Multiplicity One Theorems

D. Gourevitch

http://www.math.ias.edu/~dimagur
Let F be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every $GL_n(F)$-invariant distribution on $GL_{n+1}(F)$ is transposition invariant.
Formulation

Let F be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every $GL_n(F)$-invariant distribution on $GL_{n+1}(F)$ is transposition invariant.

It has the following corollary in representation theory.

Theorem

Let π be an irreducible admissible representation of $GL_{n+1}(F)$ and τ be an irreducible admissible representation of $GL_n(F)$. Then

\[\dim \text{Hom}_{GL_n(F)}(\pi, \tau) \leq 1. \]
Let F be a local field of characteristic zero.

Theorem (Aizenbud-Gourevitch-Rallis-Schiffmann-Sun-Zhu)

Every $GL_n(F)$-invariant distribution on $GL_{n+1}(F)$ is transposition invariant.

It has the following corollary in representation theory.

Theorem

Let π be an irreducible admissible representation of $GL_{n+1}(F)$ and τ be an irreducible admissible representation of $GL_n(F)$. Then

$$\dim \text{Hom}_{GL_n(F)}(\pi, \tau) \leq 1.$$

Similar theorems hold for orthogonal and unitary groups.
Let M be a smooth manifold. We denote by $C_c^\infty(M)$ the space of smooth compactly supported functions on M. We will consider the space $(C_c^\infty(M))^*$ of distributions on M. Sometimes we will also consider the space $S^*(M)$ of Schwartz distributions on M.
Notation

Let M be a smooth manifold. We denote by $C_c^\infty(M)$ the space of smooth compactly supported functions on M. We will consider the space $(C_c^\infty(M))^*$ of distributions on M. Sometimes we will also consider the space $S^*(M)$ of Schwartz distributions on M.

Definition

An ℓ-space is a Hausdorff locally compact totally disconnected topological space. For an ℓ-space X we denote by $S(X)$ the space of compactly supported locally constant functions on X. We let $S^*(X) := S(X)^*$ be the space of distributions on X.
\[\tilde{G} := GL_n(F) \rtimes \{1, \sigma\} \]

Define a character \(\chi \) of \(\tilde{G} \) by \(\chi(GL_n(F)) = \{1\} \),\
\(\chi(\tilde{G} - GL_n(F)) = \{-1\} \).
\[\tilde{G} := GL_n(F) \rtimes \{1, \sigma\} \]

Define a character \(\chi \) of \(\tilde{G} \) by
\[
\chi(GL_n(F)) = \{1\}, \quad \chi(\tilde{G} - GL_n(F)) = \{-1\}.
\]

Equivalent formulation:

Theorem

\[S^*(GL_{n+1}(F))^{\tilde{G},\chi} = 0. \]
Equivalent formulation:

Theorem

\[S^*(gl_{n+1}(F))^{\tilde{G},\chi} = 0. \]
Equivalent formulation:

Theorem

\[S^* (gl_{n+1}(F)) \tilde{G},\chi = 0. \]

\[
g \left(\begin{pmatrix} A_{n \times n} & v_{n \times 1} \\ \phi_{1 \times n} & \lambda \end{pmatrix} \right) g^{-1} = \begin{pmatrix} gAg^{-1} & gv \\ (g^*)^{-1} & g \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} A & v \\ \phi & \lambda \end{pmatrix}^t = \begin{pmatrix} A^t & \phi^t \\ v^t & \lambda \end{pmatrix} \]
Equivalent formulation:

Theorem

\[S^*(gl_{n+1}(F)) \tilde{G},\chi = 0. \]

\[
g \begin{pmatrix} A_{n \times n} & v_{n \times 1} \\ \phi_{1 \times n} & \lambda \end{pmatrix} g^{-1} = \begin{pmatrix} gA g^{-1} & gv \\ (g^*)^{-1} \phi & \lambda \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} A & v \\ \phi & \lambda \end{pmatrix}^t = \begin{pmatrix} A^t & \phi^t \\ v^t & \lambda \end{pmatrix}
\]

