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1. Basic definitions and Schur’s lemmas

Definition 1.1. A group G is a set with a binary operation G × G → G, called multi-
plication, such that

(1) ∀f, g, h ∈ G.(fg)h = f(gh)
(2) ∃1 ∈ Gs.t.∀g ∈ G, 1g = g1 = g
(3) ∀g ∈ G, ∃g−1 ∈ Gs.t. gg−1 = g−1g = 1

A morphism of groups φ : G → H is a function φ : G → H s.t. φ(g1g2) =
φ(g1)φ(g2)∀g1, g2 ∈ G.

Example 1.2. Z - the group of integers, Z/nZ = the cyclic group of order n, Sym(X)-
the group of all bijections from X to itself. Also denoted by Symn or Sn if X has n
elements. If V is a vector space of dimension n over a field F then we denote by GL(V )
or by GL(n, F ) the group of all invertible linear transformations from V to itself.

Definition 1.3. A G-set (a,X) is a set X together with a morphism of groups a : G→
Sym(X). We also say that G acts on X via a, and that a is an action of G on X. We
will sometimes omit the a or the X from the notation. Also, we will sometimes write gx
for a(g)x.
A morphism of G-sets ν : (a,X) → (b, Y ) is a function ν : X → Y such that
ν(a(g)x) = b(g)ν(x), ∀g ∈ G, x ∈ X.
Denote by XG the set of fixed points of G in X, i.e. XG := {x ∈ X : gx = x ∀g ∈ G}.
For a point x ∈ X denote by Gx := StabG(x) := {g ∈ G : gx = x} the stabilizer of x
in G and by Gx := {gx : g ∈ G} the orbit of x.
An action of G on X is called free if all stabilizers are trivial and transitive if Gx = X
for some (and hence every) x ∈ X.

Example 1.4.

(1) Sym(X) acts on X.
(2) GL(V ) acts on V .
(3) G × G acts on G by (g1, g2) · h = g1hg

−1
2 . This gives rise to 3 actions of G on

itself, corresponding to 3 embeddings of G to G×G: left, right and diagonal.

Definition 1.5. Let H be a subgroup of G. Define an equivalence relation on G by g1 ∼ g2

iff g−1
1 g2 ∈ H. We will denote the set of equivalence classes by G/H and denote the

equivalence class of g by gH. Then G/H has a natural action of G defined by g1(g2H) :=
(g1g2)H. We call it the set of right H-cosets in G.
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If the subgroup H is normal, i.e. satisfies ghg−1 ∈ H ∀g ∈ G, h ∈ H then G/H has a
natural group structure defined by (g1H)(g2H) := g1g2H.

Proposition 1.6. (1) |G| = |G/H| · |H|, where | | denotes the size of a set.
(2) Any transitive G-set X is isomorphic the set of cosets G/Gx where x ∈ X is any

point.
(3) Any G-set is a disjoint union of transitive G-sets (its orbits).

Many important groups have natural actions that are straightforward from their defi-
nitions. Many theorems on groups and their subgroups come from actions of G on itself
or on coset spaces G/H. G-sets are important, and one can use geometry to study them.
However, one cannot ”compute” in G-sets. In order to compute, one needs some algebraic
structure, e.g. a vector space.

Definition 1.7. A representation of a group G over a field F consists of a vector space
V over F and a morphism of groups π : G→ GL(V ). We will denote the representation
by (G, π, V ) or (π, V ) or π or V . The dimension of V is called the dimension of the
representation. A one-dimensional representation is called a character. A morphism
of representations φ : (π, V )→ (τ,W ) is a linear map φ : V → W that is a morphism of
G-sets, i.e. such that φ(π(g)v) = τ(g)φ(v),∀g ∈ G, v ∈ V .

Here are some examples of characters.

Example 1.8.

(1) The trivial character (of any group): χ(g) = 1 for all g.
(2) The sign character of Sn (sign of permutation).
(3) The determinant for GL(n, F ).

Here are some examples of representations.

Example 1.9.

(1) The zero representation (of any group): V = 0, GL(V ) has one element.
(2) SO(2,R) acts on R2 by rotations.
(3) GL(V ) acts on V .
(4) Sym(X) acts on the space F (X) of all functions X → F .

Exercise 1.10. Let π, τ ∈ Rep(G) and let φ : π → τ be a morphism of representations
which is an isomorphism of linear spaces. Show that φ is an isomorphism of representa-
tions. In other words, show that the linear inverse φ−1 is also a morphism of representa-
tions.

Definition 1.11. Let (π, V ) and (τ,W ) be representations of G (over the same field F ).
Define a representation of G on the direct sum V ⊕W by g(v, w) := (π(g)v, τ(g)w).

Define a dual or contragredient representation (π∗, V ∗) by (π∗(g)φ)(v) := φ(g−1)v.
Let (σ, U) be a representation of H (over F ). Define a representation of G×H on the

tensor product V ⊗ U by (g, h)(v ⊗ u) := π(g)v ⊗ σ(g)u.

In particular, if G = H then π ⊗ σ is a representation of G × G, which also becomes
a representation of G using the diagonal embedding ∆ : G ↪→ G×G. This enables us to
define an action of G on HomF (V, U) = V ∗ ⊗ U .
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Exercise 1.12. Check that HomF (V, U)G = HomG(π, σ).

Definition 1.13. A subrepresentation of (G, π, V ) is a G-invariant subspace of V ,
with induced action of G.

