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Non-Archimedean local fields

Definition
We will discuss two types of local fields:

zero characteristic – Qp and its finite extensions.
positive characteristic – Fp((t)) and its finite extensions.

Those fields satisfy:

|x + y | ≤ max(|x |, |y |).

Notation
For a local field F we denote

OF := {x ∈ F | |x | ≤ 1}
PF := {x ∈ F | |x | < 1}
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The ring of integers

Notation
For a local field F we denote

OF := {x ∈ F | |x | ≤ 1}
PF := {x ∈ F | |x | < 1}

Example
OQp = Zp.

PQp = pZp.

OFp((t)) = Fp[[t ]].
PFp((t)) = tFp[[t ]].
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Close local fields

Definition
Two local fields F and F ′ are said to be n-close if

OF/Pn
F ' OF ′/Pn

F ′ .

Proposition
Any local field can be approximated up to any order by a local
field of characteristic 0.

Example

Fp((t)) is n-close to Qp( n
√

p).
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Example (of reductive groups)

GLn, On, Spn, semisimple groups.

Let G be a reductive group defined over Z and let F be a local
field.

Definition
K0 := K0(F ) := K0(G,F ) := G(OF ) ⊂ G(F )

Definition
Kn := Kn(F ) := Kn(G,F ) is defined by the following exact
sequence:

1 → Kn → K0 → G(OF/Pn
F ) → 1

Example

F = Qp, G = GLn, K0 = GLn(Zp), Kn = Id + pnMatn(Zp)

Remark
If F and F ′ are n-close then K0(F )/Kn(F ) ' K0(F ′)/Kn(F ′).
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Cartan decomposition

Let π ∈ PF − P2
F . For simplicity let G = GLn. Let

Λ(G) :=


πi1 0 0

0 ... 0
0 0 πin

 | i1 ≥ ... ≥ in

 .

Theorem
K0(F ) \G(F )/K0(F ) = Λ(G).
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Definition
A smooth representation of G(F ) is a linear action of G(F )
on a complex linear vector space V such that any v ∈ V
has an open stabilizer.
We denote the category of smooth representations of
G(F ) by M(G(F )).

Let K < G. We denote the category of representations of
G(F ) which are generated by K -invariant vectors by
MK (G(F )).

Clearly
∞⋃

n=0

Mf
Kn

(G(F )) = Mf (G(F )).

Definition
The Hecke algebra, denoted by HK (G(F )), is the algebra of
double K -invariant measures on G(F ). The algebra structure
on HK (G(F )) is defined by convolution.
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Bernstein center

Theorem (Bernstein 1980)

MKn(G(F )) is a direct summand of M(G(F )).

MKn(G(F )) is equivalent to the category of
HKn(G(F ))−modules
The algebra HKn(G(F )) is finite over its center which is
finitely generated. Therefore, HKn(G(F )) is Noetherian and
finitely presented.
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Kazhdan’s Theorem

Theorem (Kazhdan - 1984)

For any natural n there exists N s.t. if F and F ′ are N−close
then

HKn(F )(G(F )) ' HKn(F ′)(G(F ′)).

Dmitry Gourevitch Representation theory - from zero characteristic to positive one



Ingredients of the proof

A construction of a linear isomorphism

φ : HKn(F )(G(F )) → HKn(F ′)(G(F ′))

whenever F and F ′ are n−close, using Cartan
decomposition.

Kn(G,F ) \G(F )/Kn(G,F ) =

= Kn(G,F ) \ K0(G,F )Λ(G)K0(G,F )/Kn(G,F ) =

= G(OF/Pn
F )Λ(G)G(OF/Pn

F )
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Relative representation theory – Harmonic analysis
over spherical varieties

Observation
Representation theory of G

m
Harmonic analysis on G w.r.t. the two sided action of G ×G

Conclusion
Let H ⊂ G be a spherical pair (i.e. the Borel subgroup of G acts
on G/H with finite number of orbits). One can consider
harmonic analysis over G/H as a generalization of
representation theory.
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Lemma (Schur)
Let π and τ be irreducible representations of G. Then
dim HomG(π, τ) ≤ 1.

Equivalent formulations:
1 ∀π, τ dim Hom∆G(π ⊗ τ̃ ,C) ≤ 1
2 ∀ irreducible representation Π of G ×G, Hom∆G(Π,C) ≤ 1

Definition
(G,H) is called a Gelfand pair if
∀π ∈ Irr(G) : dim HomH(π|H ,C) ≤ 1

Proposition

G(F ),H(F ) is a Gelfand pair if and only if
∀π ∈ Irr(G) : dim HomG(S(G/H), π̃) ≤ 1.

