EXERCISE 2 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

(1) Let \(\pi, \tau \in \text{Rep}(G) \) and let \(\phi : \pi \to \tau \) be a morphism of representations which is an isomorphism of linear spaces. Show that \(\phi \) is an isomorphism of representations. In other words, show that the linear inverse \(\phi^{-1} \) is also a morphism of representations.

(2) (P) Show that a finite-dimensional representation \(\pi \) of a group \(G \) is a direct sum of irreducible representations if and only if for any subrepresentation \(\tau \subset \pi \) there exists another subrepresentation \(\tau' \subset \pi \) such that \(\pi = \tau \oplus \tau' \).

(3) (P) Let \(G \) be an infinite group and \(H < G \) a subgroup of finite index. Let \((\pi, G, V) \) be a complex representation of \(G \) and \(L \subset V \) a \(G \)-invariant subspace. Suppose we know that the subspace \(L \) has an \(H \)-invariant complement. Show that then it has a \(G \)-invariant complement.

Definition 1. If \(X \) is a finite \(G \)-set we denote by \(\pi_X \) the natural representation of the group \(G \) on the space \(F(X) \) of functions on \(X \).

(4) (P) Show that if \(X, Y \) are finite \(G \)-sets then the intertwining number \(\langle \pi_X, \pi_Y \rangle \) equals to the number of \(G \)-orbits in the set \(X \times Y \) (with respect to the diagonal action \(g(x, y) = (gx, gy) \)).

(5) Let \(\pi \in \text{Rep}(G) \) and \(\tau \in \text{Rep}(H) \). Let \(\pi^G \) denote the space of \(G \)-invariant vectors, \(\pi^G = \{ v \in \pi : \pi(g)v = v \forall g \in G \} \). Show that \((\pi \otimes \tau)^{G \times H} = \pi^G \otimes \tau^H \).

(6) Show that every complex matrix \(A \) with \(A^n = Id \) is diagonalizable.

(7) (*) Let \(G, H \) be finite groups. Show that any irrep of \(G \times H \) is of the form \(\sigma \otimes \rho \), where \(\sigma \in \text{Irr}(G) \), \(\rho \in \text{Irr}(H) \).

(8) (*) We showed that \(\langle \pi, \tau \rangle = \langle \tau, \pi \rangle \). Is that still true over

(a) \(F = \mathbb{R} \)?

(b) \(F = \mathbb{F}_p \)?