Example 1.14. Any representation has (at least) 2 subrepresentations : 0 and V .

Definition 1.15. A representation is called irreducible if it has only 2 subrepresenta-
tions.

Example 1.16.

(1) Any character is irreducible
(2) The action of SO(2,R) on R2 by rotations is irreducible, while the action of R×

on R2 by homotheties is not.

Exercise 1.17. Every irreducible representation of a finite group is finite dimensional.

In the next lecture we will show that every representation is a direct sum of irreducible
ones, and for a given group there is a finite number of isomorphism classes of irreps (unlike
prime numbers). Thus, the main goals of representation theory are to classify all irre-
ducible representations of a given group (up to isomorphism) and given a representation
to find its decomposition to irreducible ones.

The most important properties of irreducible representations are Schur’s lemmas.

Lemma 1.18. Let ρ and σ be irreps of a group G.
(1) Any non-zero morphism φ : ρ→ σ is an isomorphism.
(2) If the field F is algebraically closed and ρ is finite-dimensional then Hom(ρ, ρ) =

F · Id.

Proof. (1) Kerφ is a subrepresentation of ρ and Imφ is a subrepresentation of σ.
(2) Let ϕ ∈ Hom(ρ, ρ) and λ be an eigenvalue of ϕ. Since ϕ − λId is not invertible, (1)
implies that it is zero. �

Corollary 1.19. Every irrep of a finite commutative group over an algebraically closed
field is one-dimensional.

Exercise 1.20. Every irrep of a commutative group over R is at most 2-dimensional.
Give an example of a 2-dimensional irrep.

Exercise 1.21. Let (π1, V1), (π2, V2) be irreps of a group G. Consider the direct sum
(π, V ) of these representations. The space V has four G-invariant coordinate subspaces
0, V1, V2, V . Show that the representations π1 and π1 are isomorphic if and only if there
exists a non-coordinate G-invariant subspace in V (i.e. a subspace distinct from the four
subspaces listed above).

2. Existence and uniqueness of decomposition to irreducibles,
intertwining numbers and the group algebra.

From now on we consider only finite groups.

Definition 2.1 (Exercise). A representation π is called completely reducible if one of the
following equivalent conditions holds.



4 DMITRY GOUREVITCH

(1) π is a direct sum of irreducible representations.
(2) For every subrepresentation τ ⊂ π there exists another subrepresentation τ ′ ⊂ π

such that π = τ ⊕ τ ′.

Note that an irreducible representation is completely reducible :-).

Theorem 2.2 (Weyl-Mashke). Suppose that |G| is not zero in F . Then every represen-
tation (π, V ) of G over F is completely reducible.

Proof. Let τ ⊂ π. It is enough to find a G-invariant linear projection on τ . We take any
linear projection on τ and average it. Namely, we take a linear map p : V → V s.t. p2 = p
and Im p = τ and replace it by p′ :=

∑
g∈G π(g)pπ(g−1). Check that p′2 = p′, Im p′ = τ

and p′ is G-invariant. �

The idea of averaging is very important. It always gives something G-invariant, but
sometimes produces zero. It already take4s advantage of linearity of our subject - we
would not be able to do such a thing with G-sets.

The assumptions that G is finite and |G| is not zero in F are necessary, as shown by
the following example.

Example 2.3. Define A ∈ Mat2(F ) by A =

(
1 1
0 1

)
. Let the group Z act on F 2 by

π(n) := An. Then this representation is not completely reducible.
If charF = p then the same example gives a representation of the finite group Z/pZ.

From now on we assume charF = 0 and F is algebraically closed. Also, we consider
only finite-dimensional representations.

Corollary 2.4. Any matrix A with An = Id is diagonalizable.

In order to prove uniqueness of the decomposition we introduce a very important notion,
called intertwining number.

Notation 2.5. We denote by Rep(G) the collection of all representations of G and by
Irr(G) the set of isomorphism classes of irreducible representations of G. In the next
lecture we will show that the set Irr(G) is finite.

Definition 2.6. Let π, τ ∈ Rep(G). Define the intertwining number of π and τ by
〈π, τ〉 := dim HomG(π, τ).

Lemma 2.7. The ”form” 〈·, ·〉 is ”bilinear and symmetric”. Namely

(1) 〈π1 ⊕ π2, τ〉 = 〈π1, τ〉+ 〈π2, τ〉
(2) 〈π, τ1 ⊕ τ2〉 = 〈π, τ1〉+ 〈π, τ2〉
(3) 〈

⊕
aiπi,

⊕
biτi =

∑
aibi〈πi, τi〉, where ai and bi are natural numbers or zeros.

(4) 〈π, τ〉 = 〈τ, π〉

Proof. (1)-(2) are obvious and apply (3), which in turn implies (4) using complete re-
ducibility. �

Note that we just proved that the spaces HomG(π, τ) and HomG(τ, π) are equidimen-
sional and hence isomorphic, but we have no natural isomorphism between them.
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Corollary 2.8. The decomposition of any representation to a direct sum of irreducible
ones is unique. The multiplicity with which an irrep σ appears in a representation π equals
〈σ, π〉.

Corollary 2.9. A representation π is irreducible if and only if 〈π, π〉 = 1.

For a vector space V denote End(V ) := Hom(V, V ). Note that End(V ) = V ⊗ V ∗.
Thus, let us study some properties of actions on tensor products.

Let π ∈ Rep(G) and τ ∈ Rep(H).