Proof.
HomH(F )(π|H(F ),C) ∼= HomG(F )(π,C∞(G(F )/H(F ))) ∼=
HomG(F )(S(G(F )/H(F )), π̃)
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Relative version of Kazhdan’s theorem

Theorem (Aizenbud, Avni, Gourevitch - 2009)

Under certain conditions on the pair (G,H), for any natural n
the exist N s.t. if F and F ′ are N−close then

S(G(F )/H(F ))Kn(F ) ' S(G(F ′)/H(F ′))Kn(F ′)

as a
HKn(F )(G(F )) ' HKn(F ′)(G(F ′))−module
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Ingredients in the proof

A construction of a linear isomorphism

ψ : S(G(F )/H(F ))Kn(F ) → S(G(F ′)/H(F ′))Kn(F ′)

whenever F and F ′ are n−close.

A proof that for any x ∈ HKn(G(F )) and
y ∈ S(G(F )/H(F ))Kn(F ) there exist N s.t. if F and F ′ are
N−close then

ψ(xy) = φ(x)ψ(y).

The module S(G(F )/H(F ))Kn(F ) is finitely generated over
the algebra HKn(G(F )).
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Proof of the 3-rd ingredient

Observation

If the module S(G(F )/H(F ))Kn(F ) is finitely generated over the
algebra HKn(G(F )) for all n then

∀π ∈ irr(G) : dim HomH(π|H ,C) <∞.

Conclusion
We have to impose ∀π ∈ irr(G) : dim HomH(π|H ,C) <∞.

Theorem
The following are equivalent

∀π ∈ irr(G) : dim HomH(π|H ,C) <∞
The module S(G(F )/H(F ))Kn(F ) is finitely generated over
the algebra HKn(G(F )) for all n.
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Proof of the 3-rd ingredient

Theorem
The following are equivalent

1 ∀π ∈ irr(G) : dim HomH(π|H ,C) <∞
2 ∀M and a cuspidal ρ ∈ irr(M) : dim HomHM (ρ|HM ,C) <∞
3 The module S(G(F )/H(F ))Kn(F ) is finitely generated over

the algebra HKn(G(F )) for all n.

Proof.
(2) ⇒ (1), (3) ⇒ (1) - easy,
(2) ⇒ (3) - follows from the theory of Bernstein center.
The hard part, (1) ⇒ (2), follows from estimation of
co-homologies.
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Applications

Set G := GLm+k and H = GLm ×GLk

Theorem (Jacquet, Rallis - 1996)
Let F be a local field of characteristic 0. Then the pair
(G(F ),H(F )) is a Gelfand pair i.e. for any irreducible
representation π of G(F ) we have

dim HomH(F )(π|H(F ),C) ≤ 1.

Corollary
Let F be a local field of positive characteristic. Then the pair
(G(F ),H(F )) is a Gelfand pair.

Proof.
HomH(F )(π|H(F ),C) ∼= HomG(F )(S(G(F )/H(F )), π̃) ∼=
HomHKn (G(F ))(S(G(F )/H(F ))Kn , π̃Kn).
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Applications

Theorem (Aizenbud, Gourevitch, Rallis, Schiffmann - 2007)
Let F be a local field of characteristic 0. Then the pair
(GLn+1(F ),GLn(F )) is a strong Gelfand pair i.e. for any
irreducible representations π of GLn+1(F ) and τ of GLn(F ) we
have

dim HomGLn(F )(π|GLn(F ), τ) ≤ 1.

Corollary
Let F be a local field of positive characteristic. Then the pair
(GLn+1(F ),GLn(F )) is a strong Gelfand pair.

Proof.
The fact that (G,H) is a strong Gelfand pair is equivalent to the
fact that (G × H,∆H) is a Gelfand pair.
HomH(π|H , τ) ∼= HomH(π|H , ˜̃τ) ∼= HomH(π|H , τ̃∗) ∼=
Hom∆H(π ⊗ τ̃ ,C)
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Open questions

Let (G,H) be a spherical pair.
To what generality our theorem extends?

Conjecture: It holds for all symmetric pairs defined over Z.
Is HomH(π|H ,C) finite for any irreducible smooth
representation π of G?
Conjecture: Yes.
Proven for large classes of spherical pairs, including
symmetric pairs, by Delorme and by
Sakellaridis-Venkatesh.
If HomH(π|H ,C) is finite, is it bounded as a function of π?
Our theorem implies that it is locally bounded, i.e. bounded
on MK (G(F )) for every K .
What spherical pairs are Gelfand pairs? Conjecture:
(G,H) is a Gelfand pair iff dim HomH(π|H ,C) ≤ 1 for any
irreducible representation π of principle series.
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