- \(V := F^n \)
- \(X := sl(V) \times V \times V^* \)
Theorem

\[S^*(gl_{n+1}(F)) \tilde{G}, \chi = 0. \]

\[
g \begin{pmatrix} A_{n \times n} & v_{n \times 1} \\ \phi_{1 \times n} & \lambda \end{pmatrix} g^{-1} = \begin{pmatrix} gAg^{-1} & gv \\ (g^*)^{-1} \phi & \lambda \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} A & v \\ \phi & \lambda \end{pmatrix}^t = \begin{pmatrix} A^t & \phi^t \\ v^t & \lambda \end{pmatrix}
\]

- \(V := F^n \)
- \(X := sl(V) \times V \times V^* \)
- \(\tilde{G} \) acts on \(X \) by
 \[
g(A, v, \phi) = (gAg^{-1}, gv, (g^*)^{-1} \phi) \]
 \[
 \sigma(A, v, \phi) = (A^t, \phi^t, v^t).
 \]
Equivalent formulation:

Theorem

\[S^*(gl_{n+1}(F))^{\tilde{G},\chi} = 0. \]

\[
g \begin{pmatrix} A_{n \times n} & v_{n \times 1} \\ \phi_{1 \times n} & \lambda \end{pmatrix} g^{-1} = \begin{pmatrix} gAg^{-1} & gv \\ (g^*)^{-1} & \lambda \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} A & v \\ \phi & \lambda \end{pmatrix}^t = \begin{pmatrix} A^t & \phi^t \\ v^t & \lambda \end{pmatrix}
\]

- \(V := F^n \)
- \(X := sl(V) \times V \times V^* \)
- \(\tilde{G} \) acts on \(X \) by
 \[
g(A, v, \phi) = (gAg^{-1}, gv, (g^*)^{-1} \phi) \]
 \[
\sigma(A, v, \phi) = (A^t, \phi^t, v^t).
\]

Equivalent formulation:

Theorem

\[S^*(X)^{\tilde{G},\chi} = 0. \]
A group G acts on a space X, and χ is a character of G. We want to show $S^*(X)^G,\chi = 0$.

Setting
Setting

A group G acts on a space X, and χ is a character of G. We want to show $S^*(X)^G,\chi = 0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z := X - U$. Suppose that $S^*(U)^G,\chi = 0$ and $S^*_X(Z)^G,\chi = 0$. Then $S^*(X)^G,\chi = 0$.
A group G acts on a space X, and χ is a character of G. We want to show $S^*(X)^G,\chi = 0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z := X - U$. Suppose that $S^*(U)^G,\chi = 0$ and $S^*_\chi(Z)^G,\chi = 0$. Then $S^*(X)^G,\chi = 0$.

Proof.

$$0 \to S^*_\chi(Z)^G,\chi \to S^*(X)^G,\chi \to S^*(U)^G,\chi.$$
First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $S^*(X)^G,\chi = 0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z := X - U$. Suppose that $S^*(U)^G,\chi = 0$ and $S^*_\chi(Z)^G,\chi = 0$. Then $S^*(X)^G,\chi = 0$.

Proof.

$0 \to S^*_\chi(Z)^G,\chi \to S^*(X)^G,\chi \to S^*(U)^G,\chi.$

For ℓ-spaces, $S^*_\chi(Z)^G,\chi \cong S^*(Z)^G,\chi$.
First tool: Stratification

Setting

A group G acts on a space X, and χ is a character of G. We want to show $S^*(X)^G,\chi = 0$.

Proposition

Let $U \subset X$ be an open G-invariant subset and $Z := X - U$. Suppose that $S^*(U)^G,\chi = 0$ and $S^*(Z)^G,\chi = 0$. Then $S^*(X)^G,\chi = 0$.

Proof.

$0 \to S^*_\chi(Z)^G,\chi \to S^*(X)^G,\chi \to S^*(U)^G,\chi$.

For ℓ-spaces, $S^*_\chi(Z)^G,\chi \cong S^*(Z)^G,\chi$.

For smooth manifolds, there is a slightly more complicated statement which takes into account transversal derivatives.
Theorem (Bernstein, Baruch, ...)

