Multiplicity One Theorems

D. Gourevitch

http://www.math.ias.edu/~dimagur

Formulation

Let *F* be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every $GL_n(F)$ -invariant distribution on $GL_{n+1}(F)$ is transposition invariant.

Formulation

Let F be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every $GL_n(F)$ -invariant distribution on $GL_{n+1}(F)$ is transposition invariant.

It has the following corollary in representation theory.

Theorem

Let π be an irreducible admissible representation of $\mathrm{GL}_{n+1}(F)$ and τ be an irreducible admissible representation of $\mathrm{GL}_n(F)$. Then

dim
$$Hom_{GL_n(F)}(\pi, \tau) \leq 1$$
.

Formulation

Let *F* be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every $GL_n(F)$ -invariant distribution on $GL_{n+1}(F)$ is transposition invariant.

It has the following corollary in representation theory.

Theorem

Let π be an irreducible admissible representation of $\mathrm{GL}_{n+1}(F)$ and τ be an irreducible admissible representation of $\mathrm{GL}_n(F)$. Then

$$\dim Hom_{\mathrm{GL}_n(F)}(\pi,\tau) \leq 1.$$

Similar theorems hold for orthogonal and unitary groups.

Distributions

Notation

Let M be a smooth manifold. We denote by $C_c^\infty(M)$ the space of smooth compactly supported functions on M. We will consider the space $(C_c^\infty(M))^*$ of distributions on M. Sometimes we will also consider the space $\mathcal{S}^*(M)$ of Schwartz distributions on M.

Distributions

Notation

Let M be a smooth manifold. We denote by $C_c^\infty(M)$ the space of smooth compactly supported functions on M. We will consider the space $(C_c^\infty(M))^*$ of distributions on M. Sometimes we will also consider the space $\mathcal{S}^*(M)$ of Schwartz distributions on M.

Definition

An ℓ -space is a Hausdorff locally compact totally disconnected topological space. For an ℓ -space X we denote by $\mathcal{S}(X)$ the space of compactly supported locally constant functions on X. We let $\mathcal{S}^*(X) := \mathcal{S}(X)^*$ be the space of distributions on X.

- $\widetilde{G} := GL_n(F) \rtimes \{1, \sigma\}$
- Define a character χ of \widetilde{G} by $\chi(GL_n(F)) = \{1\}$, $\chi(\widetilde{G} GL_n(F)) = \{-1\}$.

- $\widetilde{G} := GL_n(F) \times \{1, \sigma\}$
- Define a character χ of \widetilde{G} by $\chi(GL_n(F)) = \{1\}$, $\chi(\widetilde{G} GL_n(F)) = \{-1\}$.

$$\mathcal{S}^*(GL_{n+1}(F))^{\widetilde{G},\chi}=0.$$

$$\mathcal{S}^*(gl_{n+1}(F))^{\widetilde{G},\chi}=0.$$

$$\mathcal{S}^*(gl_{n+1}(F))^{\widetilde{G},\chi}=0.$$

$$g\begin{pmatrix} A_{n\times n} & v_{n\times 1} \\ \phi_{1\times n} & \lambda \end{pmatrix}g^{-1} = \begin{pmatrix} gAg^{-1} & gv \\ (g^*)^{-1}\phi & \lambda \end{pmatrix} \text{ and } \begin{pmatrix} A & v \\ \phi & \lambda \end{pmatrix}^t = \begin{pmatrix} A^t & \phi^t \\ v^t & \lambda \end{pmatrix}$$

$$\mathcal{S}^*(gl_{n+1}(F))^{\widetilde{G},\chi}=0.$$

$$g\begin{pmatrix} A_{n\times n} & v_{n\times 1} \\ \phi_{1\times n} & \lambda \end{pmatrix}g^{-1} = \begin{pmatrix} gAg^{-1} & gv \\ (g^*)^{-1}\phi & \lambda \end{pmatrix} \text{ and } \begin{pmatrix} A & v \\ \phi & \lambda \end{pmatrix}^t = \begin{pmatrix} A^t & \phi^t \\ v^t & \lambda \end{pmatrix}$$