Exercise 2.10. Show that (π ⊗ τ)|G = (dim τ)π and (π ⊗ τ)|H = (dimπ)τ .

Exercise 2.11. Show that (π ⊗ τ)G×H = πG ⊗ τH .

Lemma 2.12. Let ρ ∈ Irr(G) and σ ∈ Irr(H). Then ρ⊗ σ ∈ Irr(G×H).

Proof.

EndG×H(ρ⊗σ) = (EndF (ρ⊗σ))G×H = (ρ∗⊗σ⊗σ∗⊗ ρ)G×H = (ρ∗⊗ ρ⊗σ⊗σ∗)G×H =

(ρ∗ ⊗ ρ)G ⊗ (σ ⊗ σ∗)H = EndF (ρ)G ⊗ EndF (σ)H = EndG(ρ)⊗ EndH(σ).

Thus, 〈ρ⊗ σ, ρ⊗ σ〉 = 〈ρ, ρ〉〈σ, σ〉 = 1. �

Exercise 2.13. Prove that every irrep of G×H can be obtained in this way.

Corollary 2.14. If ρ ∈ Irr(G) then EndF (ρ) ∈ Irr(G×G).

Definition 2.15 (Group algerba). Define the group algebra A(G) of G to be the algebra
spanned over F by the symbols δg, g ∈ G with multiplication defined by δgδh = δgh. Note
that this is an associative non-commutative (unless G is commutative) algebra with unit
(equal to δ1). We can also view it as the algebra of functions from G to F , or the algebra
of measures on G, with multiplication given by convolution:

f ∗ h(g) :=
∑
x∈G

f(gx−1)h(x)

We define a representation of G × G on A(G) by (g1, g2)δx := δg1xg−1
2
∀x ∈ G or,

equivalently, ((g1, g2)f)(x) := f(g−1
1 xg2)∀f ∈ A(G), x ∈ G. This representation is called

the regular representation of G. Its restrictions on first and second coordinate of G×G
are called the left regular and right regular representations respectively.

Definition 2.16. A representation of an algebra with unit A on a vector space V is a
morphism of algebras with unit A→ End(V ).

Exercise 2.17. A representation (π, V ) of G defines a representation of A(G) on V and
vice versa.

Lemma 2.18. If ρ ∈ Irr(G) then the natural morphism of algebras A(G)→ EndF (ρ) is
onto.

Proof. EndF (ρ) is an irrep of G × G and the image of this morphism is a non-zero sub-
representation. �
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3. Decomposition of the regular representation. Corollaries on number
and dimensions of irreducible representations. Examples for small

symmetric groups

Lemma 3.1. Let V be a vector space. Then 〈A,B〉 := Tr(AB) defines a non-degenerate
symmetric bilinear form on End(V ). Moreover, if V is a representation of G then this
form is invariant with respect to the diagonal action of G. This form is called the trace
form.

Theorem 3.2. The natural morphism

φ : A(G)→
⊕

σ∈Irr(G)

EndF (σ)

is an isomorphism of algebras and of representations of G×G.

Proof. (1) It is easy to see that φ is a morphism of algebras and of representations of
G×G. Thus it is enough to show that φ is one to one and onto.

(2) Suppose f ∈ Kerφ ⊂ A(G). Then f acts by zero on any irreducible representation
of G and thus on any representation of G. Thus, f acts by zero on A(G), but
fδ1 = f and thus f = 0.

(3) Define a morphism ψ :
⊕

σ∈Irr(G) EndF (σ) → A(G) in the following way. For

A ∈ End(σ) let by ψ(A)(g) := Tr(σ(g)A), and continue by linearity to the direct
sum. Let us show that it is an embedding.
From Lemmas 2.18 and 3.1 we see that Kerψ does not intersect any coordinate of
the direct sum. On the other hand, by Exercise 1.21, Kerψ must be a coordinate
subspace. Thus Kerψ = 0.

(4) Now, by (3) the R.H.S. is finite dimensional and its dimension is at most the
dimension of L.H.S, and by (2), φ is one to one. Thus φ is an isomorphism.

�

Corollary 3.3. (1) Irr(G) is finite and∑
σIrr(G)

(dimσ)2 = |G|.

(2) |Irr(G)| equals the number of conjugacy classes in G.

Proof. (1): obvious. (2): both are equal to the dimension of the center of A(G). �

Example 3.4. If G is commutative then |Irr(G)| = |G| and all irreps are characters.

Lemma 3.5. Let X and Y be G-sets. Then 〈F (X), F (Y )〉 equals the number of orbits of
G in X × Y under the diagonal action.

Corollary 3.6. If the action of G on X is double-transitive then F0(X) is irreducible.

Example 3.7. Classification of Irr(S2), Irr(S3), Irr(S4).

4. Isotypic components; Characters, Schur orthogonality relations

4.1. Isotypic components.
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Definition 4.1. A representation is called isotypic if it is a direct sum of isomorphic
irreducible representations.

Exercise 4.2. The following are equivalent:

(1) π is isotypic
(2) All irreducible subrepresentations of π are isomorphic
(3) If π ' ω ⊕ τ with 〈ω, τ〉 = 0 then either ω = 0 or τ = 0.

Theorem 4.3. Let (π, V ) ∈ Rep(G). Then there exists a unique set of subrepresenta-

tions Vi such that V =
⊕k

i=1 Vi, Vi are isotypic, and 〈Vi, Vj〉 = 0. Moreover, for any

subrepresentation W ⊂ V , we have W =
⊕k

i=1(W ∩ Vi).