Let \(\psi : X \to Z \) be a map.
Let \(G \) act on \(X \) and \(Z \) such that \(\psi(gx) = g\psi(x) \).
Suppose that the action of \(G \) on \(Z \) is transitive.
Suppose that both \(G \) and \(\text{Stab}_G(z) \) are unimodular. Then

\[
S^*(X)^{G,\chi} \cong S^*(X_z)^{\text{Stab}_G(z),\chi}.
\]
Generalized Harish-Chandra descent

Theorem

Let a reductive group G act on a smooth affine algebraic variety X. Let χ be a character of G. Suppose that for any $a \in X$ s.t. the orbit Ga is closed we have

$$S^*(N^X_{Ga,a})^{Ga,\chi} = 0.$$

Then $S^*(X)^{G,\chi} = 0$.

D. Gourevitch

Multiplicity One Theorems
Let V be a finite dimensional vector space over F and Q be a non-degenerate quadratic form on V. Let $\widehat{\xi}$ denote the Fourier transform of ξ defined using Q.

Proposition

Let G act on V linearly and preserving Q. Let $\xi \in S^*(V)^G,\chi$. Then $\widehat{\xi} \in S^*(V)^G,\chi$.

D. Gourevitch

Multiplicity One Theorems
We call a distribution $\xi \in S^*(V)$ **abs-homogeneous of degree** d if for any $t \in F^\times$,

$$h_t(\xi) = u(t)|t|^d \xi,$$

where h_t denotes the homothety action on distributions and u is some unitary character of F^\times.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let $\xi \in S^*(V)$ be such that $\hat{\xi} \in S^*(V)$. Then ξ is abs-homogeneous of degree $\frac{1}{2} \dim V$.

Theorem (archimedean homogeneity)

Let F be any local field. Let $L \subset S^*(V)$ be a non-zero linear subspace such that $\forall \xi \in L$ we have $\hat{\xi} \in L$ and $Q\xi \in L$. Then there exists a non-zero distribution $\xi \in L$ which is abs-homogeneous of degree $\frac{1}{2} \dim V$ or of degree $\frac{1}{2} \dim V + 1$.
We call a distribution $\xi \in \mathcal{S}^*(V)$ **abs-homogeneous of degree** d if for any $t \in F^\times$,

$$h_t(\xi) = u(t)|t|^d \xi,$$

where h_t denotes the homothety action on distributions and u is some unitary character of F^\times.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let $\xi \in \mathcal{S}^*_V(Z(Q))$ be s.t. $\hat{\xi} \in \mathcal{S}^*_V(Z(Q))$. Then ξ is abs-homogeneous of degree $\frac{1}{2} \dim V$.
Fourier transform and homogeneity

- We call a distribution $\xi \in S^*(V)$ abs-homogeneous of degree d if for any $t \in F^\times$,

$$h_t(\xi) = u(t)|t|^d \xi,$$

where h_t denotes the homothety action on distributions and u is some unitary character of F^\times.

Theorem (Jacquet, Rallis, Schiffmann,...)

Assume F is non-archimedean. Let $\xi \in S^*_V(Z(Q))$ be s.t. $\hat{\xi} \in S^*_V(Z(Q))$. Then ξ is abs-homogeneous of degree $\frac{1}{2} \dim V$.

Theorem (archimedean homogeneity)

Let F be any local field. Let $L \subset S^*_V(Z(Q))$ be a non-zero linear subspace s. t. $\forall \xi \in L$ we have $\hat{\xi} \in L$ and $Q\xi \in L$.

Then there exists a non-zero distribution $\xi \in L$ which is abs-homogeneous of degree $\frac{1}{2} \dim V$ or of degree $\frac{1}{2} \dim V + 1$.
To a distribution ξ on X one assigns two subsets of T^*X.
To a distribution ξ on X one assigns two subsets of T^*X.

<table>
<thead>
<tr>
<th>Singular Support (=Characteristic variety)</th>
<th>Wave front set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined using D-modules</td>
<td>Defined using Fourier transform</td>
</tr>
<tr>
<td>Available only in the Archimedean case</td>
<td>Available in both cases</td>
</tr>
</tbody>
</table>
To a distribution ξ on X one assigns two subsets of T^*X.