- $V := F^n$
- $X := sl(V) \times V \times V^*$

$$\mathcal{S}^*(gl_{n+1}(F))^{\widetilde{G},\chi}=0.$$

$$g\begin{pmatrix} A_{n\times n} & v_{n\times 1} \\ \phi_{1\times n} & \lambda \end{pmatrix}g^{-1} = \begin{pmatrix} gAg^{-1} & gv \\ (g^*)^{-1}\phi & \lambda \end{pmatrix} \text{ and } \begin{pmatrix} A & v \\ \phi & \lambda \end{pmatrix}^t = \begin{pmatrix} A^t & \phi^t \\ v^t & \lambda \end{pmatrix}$$

- $V := F^n$
- $X := sl(V) \times V \times V^*$
- \widetilde{G} acts on X by $g(A, v, \phi) = (gAg^{-1}, gv, (g^*)^{-1}\phi)$ $\sigma(A, v, \phi) = (A^t, \phi^t, v^t).$

Theorem

$$\mathcal{S}^*(gl_{n+1}(F))^{\widetilde{G},\chi}=0.$$

$$g\begin{pmatrix} A_{n\times n} & v_{n\times 1} \\ \phi_{1\times n} & \lambda \end{pmatrix}g^{-1} = \begin{pmatrix} gAg^{-1} & gv \\ (g^*)^{-1}\phi & \lambda \end{pmatrix} \text{ and } \begin{pmatrix} A & v \\ \phi & \lambda \end{pmatrix}^t = \begin{pmatrix} A^t & \phi^t \\ v^t & \lambda \end{pmatrix}$$

- $V := F^n$
- $X := sl(V) \times V \times V^*$
- G acts on X by $g(A, v, \phi) = (gAg^{-1}, gv, (g^*)^{-1}\phi)$ $\sigma(A, v, \phi) = (A^t, \phi^t, v^t).$

Equivalent formulation:

$$\mathcal{S}^*(X)^{\widetilde{G},\chi}=0.$$



Setting

A group G acts on a space X, and χ is a character of G. We want to show $S^*(X)^{G,\chi} = 0$.

Setting

A group G acts on a space X, and χ is a character of G. We want to show $S^*(X)^{G,\chi} = 0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and Z := X - U. Suppose that $S^*(U)^{G,\chi} = 0$ and $S_X^*(Z)^{G,\chi} = 0$. Then $S^*(X)^{G,\chi} = 0$.

Setting

A group G acts on a space X, and χ is a character of G. We want to show $S^*(X)^{G,\chi} = 0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and Z := X - U. Suppose that $S^*(U)^{G,\chi} = 0$ and $S_X^*(Z)^{G,\chi} = 0$. Then $S^*(X)^{G,\chi} = 0$.

Proof.

$$0 \to \mathcal{S}_{x}^{*}(Z)^{G,\chi} \to \mathcal{S}^{*}(X)^{G,\chi} \to \mathcal{S}^{*}(U)^{G,\chi}.$$

Setting

A group G acts on a space X, and χ is a character of G. We want to show $S^*(X)^{G,\chi} = 0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and Z := X - U. Suppose that $S^*(U)^{G,\chi} = 0$ and $S_X^*(Z)^{G,\chi} = 0$. Then $S^*(X)^{G,\chi} = 0$.

Proof.

$$0 \to \mathcal{S}_X^*(Z)^{G,\chi} \to \mathcal{S}^*(X)^{G,\chi} \to \mathcal{S}^*(U)^{G,\chi}.$$

For ℓ -spaces, $\mathcal{S}_X^*(Z)^{G,\chi} \cong \mathcal{S}^*(Z)^{G,\chi}$.

