EXERCISE 9 IN ALGEBRAIC NUMBER THEORY

(1) (P) Let K be a number field such that $[K : \mathbb{Q}] = n$. Define a subgroup M of K as

$$M = \mathbb{Z} \alpha_1 + \cdots + \mathbb{Z} \alpha_n,$$

where $\alpha_1, \cdots, \alpha_n$ form a basis of K/\mathbb{Q}. Show that the ring of multipliers

$$\mathfrak{o} = \{ \alpha \in K | \alpha M \subseteq M \}$$

is an order in K, but in general not the maximal order.

(2) (P) In an order \mathfrak{o} of K, the following are equivalent;

(i) p is a non-zero regular prime ideal

(ii) p is invertible

(iii) the set $\{ x \in K | xp \subseteq p \} = \mathfrak{o}$

(3) (P) Let a be an \mathcal{O}_K-ideal of K. Show that $\mathfrak{o} = \mathbb{Z} + a \mathcal{O}_K$ is an order. Compute the conductor of \mathfrak{o}.

(4) (P^*) Recall that in a dedekind domain, every invertible ideal is generated by atmost two elements. Is it true for invertible ideals in an order as well?