<table>
<thead>
<tr>
<th>Singular Support (=Characteristic variety)</th>
<th>Wave front set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined using D-modules</td>
<td>Defined using Fourier transform</td>
</tr>
<tr>
<td>Available only in the Archimedean case</td>
<td>Available in both cases</td>
</tr>
</tbody>
</table>

In the non-Archimedean case we define the singular support to be the Zariski closure of the wave front set.
Let X be a smooth algebraic variety.

- Let $\xi \in S^*(X)$. Then $\text{Supp}(\xi)_{\text{Zar}} = p_X(\text{SS}(\xi))$, where $p_X : T^*X \to X$ is the projection.
Let X be a smooth algebraic variety.

- Let $\xi \in S^*(X)$. Then $\text{Supp}(\xi)_{\text{Zar}} = p_X(SS(\xi))$, where $p_X : T^*X \to X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in S^*(X)^G,\chi$. Then

$$SS(\xi) \subset \{(x, \phi) \in T^*X \mid \forall \alpha \in g \quad \phi(\alpha(x)) = 0\}.$$
Let X be a smooth algebraic variety.

- Let $\xi \in S^*(X)$. Then $\text{Supp}(\xi)_{\text{Zar}} = p_X(SS(\xi))$, where $p_X : T^*X \to X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in S^*(X)^{G,\chi}$. Then
 \[SS(\xi) \subset \{ (x, \phi) \in T^*X \mid \forall \alpha \in g \; \phi(\alpha(x)) = 0 \} . \]

- Let V be a linear space. Let $Z \subset V^*$ be a closed subvariety, invariant with respect to homotheties. Let $\xi \in S^*(V)$. Suppose that $\text{Supp}(\hat{\xi}) \subset Z$. Then $SS(\xi) \subset V \times Z$.

Integrability Theorem:

Let $\xi \in S^*(X)$. Then $SS(\xi)$ is (weakly) coisotropic.
Let X be a smooth algebraic variety.

- Let $\xi \in S^*(X)$. Then $\text{Supp}(\xi)_{\text{Zar}} = p_X(\text{SS}(\xi))$, where $p_X : T^*X \to X$ is the projection.
- Let an algebraic group G act on X. Let $\xi \in S^*(X)^{G,\chi}$. Then

$$\text{SS}(\xi) \subset \{ (x, \phi) \in T^*X \mid \forall \alpha \in g \quad \phi(\alpha(x)) = 0 \}.$$

- Let V be a linear space. Let $Z \subset V^*$ be a closed subvariety, invariant with respect to homotheties. Let $\xi \in S^*(V)$. Suppose that $\text{Supp}(\hat{\xi}) \subset Z$. Then $\text{SS}(\xi) \subset V \times Z$.

- Integrability theorem:
 Let $\xi \in S^*(X)$. Then $\text{SS}(\xi)$ is (weakly) coisotropic.
Coisotropic varieties

Definition

Let M be a smooth algebraic variety and ω be a symplectic form on it. Let $Z \subset M$ be an algebraic subvariety. We call it M-coisotropic if the following equivalent conditions hold.

- At every smooth point $z \in Z$ we have $T_z Z \supset (T_z Z)^\perp$. Here, $(T_z Z)^\perp$ denotes the orthogonal complement to $T_z Z$ in $T_z M$ with respect to ω.
- The ideal sheaf of regular functions that vanish on \overline{Z} is closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.
Coisotropic varieties

Definition

Let M be a smooth algebraic variety and ω be a symplectic form on it. Let $Z \subset M$ be an algebraic subvariety. We call it M-coisotropic if the following equivalent conditions hold.

- At every smooth point $z \in Z$ we have $T_zZ \supset (T_zZ)^\perp$. Here, $(T_zZ)^\perp$ denotes the orthogonal complement to T_zZ in T_zM with respect to ω.
- The ideal sheaf of regular functions that vanish on \overline{Z} is closed under Poisson bracket.

If there is no ambiguity, we will call Z a coisotropic variety.

- Every non-empty coisotropic subvariety of M has dimension at least $\frac{\dim M}{2}$.
Weakly coisotropic varieties

Definition

Let X be a smooth algebraic variety. Let $Z \subset T^*X$ be an algebraic subvariety. We call it T^*X-weakly coisotropic if one of the following equivalent conditions holds.

