EXERCISE 1 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

A remark on different kinds of problems. In all my home assignments I will use the following system. The problems without marking are just exercises. You have to convince yourself that you can do them but it is not necessary to write them down (if you have difficulties with one of these problems ask me). The problems marked by (P) you should hand in for grading. The sign $\left(^{*}\right)$ marks more difficult problems. The sign (\square) marks more challenging and more interesting problems which are related to some interesting subjects. They are not always related to the course material, but I definitely advise you to think about these problems.

Groups and G-sets

(1) Let G be a group, i.e. a set with three operations $m: G \times G \rightarrow G, e: p t \rightarrow G$ and inv : $G \rightarrow G$ satisfying group axioms. Show that the multiplication map m uniquely determines the map e. Show that the map m uniquely determines the map inv.
Definition 1. Let X be a G-set.
(a) We say that X is homogeneous if for any $x, y \in X$ there exists an element $g \in G$ such that $g x=y$.
(b) We say that X is free if stabilizer of every point is trivial (i.e. has one element e).
(c) We say that X is G-torser is it is non-empty, homogeneous and free.
(2) Let $a: G \times X \rightarrow X$ be an action of the group G on a set X. It is often convenient to describe the action in terms of the graph map $\Gamma: G \times X \rightarrow X \times X$ defined by $\Gamma(g, x):=(x, g x)$. Show that the action is homogeneous if and only if Γ is epimorphic and is free if and only if Γ is monomorphic.
Definition 2. Let G be a group and $H<G$ a subgroup. The number $[G: H]:=\#(G / H)$ is called the index of the subgroup H (it is a natural number).
(3) (a) Show that if we have a tower of subgroups $F<H<G$ then we have a product formula $[G: F]=[G: H][H: F]$.
(b) Let $H<G$ be a subgroup of finite index n. Show that H contains a subgroup N which is normal in G such that $[G: N] \leq n!$.

Representation Theory.

(4) Show that the image of any character (i.e. 1-dimensional representation) of a finite group lies inside the unit circle in \mathbb{C}.
(5) Let $T:(\pi, V) \rightarrow(\tau, W)$ be a morphism of representations. Suppose that it is one-to-one and onto. Show that it is an isomorphism. In other words, show that the inverse linear map T^{-1} commutes with the group action.
(6) Let X be a G-set and $F(X)$ be the space of complex-valued functions on X. Define a representation of G on $F(X)$ by $(\pi(g) f)(x):=f\left(g^{-1} x\right)$. Show that it is indeed a representation. Show that the action defined by $\left(\pi^{\prime}(g) f\right)(x)=f(g x)$ does not define a representation for some sets X.
(7) (P) Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ be irreducible representations of a group G. Consider the direct sum (π, V) of these representations. The space V has four G-invariant coordinate subspaces $0, V_{1}, V_{2}, V$. Show that the representations π_{1} and π_{2} are isomorphic if and only if there exists a non-coordinate G-invariant subspace in V (i.e. a subspace distinct from the four subspaces listed above).
(8) (P) Let the group S_{3} act on \mathbb{C}^{3} by permuting the coordinates and let \mathbb{C}_{0}^{3} denote the subrepresentation $\{(a, b, c): a+b+c=0\}$. Show that it is irreducible.
(9) (P) Show that a finite-dimensional representation π of a group G is completely reducible if and only if for any subrepresentation $\tau \subset \pi$ there exists another subrepresentation $\tau^{\prime} \subset \pi$ such that $\pi=\tau \oplus \tau^{\prime}$.
(10) Let V be a representation of a finite group G over \mathbb{C}. Let $\langle\cdot, \cdot\rangle$ by an scalar product on V. Define

$$
\langle u, v\rangle_{G}:=\sum_{g \in G}\langle g u, g v\rangle
$$

Show that $\langle\cdot, \cdot\rangle_{G}$ is a G-invariant scalar product and that for any subrepresentation $\tau \subset \pi$, the orthogonal complement $\tau^{\perp} \subset V$ is also a subrepresentation (i.e. is G-invariant).
(11) (P) Define a 2-dimensional representation π of the cyclic group $\mathbb{Z} / p \mathbb{Z}$ over a field of characteristic p by letting the generator of the group to act by the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Show that π is not irreducible, but can not be decomposed as a direct sum of 1-dimensional representations.
(12) (P) Let $\pi: G \rightarrow G L_{3}(\mathbb{C})$ be a representation of a finite group. Show that it is irreducible if and only if there is no common eigenvector for all the matrices $\pi(g)$ with $g \in G$.
(13) (P) Given an example of a finite group G and a decomposable representation $\pi: G \rightarrow G L_{4}(\mathbb{C})$ such that the $\pi(g)$ with $g \in G$ do not have a common eigenvector.
(14) (\square)* Show that any irreducible representation of a finite commutative group over \mathbb{R} has dimension 1 or 2 .
(15) (\square) * Let (π, V) be an irreducible complex representation of some group G. Suppose we know that the space V has countable dimension. Show that Schur's lemma holds for π, i.e. $\operatorname{dim} \operatorname{Hom}(\pi, \pi)=$ 1. (Hint. Prove and use the fact that any operator $A: V \rightarrow V$ has a non-empty spectrum, i.e. there exists $\lambda \in \mathbb{C}$ such that the operator $A-\lambda I d$ is not invertible).