Setting

A group G acts on a space X, and χ is a character of G. We want to show $S^*(X)^{G,\chi} = 0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and Z := X - U. Suppose that $S^*(U)^{G,\chi} = 0$ and $S_X^*(Z)^{G,\chi} = 0$. Then $S^*(X)^{G,\chi} = 0$.

Proof.

$$0 \to \mathcal{S}_X^*(Z)^{G,\chi} \to \mathcal{S}^*(X)^{G,\chi} \to \mathcal{S}^*(U)^{G,\chi}.$$

For ℓ -spaces, $\mathcal{S}_X^*(Z)^{G,\chi} \cong \mathcal{S}^*(Z)^{G,\chi}$.

For smooth manifolds, there is a slightly more complicated statement which takes into account transversal derivatives.

Frobenius descent

Theorem (Bernstein, Baruch, ...)

Let $\psi: X \to Z$ be a map.

Let G act on X and Z such that $\psi(gx) = g\psi(x)$.

Suppose that the action of G on Z is transitive.

Suppose that both G and $Stab_G(z)$ are unimodular. Then

$$\mathcal{S}^*(X)^{G,\chi} \cong \mathcal{S}^*(X_Z)^{Stab_G(z),\chi}.$$

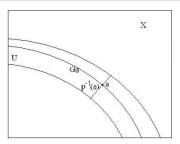
Generalized Harish-Chandra descent

Theorem

Let a reductive group G act on a smooth affine algebraic variety X. Let χ be a character of G. Suppose that for any $a \in X$ s.t. the orbit Ga is closed we have

$$\mathcal{S}^*(N_{Ga,a}^X)^{G_a,\chi}=0.$$

Then $S^*(X)^{G,\chi} = 0$.



Fourier transform

Let V be a finite dimensional vector space over F and Q be a non-degenerate quadratic form on V. Let $\widehat{\xi}$ denote the Fourier transform of ξ defined using Q.

Proposition

Let G act on V linearly and preserving Q. Let $\xi \in S^*(V)^{G,\chi}$. Then $\widehat{\xi} \in S^*(V)^{G,\chi}$.

Fourier transform and homogeneity

 We call a distribution ξ ∈ S*(V) abs-homogeneous of degree d if for any t ∈ F[×],

$$h_t(\xi) = u(t)|t|^d \xi,$$

where h_t denotes the homothety action on distributions and u is some unitary character of F^{\times} .

Fourier transform and homogeneity

 We call a distribution ξ ∈ S*(V) abs-homogeneous of degree d if for any t ∈ F[×],

$$h_t(\xi) = u(t)|t|^d \xi,$$

where h_t denotes the homothety action on distributions and u is some unitary character of F^{\times} .

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is **non-archimedean**. Let $\xi \in \mathcal{S}_V^*(Z(Q))$ be s.t. $\widehat{\xi} \in \mathcal{S}_V^*(Z(Q))$. Then ξ is abs-homogeneous of degree $\frac{1}{2}$ dimV.

Fourier transform and homogeneity

 We call a distribution ξ ∈ S*(V) abs-homogeneous of degree d if for any t ∈ F[×],

$$h_t(\xi) = u(t)|t|^d \xi,$$

where h_t denotes the homothety action on distributions and u is some unitary character of F^{\times} .

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is **non-archimedean**. Let $\xi \in \mathcal{S}_V^*(Z(Q))$ be s.t. $\widehat{\xi} \in \mathcal{S}_V^*(Z(Q))$. Then ξ is abs-homogeneous of degree $\frac{1}{2}$ dimV.

Theorem (archimedean homogeneity)

Let F be any local field. Let $L \subset \mathcal{S}_V^*(Z(Q))$ be a non-zero linear subspace s. t. $\forall \xi \in L$ we have $\widehat{\xi} \in L$ and $Q\xi \in L$. Then there exists a non-zero distribution $\xi \in L$ which is abs-homogeneous of degree $\frac{1}{2}$ dimV or of degree $\frac{1}{2}$ dimV + 1.

Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of T^*X .

Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of T^*X .

Singular Support	Wave front set
(=Characteristic variety)	
Defined using D-modules	Defined using Fourier transform
Available only in the	Available in both cases
Archimedean case	

Singular Support and Wave Front Set

To a distribution ξ on X one assigns two subsets of T^*X .

Singular Support	Wave front set
(=Characteristic variety)	
Defined using D-modules	Defined using Fourier transform
Available only in the	Available in both cases
Archimedean case	

In the non-Archimedean case we define the singular support to be the Zariski closure of the wave front set.

Let X be a smooth algebraic variety.

• Let $\xi \in S^*(X)$. Then $\overline{\operatorname{Supp}(\xi)}_{Zar} = p_X(SS(\xi))$, where $p_X : T^*X \to X$ is the projection.

Let *X* be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^*(X)$. Then $\overline{\operatorname{Supp}(\xi)}_{Zar} = p_X(SS(\xi))$, where $p_X : T^*X \to X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in \mathcal{S}^*(X)^{G,\chi}$. Then

$$SS(\xi) \subset \{(x,\phi) \in T^*X \mid \forall \alpha \in \mathfrak{g} \quad \phi(\alpha(x)) = 0\}.$$

Let *X* be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^*(X)$. Then $\overline{\operatorname{Supp}(\xi)}_{Zar} = p_X(SS(\xi))$, where $p_X : T^*X \to X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in \mathcal{S}^*(X)^{G,\chi}$. Then

$$SS(\xi) \subset \{(x,\phi) \in T^*X \mid \forall \alpha \in \mathfrak{g} \quad \phi(\alpha(x)) = 0\}.$$

• Let V be a linear space. Let $Z \subset V^*$ be a closed subvariety, invariant with respect to homotheties. Let $\xi \in \mathcal{S}^*(V)$. Suppose that $\operatorname{Supp}(\widehat{\xi}) \subset Z$. Then $SS(\xi) \subset V \times Z$.

Let *X* be a smooth algebraic variety.

- Let $\xi \in \mathcal{S}^*(X)$. Then $\overline{\operatorname{Supp}(\xi)}_{Zar} = p_X(SS(\xi))$, where $p_X : T^*X \to X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in \mathcal{S}^*(X)^{G,\chi}$. Then

$$SS(\xi) \subset \{(x,\phi) \in T^*X \mid \forall \alpha \in \mathfrak{g} \quad \phi(\alpha(x)) = 0\}.$$

- Let V be a linear space. Let $Z \subset V^*$ be a closed subvariety, invariant with respect to homotheties. Let $\xi \in \mathcal{S}^*(V)$. Suppose that $\operatorname{Supp}(\widehat{\xi}) \subset Z$. Then $SS(\xi) \subset V \times Z$.
- Integrability theorem: Let $\xi \in S^*(X)$. Then $SS(\xi)$ is (weakly) coisotropic.

Coisotropic varieties

Definition

Let M be a smooth algebraic variety and ω be a symplectic form on it. Let $Z \subset M$ be an algebraic subvariety. We call it M-coisotropic if the following equivalent conditions hold.

- At every smooth point $z \in Z$ we have $T_z Z \supset (T_z Z)^{\perp}$. Here, $(T_z Z)^{\perp}$ denotes the orthogonal complement to $T_z Z$ in $T_z M$ with respect to ω .
- The ideal sheaf of regular functions that vanish on \overline{Z} is closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.

Coisotropic varieties

Definition

Let M be a smooth algebraic variety and ω be a symplectic form on it. Let $Z \subset M$ be an algebraic subvariety. We call it M-coisotropic if the following equivalent conditions hold.

- At every smooth point $z \in Z$ we have $T_z Z \supset (T_z Z)^{\perp}$. Here, $(T_z Z)^{\perp}$ denotes the orthogonal complement to $T_z Z$ in $T_z M$ with respect to ω .
- The ideal sheaf of regular functions that vanish on \overline{Z} is closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.