- For a generic smooth point $a \in p_X(Z)$ and for a generic smooth point $y \in p_X^{-1}(a) \cap Z$ we have $CN^X_{p_X(Z),a} \subset T_y(p_X^{-1}(a) \cap Z)$.
- For any smooth point $a \in p_X(Z)$ the fiber $p_X^{-1}(a) \cap Z$ is locally invariant with respect to shifts by $CN^X_{p_X(Z),a}$.

Every non-empty weakly coisotropic subvariety of T^*X has dimension at least $\dim X$.

D. Gourevitch
Definition

Let X be a smooth algebraic variety. Let $Z \subset T^*X$ be an algebraic subvariety. We call it T^*X-weakly coisotropic if one of the following equivalent conditions holds.

- For a generic smooth point $a \in p_X(Z)$ and for a generic smooth point $y \in p_X^{-1}(a) \cap Z$ we have $CN_{p_X(Z),a}^X \subset T_y(p_X^{-1}(a) \cap Z)$.

- For any smooth point $a \in p_X(Z)$ the fiber $p_X^{-1}(a) \cap Z$ is locally invariant with respect to shifts by $CN_{p_X(Z),a}^X$.

- Every non-empty weakly coisotropic subvariety of T^*X has dimension at least $\dim X$.

D. Gourevitch

Multiplicity One Theorems
Definition

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety and $R \subset T^*X$ be any subvariety. We define the restriction $R|_Z \subset T^*Z$ of R to Z by

$$R|_Z := q(p_X^{-1}(Z) \cap R),$$

where $q : p_X^{-1}(Z) \to T^*Z$ is the projection.

$$T^*X \supset p_X^{-1}(Z) \to T^*Z$$
Definition

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety and $R \subset T^*X$ be any subvariety. We define the restriction $R|_Z \subset T^*Z$ of R to Z by

$$R|_Z := q(p_X^{-1}(Z) \cap R),$$

where $q : p_X^{-1}(Z) \to T^*Z$ is the projection.

Lemma

Let X be a smooth algebraic variety. Let $Z \subset X$ be a smooth subvariety. Let $R \subset T^*X$ be a (weakly) coisotropic variety. Then, under some transversality assumption, $R|_Z \subset T^*Z$ is a (weakly) coisotropic variety.
Harish-Chandra descent and homogeneity

Notation

\[S := \{(A, v, \phi) \in X_n | A^n = 0 \text{ and } \phi(A^i v) = 0 \forall 0 \leq i \leq n\}. \]
Harish-Chandra descent and homogeneity

Notation

\[S := \{ (A, v, \phi) \in X_n | A^n = 0 \text{ and } \phi(A^i v) = 0 \forall 0 \leq i \leq n \}. \]

By Harish-Chandra descent we can assume that any \(\xi \in S^*(X)^{\tilde{G},\chi} \) is supported in \(S \).
Harish-Chandra descent and homogeneity

Notation

\[S := \{(A, \nu, \phi) \in X_n | A^n = 0 \text{ and } \phi(A^i\nu) = 0 \forall 0 \leq i \leq n \}. \]

By Harish-Chandra descent we can assume that any \(\xi \in S^*(X)^{\widetilde{G}, \chi} \) is supported in \(S \).

Notation

\[S' := \{(A, \nu, \phi) \in S | A^{n-1}\nu = (A^*)^{n-1}\phi = 0 \}. \]
Harish-Chandra descent and homogeneity

Notation

\[S := \{(A, v, \phi) \in X_n | A^n = 0 \text{ and } \phi(A^i v) = 0 \forall 0 \leq i \leq n\}. \]

By Harish-Chandra descent we can assume that any \(\xi \in S^*(X)^\tilde{G},\chi \) is supported in \(S \).

