EXERCISE 3 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

(1) Let V be a vector space. Define a symmetric bilinear form on $\operatorname{End}(V)$ by $\langle A, B\rangle:=$ $\operatorname{Tr}(A B)$. Show that it is non-degenerate. Show that if V is a representation of G then this form is invariant with respect to the conjugation action of G on $\operatorname{End}(V)$.
(2) Let $\rho \in \operatorname{Rep}(G)$. Show that the natural map $\rho: \mathcal{A}(G) \rightarrow \operatorname{End}_{F}(\rho)$ given by $f \mapsto \sum_{g \in G} f(g) \rho(g)$ is a morphism of algebras and of representations of $G \times G$.
(3) Define a bilinear form on $\mathcal{A}(G)$ by

$$
\langle f, h\rangle:=\sum_{g \in G} f(g) h\left(g^{-1}\right)
$$

Show that this form is bilinear, symmetric and non-degenerate.
(4) (P) Let (π, V) be an irreducible complex representation of a finite group G. Show that it has an invariant Hermitian form H and that any two such forms are proportional.
(5) (P) Let G be a finite group and let (π, V) be a finite dimensional representation of G over the field of real numbers R.
(a) Show that (π, V) is isomorphic to the dual representation $\left(\pi^{*}, V\right)$.
(b) Give an example of irreducible representations (π, G, V) and (τ, H, L) over the field \mathbb{R} such that the tensor product representation $(\pi \otimes \tau, G \times H, V \otimes L)$ is reducible.
(6) (P) Show that if X, Y are finite G-sets and χ ia a character of G then the intertwining number $\left\langle\pi_{X}, \chi \pi_{Y}\right\rangle$ equals to the number of G-orbits O in the set $X \times Y$ such that for any point $z \in O$, the restriction $\left.\chi\right|_{G_{z}}$ of χ to the stabilizer G_{z} of z is trivial.
(7) Let L, V be finite-dimensional linear spaces and let $X \in$ End $V, Y \in$ End L. Define $\Psi_{X, Y}: \operatorname{Hom}(L, V) \rightarrow \operatorname{Hom}(L, V)$ by $\Psi_{X, Y}(A):=X A Y$. Then $\operatorname{Tr} \Psi_{X, Y}=$ $\operatorname{Tr} X \operatorname{Tr} Y$.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/IntRepTheo4.html