Proof. By induction. Existence is easy. Uniqueness follows from the ”moreover” part.
To prove the ”moreover” part, fix a decomposition V =

⊕
Vi, let W ⊂ V and consider

the decomposition W =
⊕

Wi where Wi has the same type as Vi, or is zero. Then
W ∩ Vi ⊂ Wi. On the other hand, Wi has zero projection on Vj, for j 6= i and thus
Wi ⊂ Vi. Thus Wi = Vi ∩W . �

The Vi are called the isotypic components of π.

Definition 4.4. If all isotypic components of π are irreducible then π is called multiplicity
free.

Lemma 4.5 (Easy). Every intertwining operator L ∈ HomG(π, π) preserves each isotypic
component. In particular, if π is multiplicity free then L is scalar on each Vi.

Exercise 4.6. Barak has got a game for his birthday. In the game there was a cube
with digits 1,...,6 on its faces, distributed somehow, not in the standard way. Each time
he played with his friends and lost, he blamed the cube and modified it by replacing the
number on every face by the average of the numbers written on the 4 neighbors of the face
during the game round. What numbers will be written on the faces after 10 losses?

Solution. Let V denote the 6-dimensional space of functions on the set X of faces of the
cube and L denote the ”averaging on neighbors” operator. Of course, we can guess that
the answer will be approximately the constant function 3.5. However, to know how precise
this approximation is we will need to diagonalize L and representation theory will help
us.

Let G denote the symmetries of the cube and consider V as its representation. Then G
has 3 orbits on X, thus 〈V, V 〉 = 3 and thus V is a sum of 3 non-isomorphic irreducible
representations. One is, of course, the 1-dimensional space V1 of constant functions. The
other is the 2-dimensional space V2 of ”symmetric” functions with zero sum, namely
functions that have the same value on opposite faces (and zero sum). The third is the
3-dimensional space V3 of ”anti-symmetric” functions.

The operator L commutes with the group action and thus acts by a scalar λi on each
Vi. Taking convenient vectors from each Vi we get λ1 = 1, λ2 = 1/2, λ1 = 0. Note that

V has the natural form 〈f, g〉 :=
∑
f(x)g(x), which is G-invariant and thus can be used

to compute projections to Vi. Let ξ be the original function given by (1, 2, 3, 4, 5, 6).
Then its projection ξ1 to V1 is the constant function 3.5. The length of the projection to
V2 is at most

√
2((3.5− 1)2 + (3.5− 2)2 + (3.5− 3)2) =

√
17.5 and thus |L10(ξ) − ξ1| ≤√

17.5/210 < 0, 005. �
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Exercise 4.7. Classify all irreducible representations of the group G from the solution of
the last exercise.

Hint. Use the action of G on faces, edges, vertices and main diagonals of the cube, and
on regular tetrahedra inscribed in the cube.

4.2. Characters.

Definition 4.8. Let (π, V ) ∈ Rep(G). Define a function χπ on G by χπ(g) := Trπ(g).

Lemma 4.9.

(1) If π w τ then χπ = χτ .
(2) χπ(hgh−1) = χπ(g), i.e. χπ ∈ Z(A(G)).
(3) χπ⊕τ = χπ + χτ .
(4) χπ⊗τ = χπχτ .
(5) χπ(g−1) = χπ∗(g).

This lemma immediately follows from the corresponding properties of trace.

Definition 4.10. Define a bilinear form on A(G) by

〈f, h〉 := |G|−1
∑
g∈G

f(g)h(g−1)

Exercise 4.11. This form is bilinear, symmetric and non-degenerate.

4.3. Schur orthogonality relations.

Theorem 4.12 (Schur orthogonality relations).

〈χπ, χτ 〉 = 〈π, τ〉

Proof. Let us first prove for the case when π is the trivial representation. Then
Hom(π, τ) = τG. Define p : τ → τG by p := 1/|G|

∑
τ(g). Then Im p = τG and

p|τG = Id, i.e. p is a projection on τG. Thus, dim τG = Tr(p). On the other hand,

Tr(p) = 1/|G|
∑

Tr(τ(g)) = 1/|G|
∑
g∈G

χτ (g) = 1/|G|
∑

χπ(g−1)χτ (g) = 〈χπ, χτ 〉

Now we will repeat the same argument for the general case, using the following exercise.
Exercise Let L, V be linear spaces and let X ∈ EndV, Y ∈ EndL. Define ΨX,Y :
Hom(L, V )→ Hom(L, V ) by ΨX,Y (A) := XAY . Then Tr ΨX,Y = TrX TrY .
Hint There are (at least) to ways to solve this:
1) There is a ”free’ proof with tensor calculus.
2) In coordinates, (Y EijX)ij = YiiXjj.

Now, let V be the space of π and L be the space of τ . Then HomG(π, τ) = Hom(V, L)G.
For any g ∈ G define Q(g) : Hom(V, L)→ Hom(V, L) by Q(g)(A) := τ(g)Aπ(g−1). Then
1/|G|

∑
g∈GQ(g) is a projector from Hom(V, L) onto HomG(π, τ) = Hom(V, L)G. Thus

〈π, τ〉 = dim HomG(π, τ) = Tr(1/|G|
∑
g∈G

Q(g)) = 1/|G|
∑
g∈G

χτ (g)χπ(g−1) = 〈χπ, χτ 〉

�
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Corollary 4.13. The character is a full invariant of a representation.