Notation

\[S' := \{(A, v, \phi) \in S | A^{n-1} v = (A^*)^{n-1} \phi = 0\}. \]

By the homogeneity theorem, the stratification method and Frobenius descent we get that any \(\xi \in S^*(X)^\tilde{G},\chi \) is supported in \(S' \).
Reduction to the geometric statement

Notation

\[T' = \left\{ ((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in X \times X \mid \forall i, j \in \{1, 2\} \right\} \]

\[\text{and} \left\{ (A_i, v_j, \phi_j) \in S' \text{ and } [A_1, A_2] + v_1 \otimes \phi_2 - v_2 \otimes \phi_1 = 0 \right\}. \]
Reduction to the geometric statement

Notation

\[T' = \{ ((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in X \times X \mid \forall i, j \in \{1, 2\} \]
\[(A_i, v_j, \phi_j) \in S' \text{ and } [A_1, A_2] + v_1 \otimes \phi_2 - v_2 \otimes \phi_1 = 0 \} \]

It is enough to show:

Theorem (The geometric statement)

There are no non-empty \(X \times X \)-weakly coisotropic subvarieties of \(T' \).
Reduction to the Key Lemma

Notation

\[T'' := \{(A_1, v_1, \phi_1), (A_2, v_2, \phi_2) \in T' \mid A_1^{n-1} = 0\}. \]
Reduction to the Key Lemma

Notation

\[T'' := \{ ((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in T' | A_1^{n-1} = 0 \}. \]

It is easy to see that there are no non-empty \(X \times X \)-weakly coisotropic subvarieties of \(T'' \).
Reduction to the Key Lemma

Notation

\[T'' := \{ ((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in T' | A_1^{n-1} = 0 \}. \]

It is easy to see that there are no non-empty \(X \times X \)-weakly coisotropic subvarieties of \(T'' \).

Notation

Let \(A \in \mathfrak{sl}(V) \) be a nilpotent Jordan block. Denote

\[R_A := (T' - T'')|_{\{A\} \times V \times V^*}. \]
Reduction to the Key Lemma

Notation

\[T'' := \{((A_1, v_1, \phi_1), (A_2, v_2, \phi_2)) \in T' | A_1^{n-1} = 0\}. \]

It is easy to see that there are no non-empty \(X \times X \)-weakly coisotropic subvarieties of \(T'' \).

Notation

Let \(A \in \text{sl}(V) \) be a nilpotent Jordan block. Denote

\[R_A := (T' - T'')|_{\{A\} \times V \times V^*}. \]

It is enough to show:

Lemma (Key Lemma)

There are no non-empty \(V \times V^* \times V \times V^* \)-weakly coisotropic subvarieties of \(R_A \).
Proof of the Key Lemma

Notation

\[Q_A := S' \cap (\{A\} \times V \times V^*) = \bigcup_{i=1}^{n-1} (\text{Ker}A^i) \times (\text{Ker}(A^*)^{n-i}) \]

It is easy to see that \(R_A \subset Q_A \times Q_A \) and \(Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij} \), where

\[L_{ij} := (\text{Ker}A^i) \times (\text{Ker}(A^*)^{n-i}) \times (\text{Ker}A^j) \times (\text{Ker}(A^*)^{n-j}) \]

It is easy to see that any weakly coisotropic subvariety of \(Q_A \times Q_A \) is contained in \(\bigcup_{i=1}^{n-1} L_{ii} \).

Hence it is enough to show that for any \(0 < i < n \), we have \(\dim(R_A \cap L_{ii}) < 2^{n-1} \).

Let \(f \in O(L_{ii}) \) be the polynomial defined by

\[f(v_1, \phi_1, v_2, \phi_2) := (v_1)^i(\phi_2)^i+1 - (v_2)^i(\phi_1)^i+1. \]

It is enough to show that \(f(R_A \cap L_{ii}) = \{0\} \).
Proof of the Key Lemma

Notation

\[Q_A := S' \cap (\{A\} \times V \times V^*) = \bigcup_{i=1}^{n-1} (\text{Ker}A^i) \times (\text{Ker}(A^*)^{n-i}) \]

It is easy to see that \(R_A \subset Q_A \times Q_A \)
Proof of the Key Lemma

Notation

\[Q_A := S' \cap (\{A\} \times V \times V^*) = \bigcup_{i=1}^{n-1} (\ker A^i) \times (\ker (A^*)^{n-i}) \]

