A}\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid \phi\left(A^{i} v\right)=0 \forall i \geq 0\right\}
\end{aligned}
$$

$$
\begin{aligned}
Q_{A} & =\left\{(v, \phi) \in V \times V^{*} \mid v \otimes \phi \in\left[A, g I_{n}\right]\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid V \otimes \phi \perp \mathfrak{g}_{A}\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid \phi(C V)=0 \forall C \in \mathfrak{g}_{A}\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid \phi\left(A^{i} v\right)=0 \forall i \geq 0\right\} \subset Z(B)
\end{aligned}
$$

where $B(v, \phi):=\phi(v)$.

$$
\begin{aligned}
Q_{A} & =\left\{(v, \phi) \in V \times V^{*} \mid v \otimes \phi \in\left[A, g I_{n}\right]\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid V \otimes \phi \perp \mathfrak{g}_{A}\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid \phi(C V)=0 \forall C \in \mathfrak{g}_{A}\right\}= \\
& =\left\{(v, \phi) \in V \times V^{*} \mid \phi\left(A^{i} v\right)=0 \forall i \geq 0\right\} \subset Z(B)
\end{aligned}
$$

where $B(v, \phi):=\phi(v)$.
$\operatorname{Supp}(\zeta), \operatorname{Supp}(\widehat{\zeta}) \subset Z(B) \Rightarrow \zeta$ is abs-homogeneous of degree n.

Proof for Jordan block

- Denote $U:=\left(V-K e r A^{n-1}\right) \times V^{*}$
- Denote $U:=\left(V-\operatorname{Ker}^{n-1}\right) \times V^{*}$

We have

$$
U \cap Q_{A} \subset V \times 0
$$

- Denote $U:=\left(V-K e r A^{n-1}\right) \times V^{*}$

We have

$$
U \cap Q_{A} \subset V \times 0
$$

Hence $\left.\zeta\right|_{u}=0$.

- Denote $U:=\left(V-K e r A^{n-1}\right) \times V^{*}$

We have

$$
U \cap Q_{A} \subset V \times 0
$$

Hence $\zeta \mid u=0$. So $\operatorname{Supp}(\zeta) \subset K e r A^{n-1} \times V^{*}$.

- Denote $U:=\left(V-K e r A^{n-1}\right) \times V^{*}$

We have

$$
U \cap Q_{A} \subset V \times 0
$$

Hence $\left.\zeta\right|_{u}=0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{KerA}^{n-1} \times V^{*}$. Similarly, $\operatorname{Supp}(\zeta) \subset \operatorname{Ker} A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1}$.

- Denote $U:=\left(V-K e r A^{n-1}\right) \times V^{*}$

We have

$$
U \cap Q_{A} \subset V \times 0
$$

Hence $\left.\zeta\right|_{u}=0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}^{n-1} \times V^{*}$. Similarly, $\operatorname{Supp}(\zeta) \subset K e r A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1}$. Similarly, $\operatorname{Supp}(\widehat{\zeta}) \subset K e r A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1}$.

- Denote $U:=\left(V-K e r A^{n-1}\right) \times V^{*}$

We have

$$
U \cap Q_{A} \subset V \times 0
$$

Hence $\left.\zeta\right|_{u}=0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}^{n-1} \times V^{*}$. Similarly, $\operatorname{Supp}(\zeta) \subset K e r A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1}$. Similarly, $\operatorname{Supp}(\widehat{\zeta}) \subset K e r A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1}$. Hence ζ is invariant with respect to shifts by $\operatorname{Im} A^{n-1} \times \operatorname{Im}\left(A^{*}\right)^{n-1}$.

- Denote $U:=\left(V-K e r A^{n-1}\right) \times V^{*}$

We have

$$
U \cap Q_{A} \subset V \times 0
$$

Hence $\left.\zeta\right|_{u}=0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}^{n-1} \times V^{*}$.
Similarly, $\operatorname{Supp}(\zeta) \subset K e r A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1}$.
Similarly, $\operatorname{Supp}(\widehat{\zeta}) \subset K e r A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1}$.
Hence ζ is invariant with respect to shifts by $\operatorname{Im} A^{n-1} \times \operatorname{Im}\left(A^{*}\right)^{n-1}$. Therefore
$\zeta \in \mathcal{S}^{*}\left(\operatorname{Ker}^{n-1} / \operatorname{Im} A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1} / \operatorname{Im}\left(A^{*}\right)^{n-1}\right)=\mathcal{S}^{*}\left(V_{n-2} \times V_{n-2}^{*}\right)$.

- Denote $U:=\left(V-K e r A^{n-1}\right) \times V^{*}$

We have

$$
U \cap Q_{A} \subset V \times 0
$$

Hence $\left.\zeta\right|_{u}=0$. So $\operatorname{Supp}(\zeta) \subset \operatorname{Ker}^{n-1} \times V^{*}$.
Similarly, $\operatorname{Supp}(\zeta) \subset K e r A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1}$.
Similarly, $\operatorname{Supp}(\widehat{\zeta}) \subset K e r A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1}$.
Hence ζ is invariant with respect to shifts by $\operatorname{Im} A^{n-1} \times \operatorname{Im}\left(A^{*}\right)^{n-1}$. Therefore
$\zeta \in \mathcal{S}^{*}\left(\operatorname{Ker}^{n-1} / \operatorname{Im} A^{n-1} \times \operatorname{Ker}\left(A^{*}\right)^{n-1} / \operatorname{Im}\left(A^{*}\right)^{n-1}\right)=\mathcal{S}^{*}\left(V_{n-2} \times V_{n-2}^{*}\right)$.
By induction $\zeta=0$.