Proof. π =
⊕

ρ∈IrrGmρρ, and mρ are determined by mρ = 〈π, ρ〉 = 〈χπ, χρ〉. �

Corollary 4.14. Characters of irreducible representations form an orthonormal basis for
Z(A(G)).

Proof. By Lemma 4.9, characters of irreducible representations belong to Z(A(G)). By
the theorem and Schur’s lemmas, they form an orthonormal set. By Corollary 3.3 their
number is equal to dimZ(A(G)). Thus, they form an orthonormal basis. �

Lemma 4.15. If F = C then χπ(g−1) = χπ(g). Thus, on Z(A(G)) the form 〈 , 〉 coincides

with the scalar product defined by 〈f, h〉′ =
∑

g∈G f(g)h(g).

Proof. As we showed some time ago, π has an invariant scalar product and thus π∗ ' π.
Now, χπ(g−1) = χπ∗(g) = χπ(g) = χπ(g). �

4.4. Dimensions of irreps divide the order of the group.

Proposition 4.16. Let ρ ∈ Irr(G) and let zρ = dim ρ/|G|
∑

g∈G χρ(g
−1)δg.

Then ρ(zρ) = Id and σ(zρ) = 0 for any σ � ρ ∈ Irr(G).

Proof. Let ω ∈ Irr(G). Then, by the second Schur’s lemma, ω(zρ) is a scalar. Now,
Trω(zρ) = dim ρ/|G|

∑
g∈G χρ(g

−1)χω(g) = dim ρ · 〈ρ, ω〉. Thus, ω(zρ) = Id if ρ ' ω and

ω(zρ) = 0 otherwise. �

Corollary 4.17. The inverse of the map A(G) '
⊕

ρ∈Irr(G) EndF (ρ) is given on the

coordinate EndF (ρ) by A 7→ fA(g) = dim ρ/|G|Tr(Aρ(g−1)).

Corollary 4.18. ∀ρ ∈ Irr(G), dim ρ divides |G|.

For the proof we will need

Definition 4.19. A lattice is an abelian group without torsion.

Theorem 4.20 (from commutative algebra). Any finitely generated lattice L has a basis,
i.e. L ' Zn. In other words, ∃l1, ..., ln ∈ L s.t. ∀l ∈ L, l =

∑
aili, li ∈ Z.

Lemma 4.21. Let V be a vector space, and L < V a finitely generated lattice. Let
A : V → V s.t. A(L) ⊂ L. Suppose that A2 = qA. Then q ∈ Z.

Proof. Fix a basis (l1, ..., ln) for L. Take x ∈ L and let y := Ax. Then Ay = qy and
Aky = qky ∀k ≥ 1. Thus q is rational, and any power of the denominator of q divides all
the coordinates of y. Thus q ∈ Z. �

Proof of Corollary 4.18. V := A(G), A := convolution with
∑
χρ(g

−1), q = |G|/ dim ρ
and L := lattice generated by {ξδg : ξ is a root of unity of order |G|}. �

5. Classification of representations of symmetric groups

Let X be a set of size n and G = Sym(X) = Sn.

Lemma 5.1. Conjugate classes in Sn = partitions of n, i.e. sets (α1, ..., αk) of natural
numbers s.t. α1 + ...+ αk = n and α1 ≥ ... ≥ αk.
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Let us now find an irreducible representation for each partition α = (α1, ..., αk). Denote
by Xα the set of all decompositions of the set X to subsets X1, .., Xk s.t. |Xi| = αi.

Definition 5.2. Tα := F (Xα), T ′α := sgn · Tα.

Introduce a partial ordering on partitions by λ ≤ µ iff
∑j

i=1 λi ≤
∑j

i=1 µi ∀1 ≤ j ≤ n.

Definition 5.3. Denote by α∗ the transposed partition given by α∗i := |{j : αj ≥ i}.

Exercise 5.4. (1) α∗ is a partition and (α∗)∗ = α.
(2) α ≤ β ⇔ α∗ ≥ β∗.

Theorem 5.5.

〈Tα, T ′β〉 =

{
0, α 
 β∗;
1, α = β∗.

We leave the proof as a difficult combinatorial exercise. Hint: the intertwining number
equals the number of G-orbits on Xα ×Xβ such that the sgn is trivial on the centralizer
of any point of the orbit.

The theorem implies that Tα and T ′α have a unique joint irreducible component Uα
and that these components are different for different α. This gives a classification of all
irreducible representations of Sn. This classification is not very satisfying, but a long
and detailed study of the intertwining operator of Tα and T ′α will lead to a (quite long)
expression for the character of Uα. We will give here a formula for dimUα, that we will
prove later using Gelfand pairs:

dimUα =
n!
∏

i<j(li − lj)
l1!...lk!

,

where li = αi + k − i, i = 1, ..., k.

6. Commutative groups: Fourier transform.

Let G be a finite commutative group. Then, by the second Schur’s lemma all irreducible
representations are 1-dimensional (characters). Their number is equal to |G|. Actually,
the characters form a group: (χ · ψ)(g) := χ(g)ψ(g). It is called the (Pontryagin) dual

group Ĝ. This group is not canonically isomorphic to G, but G u ̂̂G canonically.
Now, we constructed an isomorphism A(G) u

⊕
End(σ). For commutative G it be-

comes F : A(G) u A(Ĝ). It is called Fourier transform. To see why let us write the
explicit formula.