It is easy to see that \(R_A \subset Q_A \times Q_A \) and \(Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij} \), where

\[L_{ij} := (\ker A^i) \times (\ker (A^*)^{n-i}) \times (\ker A^j) \times (\ker (A^*)^{n-j}). \]
Proof of the Key Lemma

Notation

\[Q_A := S' \cap (\{A\} \times V \times V^*) = \bigcup_{i=1}^{n-1} (\text{Ker}A^i) \times (\text{Ker}(A^*)^{n-i}) \]

It is easy to see that \(R_A \subset Q_A \times Q_A \) and \(Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij} \), where

\[L_{ij} := (\text{Ker}A^i) \times (\text{Ker}(A^*)^{n-i}) \times (\text{Ker}A^j) \times (\text{Ker}(A^*)^{n-j}). \]

It is easy to see that any weakly coisotropic subvariety of \(Q_A \times Q_A \) is contained in \(\bigcup_{i=1}^{n-1} L_{ii} \).
Proof of the Key Lemma

Notation

\[Q_A := S' \cap (\{A\} \times V \times V^*) = \bigcup_{i=1}^{n-1} (\text{Ker}A^i) \times (\text{Ker}(A^*)^{n-i}) \]

It is easy to see that \(R_A \subset Q_A \times Q_A \) and \(Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij} \), where

\[L_{ij} := (\text{Ker}A^i) \times (\text{Ker}(A^*)^{n-i}) \times (\text{Ker}A^j) \times (\text{Ker}(A^*)^{n-j}). \]

It is easy to see that any weakly coisotropic subvariety of \(Q_A \times Q_A \) is contained in \(\bigcup_{i=1}^{n-1} L_{ii} \). Hence it is enough to show that for any \(0 < i < n \), we have \(\dim R_A \cap L_{ii} < 2n \).
Proof of the Key Lemma

Notation

\[Q_A := S' \cap (\{A\} \times V \times V^*) = \bigcup_{i=1}^{n-1} (\text{Ker} A^i) \times (\text{Ker}(A^*)^{n-i}) \]

It is easy to see that \(R_A \subset Q_A \times Q_A \) and \(Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij} \), where

\[L_{ij} := (\text{Ker} A^i) \times (\text{Ker}(A^*)^{n-i}) \times (\text{Ker} A^j) \times (\text{Ker}(A^*)^{n-j}). \]

It is easy to see that any weakly coisotropic subvariety of \(Q_A \times Q_A \) is contained in \(\bigcup_{i=1}^{n-1} L_{ii} \). Hence it is enough to show that for any \(0 < i < n \), we have \(\dim R_A \cap L_{ii} < 2n \). Let \(f \in \mathcal{O}(L_{ii}) \) be the polynomial defined by

\[f(v_1, \phi_1, v_2, \phi_2) := (v_1)_i(\phi_2)_{i+1} - (v_2)_i(\phi_1)_{i+1}. \]
Proof of the Key Lemma

Notation

\[Q_A := S' \cap (\{A\} \times V \times V^*) = \bigcup_{i=1}^{n-1} (\text{Ker}A^i) \times (\text{Ker}(A^*)^{n-i}) \]

It is easy to see that \(R_A \subset Q_A \times Q_A \) and \(Q_A \times Q_A = \bigcup_{i,j=1}^{n-1} L_{ij} \), where

\[L_{ij} := (\text{Ker}A^i) \times (\text{Ker}(A^*)^{n-i}) \times (\text{Ker}A^j) \times (\text{Ker}(A^*)^{n-j}) \]

It is easy to see that any weakly coisotropic subvariety of \(Q_A \times Q_A \) is contained in \(\bigcup_{i=1}^{n-1} L_{ii} \). Hence it is enough to show that for any \(0 < i < n \), we have \(\dim R_A \cap L_{ii} < 2n \). Let \(f \in \mathcal{O}(L_{ii}) \) be the polynomial defined by

\[f(v_1, \phi_1, v_2, \phi_2) := (v_1)_i(\phi_2)_{i+1} - (v_2)_i(\phi_1)_{i+1}. \]