• Every non-empty coisotropic subvariety of M has dimension at least $\frac{\dim M}{2}$.

Weakly coisotropic varieties

Definition

Let X be a smooth algebraic variety. Let $Z \subset T^*X$ be an algebraic subvariety. We call it T^*X -weakly coisotropic if one of the following equivalent conditions holds.

- For a generic smooth point a ∈ p_X(Z) and for a generic smooth point y ∈ p_X⁻¹(a) ∩ Z we have
 CN_{p_X(Z),a} ⊂ T_y(p_X⁻¹(a) ∩ Z).
- For any smooth point $a \in p_X(Z)$ the fiber $p_X^{-1}(a) \cap Z$ is locally invariant with respect to shifts by $CN_{p_X(Z),a}^X$.

Weakly coisotropic varieties

Definition

Let X be a smooth algebraic variety. Let $Z \subset T^*X$ be an algebraic subvariety. We call it T^*X -weakly coisotropic if one of the following equivalent conditions holds.

- For a generic smooth point $a \in p_X(Z)$ and for a generic smooth point $y \in p_X^{-1}(a) \cap Z$ we have $CN_{p_Y(Z),a}^X \subset T_Y(p_X^{-1}(a) \cap Z)$.
- For any smooth point $a \in p_X(Z)$ the fiber $p_X^{-1}(a) \cap Z$ is locally invariant with respect to shifts by $CN_{p_X(Z),a}^X$.
- Every non-empty weakly coisotropic subvariety of T^*X has dimension at least dim X.

Definition

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety and $R \subset T^*X$ be any subvariety. We define **the** restriction $R|_Z \subset T^*Z$ of R to Z by

$$R|_{\mathcal{Z}}:=q(\rho_X^{-1}(Z)\cap R),$$

where $q: \rho_X^{-1}(Z) \to T^*Z$ is the projection.

$$T^*X\supset p_X^{-1}(Z)\twoheadrightarrow T^*Z$$

Definition

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety and $R \subset T^*X$ be any subvariety. We define **the** restriction $R|_Z \subset T^*Z$ of R to Z by

$$R|_{\mathcal{Z}}:=q(\rho_X^{-1}(Z)\cap R),$$

where $q: p_X^{-1}(Z) \to T^*Z$ is the projection.

$$T^*X\supset p_X^{-1}(Z)\twoheadrightarrow T^*Z$$

Lemma

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety. Let $R \subset T^*X$ be a (weakly) coisotropic variety. Then, under some transversality assumption, $R|_Z \subset T^*Z$ is a (weakly) coisotropic variety.

Notation

$$S := \{ (A, v, \phi) \in X_n | A^n = 0 \text{ and } \phi(A^i v) = 0 \, \forall 0 \le i \le n \}.$$

Notation

$$S := \{ (A, v, \phi) \in X_n | A^n = 0 \text{ and } \phi(A^i v) = 0 \, \forall 0 \le i \le n \}.$$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^*(X)^{\widetilde{G},\chi}$ is supported in S.

Notation

$$S := \{ (A, v, \phi) \in X_n | A^n = 0 \text{ and } \phi(A^i v) = 0 \, \forall 0 \le i \le n \}.$$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^*(X)^{\widetilde{G},\chi}$ is supported in S.

Notation

$$S' := \{ (A, v, \phi) \in S | A^{n-1}v = (A^*)^{n-1}\phi = 0 \}.$$

Notation

$$S := \{ (A, v, \phi) \in X_n | A^n = 0 \text{ and } \phi(A^i v) = 0 \, \forall 0 \le i \le n \}.$$

By Harish-Chandra descent we can assume that any $\xi \in \mathcal{S}^*(X)^{\widetilde{G},\chi}$ is supported in S.

Notation

$$S' := \{ (A, v, \phi) \in S | A^{n-1}v = (A^*)^{n-1}\phi = 0 \}.$$

By the homogeneity theorem, the stratification method and Frobenius descent we get that any $\xi \in \mathcal{S}^*(X)^{\widetilde{G},\chi}$ is supported in S'.