F(f)(χ) =
∑
g∈G

f(g)χ(g)

By Schur orthogonality relations, we know that the characters form an orthonormal basis
for A(G) and thus f can be reconstructed from F(f) by

f(g) =
∑
χ∈Ĝ

F(f)(χ)χ(g)−1

since F(f)(χ) is exactly the χ−1-coordinate of f . This formula is called Fourier inversion

formula. It also shows that F(F(f))(g) = f(g−1), under the identification G u ̂̂G.
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To make things more familiar, let take F = C. Then we have χ−1 = χ. Let us consider
G = Z/nZ and choose a non-trivial character ψ by ψ(k) := exp(2πik

n
). Then for c ∈ Z/nZ

we have another character is given by a 7→ ψ(ca), and all characters of G are of this form.

This gives an identification of G with Ĝ and the familiar formulas for Fourier transform.

The same thing happens for G = R, but analysis comes in. For G = S1, Ĝ = Z and
Fourier transform becomes Fourier series.

Application. Multiplication of numbers.
Remark. The isomorphism A(G) u

⊕
End(σ) for non-commutative groups can be

viewed as a generalization of Fourier transform.

7. Induction of representations

We are looking for a way of ”lifting” representations of a subgroup H < G to represen-
tations of G. In other words, we are looking for a ”functor” IndGH : Rep(H)→ Rep(G).

Let us first find the trace (character) ψ of IndGH(π). We have a natural map ResGH :
Z(A(G))→ Z(A(H)). On both algebras we have a natural non-degenerate bilinear form.
Let us define IndGH : Z(A(H))→ Z(A(G)) as the conjugate to ResGH w.r. to these forms.
For any g ∈ G let Cg denote the conjugacy class of g and δCg denote the function which
equals |Cg|−1 on Cg and zero outside Cg. Then the functions of this form span Z(A(G)).
Now, by definition

ψ(g) = |G|〈Cg , ψ−1〉G = |G|〈Cg|H , χπ∗〉 =
|G|
|H||Cg|

∑
h∈Cg∩H

χπ(h)

As we know, this defines IndGH(π) uniquely (up to isomorphism). One only has to show
existence now. However, before doing this let us check the meaning of induction by
evaluating IndGH(χπ) on another (generating) subset of Z(A(G)) - the one formed by
characters of representations.

〈τ, IndGH(π)〉 = 〈χτ , IndGH(χπ)〉G = 〈ResGHχτ , χπ〉H = 〈ResGHτ, (π)〉
This very important formula is called Frobenius reciprocity. First of all, it shows that
IndGH(χπ) is the character of a representation. It also defines induction uniquely and in
fact could be guessed without considering characters since in means that IndGH(π) is the
”free representation of G generated by π”. Similar definitions work for the free group,
free module etc.

Let us now construct IndGH(π). First let us consider several examples

Example 7.1. (1) H = {e}, IndGH(F ) = F (G).
(2) For any H, IndGH(F ) = F (G/H).
(3) For any character χ of H, IndGH(χ) = {f ∈ F (G) : f(gh) = χ(h−1)f(g).
(4) For any H-set X, the free G-set generated by X is the set of H-orbits in G ×X

under the action h(g, x) := (gh−1, hx).

Based on these we define, for any (π, V ) ∈ Rep(H),

IndGH(π) = {f ∈ F (G, V ) : f(gh) = π(h−1)f(g)},
where F (G, V ) denotes all the functions from G to V with the usual action of G, i.e.
IndGH(π)(g)f(g′) = f(g−1g′).
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Moreover, this construction is functorial. This means that for π1, π2 ∈ Rep(H) and
φ ∈ HomH(π1, π2) we define IndGH(φ) : IndGH(π1)→ IndGH(π2) by IndGH(φ)(f)(g) = φ(f(g)),
and this preserves composition.

Lemma 7.2. The above construction satisfies Frobenius reciprocity. More precisely, for
any π ∈ Rep(H) and τ ∈ Rep(G) there is a canonical isomorphism HomG(τ, IndGH(π)) '
HomH(τ |H , π).

Proof. To build the isomorphism let φ : τ → IndGH(π)). Then its image is given by
ψ(w) = (φ(w))(e), where e ∈ G is the identity element. The inverse morphism maps
ψ ∈ HomH(τ |H , π) to φ ∈ HomG(τ, IndGH(π)) defined by φ(w)(g) := ψ(g−1w). �

Exercise 7.3. (1) For H < G and π1, π2 ∈ Rep(H),

IndGH(π1 ⊕ π2) = IndGH(π1)⊕ IndGH(π2).

(2) For H1 < H2 < G and π ∈ Rep(H),

IndGH2
IndH2

H1
π = IndGH1

π

Exercise 7.4. Repeat Exercise 4.6 for a dodecahedron.

Induction can be best described using equivariant sheaves.

7.1. Induction and equivariant sheaves. In this section we will use two topological
notions: vector bundles and equivariant sheaves. Since we consider only finite sets with
discrete topology, in our case these notions become much simpler.

Intuitively, a sheaf is a continuous family of vector spaces, parametrized by points of a
given topological space X. If we demand that all the spaces have the same dimension we
will get a vector bundle. In our case, these are precisely the definitions, and we require
the dimensions to be finite.