Summary

Flowchart

$$
s l(V) \times V \times V_{\text {descent }}^{* * H . C h} \mathcal{N} \times \Gamma \xrightarrow{\mathcal{N}_{i}} \times \Gamma \xrightarrow{\nu_{\lambda}} \widetilde{\mathcal{N}_{i}}
$$

Fourier transform and \downarrow homogeneity theorem

$$
\begin{gathered}
Q_{J_{n}}+ \\
\text { Homogeneity }
\end{gathered}
$$

Orthogonal and unitary groups

Let D be either F or a quadratic extension of F. Let V be a vector space over D. Let < , > be a non-degenerate hermitian form on V. Let $W:=V \oplus D$. Extend $<,>$ to W in the obvious way. Consider the embedding of $U(V)$ into $U(W)$.

Orthogonal and unitary groups

Let D be either F or a quadratic extension of F. Let V be a vector space over D. Let < , > be a non-degenerate hermitian form on V. Let $W:=V \oplus D$. Extend $<,>$ to W in the obvious way. Consider the embedding of $U(V)$ into $U(W)$.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann)

Every $U(V)$ - invariant distribution on $U(W)$ is invariant with respect to transposition.

Orthogonal and unitary groups

Let D be either F or a quadratic extension of F. Let V be a vector space over D. Let $<,>$ be a non-degenerate hermitian form on V. Let $W:=V \oplus D$. Extend $<$, > to W in the obvious way. Consider the embedding of $U(V)$ into $U(W)$.

Theorem

Every $U(V)$ - invariant distribution on $U(W)$ is invariant with respect to transposition.

- $G:=U(V)$
- $\widetilde{G}:=G \rtimes\{1, \sigma\}, \chi$ as before.
- $X:=s u(V) \times V$
- \widetilde{G} acts on X by $g(A, v)=\left(g A g^{-1}, g v\right), \sigma(A, v)=(-\bar{A},-\bar{v})$.

Orthogonal and unitary groups

Let D be either F or a quadratic extension of F. Let V be a vector space over D. Let < , > be a non-degenerate hermitian form on V. Let $W:=V \oplus D$. Extend $<,>$ to W in the obvious way. Consider the embedding of $U(V)$ into $U(W)$.

Theorem

Every $U(V)$ - invariant distribution on $U(W)$ is invariant with respect to transposition.

- $G:=U(V)$
- $\tilde{G}:=G \rtimes\{1, \sigma\}, \chi$ as before.
- $X:=s u(V) \times V$
- \tilde{G} acts on X by $g(A, v)=\left(g A g^{-1}, g v\right), \sigma(A, v)=(-\bar{A},-\bar{v})$.

Equivalent formulation:

Theorem

$\mathcal{S}^{*}(X)^{\widetilde{\mathrm{G}}, \chi}=0$.

Sketch of the proof

- Let $\mathcal{N} \subset \operatorname{su}(V)$ be the cone of nilpotent elements
- 「 $:=\{v \in V,<v, v>=0\}$

Sketch of the proof

- Let $\mathcal{N} \subset s u(V)$ be the cone of nilpotent elements
- 「: $=\{v \in V,<v, v>=0\}$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in $\mathcal{N} \times \Gamma$.

Sketch of the proof

- Let $\mathcal{N} \subset \operatorname{su}(V)$ be the cone of nilpotent elements
- 「: $=\{v \in V,<v, v>=0\}$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in $\mathcal{N} \times \Gamma$.

- $\nu_{\lambda}(A, v):=\left(A+\lambda v \otimes v^{t}-\frac{\lambda}{n}<v, v>l d, v\right), \bar{\lambda}=-\lambda$.

Sketch of the proof

- Let $\mathcal{N} \subset \operatorname{su}(V)$ be the cone of nilpotent elements
- 「: $=\{v \in V,<v, v>=0\}$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in $\mathcal{N} \times \Gamma$.

- $\nu_{\lambda}(A, v):=\left(A+\lambda v \otimes v^{t}-\frac{\lambda}{n}<v, v>I d, v\right), \bar{\lambda}=-\lambda$.
- $\mu_{\lambda}(A, v):=\left(A+\lambda\left(v \otimes v^{t} A+A v \otimes v^{t}\right), v\right)$

Sketch of the proof

- Let $\mathcal{N} \subset \operatorname{su}(V)$ be the cone of nilpotent elements
- $\Gamma:=\{v \in V,<v, v>=0\}$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^{*}(X)^{\widetilde{G}, \chi}$ is supported in $\mathcal{N} \times \Gamma$.

- $\nu_{\lambda}(A, v):=\left(A+\lambda v \otimes v^{t}-\frac{\lambda}{n}<v, v>I d, v\right), \bar{\lambda}=-\lambda$.
- $\mu_{\lambda}(A, v):=\left(A+\lambda\left(v \otimes v^{t} A+A v \otimes v^{t}\right), v\right)$

Lemma (Key)

Any $\zeta \in \mathcal{S}^{*}(V)^{\tilde{G}_{A, \chi}}$ such that both ζ and $\widehat{\zeta}$ are supported in Q_{A} is zero.