Reduction to the geometric statement

Notation

$$T' = \{ ((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in X \times X \mid \forall i, j \in \{1, 2\}$$

$$(A_i, v_j, \phi_j) \in S' \text{ and } [A_1, A_2] + v_1 \otimes \phi_2 - v_2 \otimes \phi_1 = 0 \}.$$

Reduction to the geometric statement

Notation

$$T' = \{ ((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in X \times X \mid \forall i, j \in \{1, 2\}$$

$$(A_i, v_j, \phi_j) \in S' \text{ and } [A_1, A_2] + v_1 \otimes \phi_2 - v_2 \otimes \phi_1 = 0 \}.$$

It is enough to show:

Theorem (The geometric statement)

There are no non-empty $X \times X$ -weakly coisotropic subvarieties of T'.

Notation

$$T'' := \{((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in T' | A_1^{n-1} = 0\}.$$

Notation

$$T'' := \{((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in T' | A_1^{n-1} = 0\}.$$

It is easy to see that there are no non-empty $X \times X$ -weakly coisotropic subvarieties of T''.

Notation

$$T'' := \{((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in T' | A_1^{n-1} = 0\}.$$

It is easy to see that there are no non-empty $X \times X$ -weakly coisotropic subvarieties of T''.

Notation

Let $A \in sl(V)$ be a nilpotent Jordan block. Denote

$$R_A := (T' - T'')|_{\{A\} \times V \times V^*}.$$

Notation

$$T'' := \{((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in T' | A_1^{n-1} = 0\}.$$

It is easy to see that there are no non-empty $X \times X$ -weakly coisotropic subvarieties of T''.

Notation

Let $A \in sl(V)$ be a nilpotent Jordan block. Denote $R_A := (T' - T'')|_{\{A\} \times V \times V^*}$.

It is enough to show:

Lemma (Key Lemma)

There are no non-empty $V \times V^* \times V \times V^*$ -weakly coisotropic subvarieties of R_A .

Notation

$$\mathit{Q}_{\mathit{A}} := \mathit{S}' \cap (\{\mathit{A}\} \times \mathit{V} \times \mathit{V}^*) = \bigcup_{i=1}^{n-1} (\mathit{Ker}\mathit{A}^i) imes (\mathit{Ker}(\mathit{A}^*)^{n-i})$$

Notation

$$\mathit{Q}_{\mathit{A}} := \mathcal{S}' \cap (\{\mathit{A}\} \times \mathit{V} \times \mathit{V}^*) = \bigcup_{i=1}^{n-1} (\mathit{Ker}\mathit{A}^i) imes (\mathit{Ker}(\mathit{A}^*)^{n-i})$$

It is easy to see that $R_A \subset Q_A \times Q_A$

Notation

$$\mathit{Q}_{\mathit{A}} := \mathit{S}' \cap (\{\mathit{A}\} \times \mathit{V} \times \mathit{V}^*) = \bigcup_{i=1}^{n-1} (\mathit{Ker}\mathit{A}^i) imes (\mathit{Ker}(\mathit{A}^*)^{n-i})$$

It is easy to see that $R_A \subset Q_A \times Q_A$ and $Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij}$, where

$$L_{ij} := (\textit{KerA}^i) \times (\textit{Ker}(A^*)^{n-i}) \times (\textit{KerA}^j) \times (\textit{Ker}(A^*)^{n-j}).$$

Notation

$$\mathit{Q}_{\mathit{A}} := \mathit{S}' \cap (\{\mathit{A}\} \times \mathit{V} \times \mathit{V}^*) = \bigcup_{i=1}^{n-1} (\mathit{Ker}\mathit{A}^i) \times (\mathit{Ker}(\mathit{A}^*)^{n-i})$$

It is easy to see that $R_A \subset Q_A \times Q_A$ and $Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij}$, where

$$L_{ij} := (\textit{KerA}^i) \times (\textit{Ker}(A^*)^{n-i}) \times (\textit{KerA}^j) \times (\textit{Ker}(A^*)^{n-j}).$$

It is easy to see that any weakly coisotropic subvariety of $Q_A \times Q_A$ is contained in $\bigcup_{i=1}^{n-1} L_{ii}$.