We will denote sheaves by Gothic letters, mainly F . Let F be a sheaf over X. The
vector space corresponding to x ∈ X is called the fiber of F at x and denoted Fx. The
disjoint union of all fibers is called the total space of F and we denote it by T (F).
Note that we have a natural map T (F) → X, and that T (F), together with the map
T (F)→ X defines F uniquely.

A morphism of sheaves φ : F → G over the same space X is a collection of linear maps
φx : Fx → Gx, one for each x ∈ X.

For any (open) subset U ⊂ X, we define F(U) :=
⊕

x∈U Fx. This space is called the
sections of F on U since it is precisely the space of sections of T (F) → X on U . The
space F(X) is called the space of global sections and sometimes denoted Γ(F).

Now, for a (continuous) map ν : X → Y define ν∗ : Sh(X)→ Sh(Y ) and ν∗ : Sh(Y )→
Sh(X) by

ν∗(F)(U) := F(ν−1(U)) and(ν∗(G))x := Gν(x),

where F ∈ Sh(X) and G ∈ Sh(Y ).

Exercise 7.5. Let ν : X → Y and let F1,F2 ∈ Sh(X), G1,G2 ∈ Sh(Y ), φ : F1 → F2, ψ :
G1 → G2. Define natural maps ν∗(φ) : ν∗(F1)→ ν∗(F2) and ν∗(ψ) : ν∗(G1)→ ν∗(G2).

Definition 7.6. Let X be a G-set and F be a sheaf over X. A G-equivariant structure
on F is a G-set structure on the total space T (F) such that the natural map T (F)→ X
is a morphism of G-sets.
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Exercise 7.7. The following structures on F are equivalent:

(1) An equivariant structure
(2) For any x ∈ X and g ∈ G - a linear map π(g)x : Fx → Fgx such that for g1, g2 ∈ G,

π(g1g2)x = π(g1) ◦ π(g2)x.
(3) An isomorphism of sheaves α : a∗(F) ≈ p∗2(F), where p2, a : G×X → X are the

projection to the second coordinate and the action respectively, that satisfies the
following condition:

(*) Consider the set Z = G×G×X and two morphisms q, b : Z → X, defined
by q(g, g′, x) = x and b(g, g’, x) = gg′x. The morphism α induces two morphisms
of sheaves β, γ : q∗(F)→ b∗(F). The condition on α is that these two morphisms
are equal.

Definition 7.8. Let F ,H ∈ ShG(X). Then a morphism of equivariant sheaves F → H
is a morphism of sheaves such that the corresponding map of total spaces T (F)→ T (H)
is a morphism of G-sets.

Exercise 7.9. Give the definition of a morphism of equivariant sheaves in two other
realizations of equivariant sheaves.

We have the following obvious lemma.

Lemma 7.10. Let X = X1

∐
X2 be a disjoint union of G-sets. Then ShG(X) =

ShG(X1)⊕ ShG(X2).

Corollary 7.11. If F ∈ ShG(X) and F(X) is irreducible then either F(X1) = 0 or
F(X2) = 0.

Let us now study sheaves over a transitive G-set, G/H.

Lemma 7.12. There is a natural equivalence ShG(G/H) = Rep(H).

Proof. Given a sheaf on G/H, we take its fiber at the coset H. To a representation (π, V )
of H, we put in correspondence the vector bundle Ind(π) who’s total space is the set of
H-orbits in G × V under the action h(g, x) := (gh−1, hx). The action of G on the total
space is given by left multiplication. �

To describe fibers of Ind(π) at every point, choose a representative gi for every coset
and let Ind(π)giH be the representation (πgi , V ) of giHg

−1
i given by πgi(gihg

−1
i ) = π(h).

The map Ind(π)H → Ind(π)giH given by gi is the identity map, and all other maps are
composition of the above 2 types.

Exercise 7.13. Ind(π)(G/H) = IndGH(π).

Let xi be a set of representatives of G-orbits on X and Gi be the stabilizers in G of xi.
Then the above discussion defines an equivalence ShG(X) '

⊕
iRep(Gi).

8. Mackey theory

Let let N < G be a normal subgroup. Let π ∈ Rep(G) and let π|N =
⊕

σ∈Irr(N) πσ be

the decomposition of π|N to isotypic components. This defines an equivalence Rep(G) '
ShspecG (Irr(N)), where by ShspecG (Irr(N)) we mean the sheaves on Irr(N) such that the
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fiber at each point ρ is an isotypic representation of N of type ρ. Let σi be a set of
representatives of orbits of G on Irr(N) and Si be the stabilizers in G of σi. Then
Rep(G) '

⊕
iRep(Si). In particular, if σ ∈ Irr(Si) then IndGSi

(σ) ∈ Irr(G), and any
irreducible representation of G is obtained in this way.

Corollary 8.1. Let π ∈ Irr(G). Then either π|N is isotypic of type (ρ, V ) and ρg ≈ ρ
for all g ∈ G, or there exists a subgroup N < H $ G and an irreducible representation τ

of H such that π = IndGH(τ).

Note that in the first case we get a projective representation of G on V , i.e. a group
homomorphism G→ GL(V )/scalars.

Now suppose that N is commutative and G = S nN .

Exercise 8.2. For any π ∈ Irr(G), dim π ≤ |S|.

Proof - exercise.
Now, consider

P2(Fq) :=

{(
a b
0 1

)
: a ∈ F×q , b ∈ Fq

}
Example 8.3. Note that P2 = F×q ∝ Fq. There are 2 orbits of F×q on F̂q: the zero and the
non-zero orbit. The stabilizers are F×q and the trivial group respectively. Fix a non-trivial

character ψ of Fq. Then there are q irreducible representations of P2: IndP2
Fq (ψ) and q− 1

characters of F×q , continued trivially to P2.

