EXERCISE 6 IN REPRESENTATION THEORY

DMITRY GOUREVITCH

- (1) (P) Find the characters of all the irreducible representations of the symmetric group S_4
- (2) (P) A representation is called cyclic if it is generated by some vector. Find a necessary and sufficient condition for a representation to be cyclic in terms of multiplicities of isotypic components.

Principal series representations of $SL(2, \mathbb{F}_q)$

(3) (P) Let $G := \operatorname{SL}(2, \mathbb{F}_q)$ be the group of 2×2 matrices with entries in \mathbb{F}_q and determinant 1. Let $X := \mathbb{F}_q^2 \setminus 0$. Consider the representation of G on F(X), where F is some algebraically closed field of characteristic zero (e.g. $F = \mathbb{C}$). For any character χ of the multiplicative group \mathbb{F}_q^{\times} , let

$$V_{\chi} := \{ f \in F(X) \ s.t. \ f(\lambda x) = \chi(\lambda) f(x) \}$$

Let Δ denote the standard anti-symmetric bilinear form on F^2 . Define a linear operator $T: F(X) \to F(X)$ by

$$Tf(x) := \sum_{\{y \ s.t. \ \Delta(x,y)=1\}} f(y).$$

Show that

- (a) V_{χ} is a subrepresentation of F(X) and $F(X) = \bigoplus_{\chi} V_{\chi}$
- (b) T is an intertwining operator (=morphism of representations) and T maps V_{χ} into $V_{\chi^{-1}}$.
- (c) $\langle F(X), F(X) \rangle = 2q 2.$
- (d) V_{χ} is irreducible if $\chi \neq \chi^{-1}$ and is a sum of 2 non-isomorphic irreducible components if $\chi = \chi^{-1}$. Find the 2 components. Note that if q is odd there are only two χ with $\chi = \chi^{-1}$, and if q is even there is only one: $\chi = 1$.
- (e) $V_{\chi} \simeq V_{\psi}$ if and only if $\chi = \psi^{\pm 1}$.
- (f) T is invertible
- (g) The sum of squares of the dimensions of the irreducible representations we found is q(q+1)(q+3)/2, which is approximately |G|/2.

The V_{χ} are called principal series representations and T is called the standard intertwining operator.

Date: January 1, 2018.