Notation

$$\mathit{Q}_{\mathit{A}} := \mathit{S}' \cap (\{\mathit{A}\} \times \mathit{V} \times \mathit{V}^*) = \bigcup_{i=1}^{n-1} (\mathit{Ker}\mathit{A}^i) \times (\mathit{Ker}(\mathit{A}^*)^{n-i})$$

It is easy to see that $R_A \subset Q_A \times Q_A$ and $Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij}$, where

$$L_{ij} := (\textit{KerA}^i) \times (\textit{Ker}(A^*)^{n-i}) \times (\textit{KerA}^j) \times (\textit{Ker}(A^*)^{n-j}).$$

It is easy to see that any weakly coisotropic subvariety of $Q_A \times Q_A$ is contained in $\bigcup_{i=1}^{n-1} L_{ii}$. Hence it is enough to show that for any 0 < i < n, we have dim $R_A \cap L_{ii} < 2n$.

Notation

$$\mathit{Q}_{\mathit{A}} := \mathit{S}' \cap (\{\mathit{A}\} \times \mathit{V} \times \mathit{V}^*) = \bigcup_{i=1}^{n-1} (\mathit{Ker}\mathit{A}^i) \times (\mathit{Ker}(\mathit{A}^*)^{n-i})$$

It is easy to see that $R_A \subset Q_A \times Q_A$ and $Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij}$, where

$$L_{ij} := (\textit{KerA}^i) \times (\textit{Ker}(A^*)^{n-i}) \times (\textit{KerA}^j) \times (\textit{Ker}(A^*)^{n-j}).$$

It is easy to see that any weakly coisotropic subvariety of $Q_A \times Q_A$ is contained in $\bigcup_{i=1}^{n-1} L_{ii}$. Hence it is enough to show that for any 0 < i < n, we have dim $R_A \cap L_{ii} < 2n$. Let $f \in \mathcal{O}(L_{ii})$ be the polynomial defined by

$$f(v_1,\phi_1,v_2,\phi_2):=(v_1)_i(\phi_2)_{i+1}-(v_2)_i(\phi_1)_{i+1}.$$

Notation

$$\mathit{Q}_{\mathit{A}} := \mathit{S}' \cap (\{\mathit{A}\} \times \mathit{V} \times \mathit{V}^*) = \bigcup_{i=1}^{n-1} (\mathit{Ker}\mathit{A}^i) \times (\mathit{Ker}(\mathit{A}^*)^{n-i})$$

It is easy to see that $R_A \subset Q_A \times Q_A$ and $Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij}$, where

$$L_{ij} := (\textit{KerA}^i) \times (\textit{Ker}(A^*)^{n-i}) \times (\textit{KerA}^j) \times (\textit{Ker}(A^*)^{n-j}).$$

It is easy to see that any weakly coisotropic subvariety of $Q_A \times Q_A$ is contained in $\bigcup_{i=1}^{n-1} L_{ii}$. Hence it is enough to show that for any 0 < i < n, we have dim $R_A \cap L_{ii} < 2n$. Let $f \in \mathcal{O}(L_{ii})$ be the polynomial defined by

$$f(v_1, \phi_1, v_2, \phi_2) := (v_1)_i(\phi_2)_{i+1} - (v_2)_i(\phi_1)_{i+1}.$$

It is enough to show that $f(R_A \cap L_{ii}) = \{0\}$.

Let
$$(v_1, \phi_1, v_2, \phi_2) \in L_{ii}$$
. Let $M := v_1 \otimes \phi_2 - v_2 \otimes \phi_1$.