It is enough to show that \(f(R_A \cap L_{ii}) = \{0\} \).
Let \((v_1, \phi_1, v_2, \phi_2) \in L_{ii}\). Let \(M := v_1 \otimes \phi_2 - v_2 \otimes \phi_1\).
Let \((v_1, \phi_1, v_2, \phi_2) \in L_{ii}\). Let \(M := v_1 \otimes \phi_2 - v_2 \otimes \phi_1\). Clearly, \(M\) is of the form

\[
M = \begin{pmatrix}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times (n-i)}
\end{pmatrix}.
\]
Let \((v_1, \phi_1, v_2, \phi_2) \in L_{ii}\). Let \(M := v_1 \otimes \phi_2 - v_2 \otimes \phi_1\). Clearly, \(M\) is of the form

\[
M = \begin{pmatrix}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times (n-i)}
\end{pmatrix}.
\]

We know that there exists a nilpotent \(B\) satisfying \([A, B] = M\).
Proof of the Key Lemma

Let \((v_1, \phi_1, v_2, \phi_2) \in L_{ii}\). Let \(M := v_1 \otimes \phi_2 - v_2 \otimes \phi_1\). Clearly, \(M\) is of the form

\[
M = \begin{pmatrix}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times (n-i)}
\end{pmatrix}.
\]

We know that there exists a nilpotent \(B\) satisfying \([A, B] = M\). Hence this \(B\) is upper nilpotent, which implies \(M_{i,i+1} = 0\).
Proof of the Key Lemma

Let \((v_1, \phi_1, v_2, \phi_2) \in L_{ii}\). Let \(M := v_1 \otimes \phi_2 - v_2 \otimes \phi_1\). Clearly, \(M\) is of the form

\[
M = \begin{pmatrix}
0_{i \times i} & * \\
0_{(n-i) \times i} & 0_{(n-i) \times (n-i)}
\end{pmatrix}.
\]

We know that there exists a nilpotent \(B\) satisfying \([A, B] = M\). Hence this \(B\) is upper nilpotent, which implies \(M_{i, i+1} = 0\) and hence \(f(v_1, \phi_1, v_2, \phi_2) = 0\).
$sl(V) \times V \times V^*$
\[sl(V) \times V \times V^* \rightarrow_{H.Ch. descent} S \]
Flowchart

\[sl(V) \times V \times V^* \xrightarrow{H. Ch. descent} S \xrightarrow{\text{Fourier transform and homogeneity theorem}} S' \]
Summary

Flowchart

$sl(V) \times V \times V^* \xrightarrow{\text{H.Ch. descent}} S \xrightarrow{\text{Fourier transform and homogeneity theorem}} S' \xrightarrow{\text{Fourier transform and integrability theorem}} T'$
Summary

Flowchart

\[\text{sl}(V) \times V \times V^* \xrightarrow{\text{H.Ch. descent}} S \xrightarrow{\text{Fourier transform and homogeneity theorem}} S' \xrightarrow{\text{Fourier transform and integrability theorem}} T' \]

\[T' - T'' \]
Summary

Flowchart

\[\text{sl}(V) \times V \times V^* \xrightarrow{\text{H.Ch. descent}} S \xrightarrow{\text{Fourier transform and homogeneity theorem}} S' \xrightarrow{\text{Fourier transform and integrability theorem}} T' \]

\[R_A \xleftarrow{\text{restriction}} T' \rightarrow T'' \]
Summary

Flowchart

$sl(V) \times V \times V^*$ \xrightarrow{H.Ch. descent} S \xrightarrow{Fourier transform and homogeneity theorem} S' \xrightarrow{Fourier transform and integrability theorem} T'

$L_{ii} \cap R_A$ \xleftarrow{R_A \cup L_{ij}} R_A \xleftarrow{restriction} $T' - T''$
Summary

Flowchart

\[sl(V) \times V \times V^* \xrightarrow{\text{H.Ch. descent}} S \xrightarrow{\text{Fourier transform and homogeneity theorem}} S' \xrightarrow{\text{Fourier transform and integrability theorem}} T' \]

\[\emptyset \xleftarrow{f(R_A \cap L_{ii}) = 0} L_{ii} \cap R_A \xleftarrow{R_A \cup L_{ij}} R_A \xleftarrow{\text{restriction}} T' - T'' \]