EXERCISE 4 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

- (1) (P) Find the characters of all the irreducible representations of the symmetric group Sym_4 .
- (2) (P) A representation is called cyclic if it is generated by some vector. Show that a representation is cyclic if and only if it is multiplicity free.

Classification of irreducible representations of S_n . Note that conjugate classes in S_n = partitions of n, i.e. sets $(\alpha_1, ..., \alpha_k)$ of natural numbers s.t. $\alpha_1 + ... + \alpha_k = n$ and $\alpha_1 \ge ... \ge \alpha_k$.

Let X be a set of size n and $G = \text{Sym}(X) = S_n$. Let us now find an irreducible representation for each partition $\alpha = (\alpha_1, ..., \alpha_k)$. Denote by X_{α} the set of all decompositions of the set X to subsets $X_1, ..., X_k$ s.t. $|X_i| = \alpha_i$.

Definition 1. $T_{\alpha} := F(X_{\alpha}), \quad T'_{\alpha} := sgn \cdot T_{\alpha}.$

Definition 2. Denote by α^* the partition given by $\alpha_i^* := |\{j : \alpha_j \leq i\}.$

Let us introduce the lexicographical ordering on the set of partitions.

(3) Show that α^* is a partition and $(\alpha^*)^* = \alpha$.

(4) (*) Show that

$$\langle T_{\alpha}, T_{\beta}' \rangle = \begin{cases} 0, & \alpha > \beta^*; \\ 1, & \alpha = \beta^*. \end{cases}$$

This implies that T_{α} and T'_{α} have a unique joint irreducible component U_{α} and that these components are different for different α . This gives a classification of all irreducible representations of S_n . We will give here a formula for dim U_{α} , that we will prove later using Gelfand pairs:

$$\dim U_{\alpha} = \frac{n! \prod_{i < j} (l_i - l_j)}{l_1! \dots l_k!},$$

where $l_i = \alpha_i + k - i, i = 1, ..., k$.

Fourier transform for finite commutative groups. Let C be a finite commutative group, n = |C|. We will denote by \widehat{C} the dual group of characters $C \to \mathbb{C}$. We define Fourier transform $\mathcal{F}: F(C) \to F(\widehat{C})$ by $\mathcal{F}(u)(\psi) = \sum u(g)\psi(g)$.

(5) (P) Show that if we define an L^2 -structure on spaces of functions by $||u||^2 = 1/n \sum |u(g)|^2$ then the operator \mathcal{F} satisfies the Plancherel formula $||\mathcal{F}(u)||^2 = n||u||^2$.

Date: November 26, 2015.

DMITRY GOUREVITCH

(6) (P) Using the Plancherel formula prove the following Theorem (Gauss). Fix a non-trivial multiplicative character χ and a nontrivial additive character ψ for the finite field \mathbb{F}_q and consider the Gauss sum $\Gamma = \sum \chi(g)\psi(g)$, where the sum is taken over $g \in \vec{F}^{\times}$. Then $|\Gamma| = q^{1/2}$.

Induction

- (7) (a) $H = \{e\}, \operatorname{Ind}_{H}^{G}(\mathbb{C}) = F(G).$ (b) For any $H, \operatorname{Ind}_{H}^{G}(\mathbb{C}) = F(G/H).$
 - - (c) For any character χ of H, $\operatorname{Ind}_{H}^{G}(\chi) = \{f \in F(G) : f(gh) = \chi(h^{-1})f(g).$
- (8) (a) For H < G and $\pi_1, \pi_2 \in Rep(H)$,

$$\operatorname{Ind}_{H}^{G}(\pi_{1}\oplus\pi_{2})=\operatorname{Ind}_{H}^{G}(\pi_{1})\oplus\operatorname{Ind}_{H}^{G}(\pi_{2}).$$

(b) For $H_1 < H_2 < G$ and $\pi \in Rep(H)$,

$$\operatorname{Ind}_{H_2}^G \operatorname{Ind}_{H_1}^{H_2} \pi = \operatorname{Ind}_{H_1}^G \pi$$

(9) (P) Let G be a finite group, D its subgroup and χ a character of D. Consider the induced representation $\pi = Ind_D^G(\chi)$. Show that π is irreducible if and only if the following condition holds:

(*) For any $g \in G$ there exists an element $x \in D$ such that the element $y = gxg^{-1}$ belongs to D and $\chi(x) \neq \chi(y)$.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/IntRepTheo2.html