Let $(v_1, \phi_1, v_2, \phi_2) \in L_{ii}$. Let $M := v_1 \otimes \phi_2 - v_2 \otimes \phi_1$. Clearly, M is of the form

$$M = \begin{pmatrix} 0_{i \times i} & * \\ 0_{(n-i) \times i} & 0_{(n-i) \times (n-i)} \end{pmatrix}.$$

Let $(v_1, \phi_1, v_2, \phi_2) \in L_{ii}$. Let $M := v_1 \otimes \phi_2 - v_2 \otimes \phi_1$. Clearly, M is of the form

$$M = \begin{pmatrix} 0_{i \times i} & * \\ 0_{(n-i) \times i} & 0_{(n-i) \times (n-i)} \end{pmatrix}.$$

We know that there exists a nilpotent B satisfying [A, B] = M.

Let $(v_1, \phi_1, v_2, \phi_2) \in L_{ii}$. Let $M := v_1 \otimes \phi_2 - v_2 \otimes \phi_1$. Clearly, M is of the form

$$M = \begin{pmatrix} 0_{i \times i} & * \\ 0_{(n-i) \times i} & 0_{(n-i) \times (n-i)} \end{pmatrix}.$$

We know that there exists a nilpotent B satisfying [A, B] = M. Hence this B is upper nilpotent, which implies $M_{i,i+1} = 0$

Let $(v_1, \phi_1, v_2, \phi_2) \in L_{ii}$. Let $M := v_1 \otimes \phi_2 - v_2 \otimes \phi_1$. Clearly, M is of the form

$$M = \begin{pmatrix} 0_{i \times i} & * \\ 0_{(n-i) \times i} & 0_{(n-i) \times (n-i)} \end{pmatrix}.$$

We know that there exists a nilpotent B satisfying [A, B] = M. Hence this B is upper nilpotent, which implies $M_{i,i+1} = 0$ and hence $f(v_1, \phi_1, v_2, \phi_2) = 0$.

$$sl(V) \times V \times V^*$$

$$sI(V) \times V \times V^* \xrightarrow{H.Ch.} S$$

$$sl(V) \times V \times V^* \xrightarrow{H.Ch.} S \xrightarrow{Fourier transform \ and \ homogeneity theorem} S'$$

$$sl(V) \times V \times V^* \xrightarrow{H.Ch.} S \xrightarrow{Fourier\ transform\ and\ homogeneity\ theorem} S' \xrightarrow{Fourier\ transform\ and\ integrability\ theorem} T'$$

$$Sl(V) imes V imes V^* \xrightarrow{H.Ch.} S \xrightarrow{Fourier\ transform\ and\ homogeneity\ theorem} S' \xrightarrow{Fourier\ transform\ and\ integrability\ theorem} T' \ T' - T''$$

$$SI(V) imes V imes V^* \xrightarrow{H.Ch.} S \xrightarrow{Fourier\ transform\ and\ homogeneity\ theorem} S' \xrightarrow{Fourier\ transform\ and\ integrability\ theorem} T'$$

$$SI(V) \times V \times V^* \xrightarrow{H.Ch.} S \xrightarrow{Fourier\ transform\ and\ homogeneity\ theorem} S' \xrightarrow{Fourier\ transform\ and\ integrability\ theorem} T'$$

$$L_{jj} \cap R_A \xleftarrow{R_A \subset \bigcup L_{ij}} R_A \xleftarrow{restriction} T' - T''$$

$$SI(V) \times V \times V^* \xrightarrow{H.Ch.} S \xrightarrow{Fourier\ transform\ and\ homogeneity\ theorem} S' \xrightarrow{Fourier\ transform\ and\ integrability\ theorem} T'$$

$$\emptyset \xleftarrow{f(R_A \cap L_{ii}) = 0} L_{ii} \cap R_A \xleftarrow{R_A \subset \bigcup L_{ij}} R_A \xleftarrow{restriction} T' - T''$$