EXERCISE 9 IN ALGEBRAIC NUMBER THEORY

(1) (P) The field \mathbb{Q}_p of p-adic numbers has no non-trivial automorphisms.

(2) (P) (i) The sequence $1, 1/10, 1/10^2, \cdots$ does not converge in \mathbb{Q}_p, for any p.

(P) (ii) For every $a \in \mathbb{Z}$, $(a, p) = 1$, the sequence $\{a^p^n\}_{n \in \mathbb{N}}$ converges in \mathbb{Q}_p.

(3) (P^*) Let $\epsilon \in 1 + p\mathbb{Z}_p$, and let $\alpha = a_0 + a_1p + a_2p^2 \cdots$ be a p-adic integer. Let $s_n = a_0 + a_1p + \cdots + a_{n-1}p^{n-1}$. Show that the sequence ϵ^{s_n} converges to a number ϵ^α in $1 + p\mathbb{Z}_p$. Show that this turns $1 + p\mathbb{Z}_p$ into a multiplicative \mathbb{Z}_p-module.

(4) (P) The fields \mathbb{Q}_p and \mathbb{Q}_q are not isomorphic, unless $p = q$.

(5) (P^*) The algebraic closure of \mathbb{Q}_p has infinite degree.