Exercise 8.4. Extend this example to Pn = GL(Fq, n− 1) ∝ Fn−1
q .

Now, let G be a general finite group and K,H < G be two subgroups and π ∈ Rep(H).
Let us study (IndGH(π))|K using equivariant sheaves. We know that IndGH(π) is the space
of global sections of the equivariant sheaf IndGH(π) on G/H. Clearly, the orbits of K in
G/H are the double-cosets K\G/H. Note that

IndGH(π)(KgH) =
⊕

k∈K/(K∩gHg−1)

πkg = IndKK∩gHg−1(πg)

Thus,

Theorem 8.5.

IndGH(π)|K =
⊕

KgH∈K\G/H

IndKK∩gHg−1(πg)

Corollary 8.6. (1)

〈IndGH(π), IndGK(τ)〉G =
∑
〈KgH∈K\G/HIndKK∩Hg(πg), τ〉K =

∑
〈πg, τ〉K∩Hg

(2) IndGH(π) is irreducible if and only if π is irreducible and 〈π, πg〉H∩Hg = 0 for any
g /∈ H.
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9. Monomial representations, Heisenberg group, Weil representation

We have seen in the last lecture that induction enables to construct many irreducible
representations. Today we will see an extreme case of that: any irreducible representation
of a nilpotent group is induced from a character.

We will use a lemma from last time:

Lemma 9.1. Let N C G be a normal subgroup. Let π ∈ Irr(G). Then either π|N
is isotypic of some type (ρ, V ) and ρg ≈ ρ for all g ∈ G, or there exists a subgroup
N < H $ G and an irreducible representation τ of H such that π = IndGH(τ).

Note that in the first case we get a projective representation of G on V , i.e. a group
homomorphism G→ GL(V )/scalars.

Definition 9.2. A representation induced from a character of a subgroup is called mono-
mial.

Definition 9.3. Let us call a group G c-solvable(which means cyclicly solvable) if there
exists a sequence of normal subgroups N0 < N1 < ... < Nk = G starting with the trivial
subgroup N0 such that each quotient group Ni/Ni−1 is cyclic.

Exercise 9.4. Show that any subgroup and quotient group of a c-solvable group is c-
solvable. Show that any finite nilpotent group is c-solvable.

Theorem 9.5. Let G be a c-solvable finite group. Then any irreducible representation π
of G is monomial.

Proof. We prove the theorem by induction on the order of G. If the group is commutative
the theorem is clear.

Suppose that the group is not commutative. We may also suppose that the representa-
tion π is faithful, i.e. no group element acts trivially. Now, let Z < G denote the center.
Choose a normal cyclic subgroup C < G/Z and lift it to a normal commutative subgroup
N < G. Since N is not central, there exist a ∈ N and b ∈ G such that a 6= bab−1, thus
π(a) 6= π(bab−1).

By Lemma 9.1, either π|N is isotypic and isomorphic to πb|N , or π is induced from some
proper subgroup of G. Since N is commutative, if π|N is isotypic then all elements of N
act on π by scalars. But π(a) 6= π(bab−1) and thus π|N is not isomorphic to πb|N . Thus
π is induced from some subgroup. By the induction hypotheses the representation of the
subgroup is monomial, and by transitivity of induction π is monomial. �

Exercise 9.6. Suppose we know that a group G has a commutative normal subgroup N
such that the group G/N is c-solvable. Show that any irreducible representation σ of G is
monomial.

Definition 9.7. The Heisenberg group is the group of upper uni-triangular 3 by 3 matrices
(over some field which we will take to be Fq). Here is another description. The center of H
is Fq (the corner of the matrix). The other two entries form a 2-dimensional vector space
V over Fq, and on this vector space we define a form ω((x1, y1), (x2, y2)) := x1y2 − x2y1.
It is anti-symmetric and non-degenerate. Now, H = {v, z : v ∈ V, z ∈ Fq} with group
law given by

(v, z)(v′, z′) = (v + v′, z + z′ +
1

2
ω(v, v′))
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Let us classify all irreps of H. First of all, on every irrep the center Z acts by some
character. If the character is trivial, we get an irreducible representation of V - there
are q2 such representations and they are all 1-dimensional. Now, suppose the central
character is χ 6= 1.

Theorem 9.8. There exists a unique representation ρχ of H with central character χ,
and it has dimension q.

Proof. Define a normal commutative subgroup D = {((x, y), z) ∈ H : x = 0}. Extend χ
trivially to D and define ρχ := IndHD(χ). The irreducibility and uniqueness follow from
the above Mackey analysis.

Indeed, for irreducibility we use Corollary 8.6. Let g = ((x, y), z) ∈ G with x 6= 0.
Then, for any ((0, y′), z′) ∈ D, χg(((0, y′), z′) = χ(z′)χ(1/2xy′). Since x 6= 0 and χ 6= 1,
there exists y′ such that χ(1/2xy′) 6= 1 and thus 〈χ, χg〉D = 0.

To show uniqueness, let σ ∈ Irr(H) and consider σ|D. By Lemma 9.1, either σ|D
is isotypic, or σ is induced from some proper subgroup which includes D. In the first
case, D acts on σ by scalars, and ((0, y′), z′) and ((0, y′), z′ + 1/2xy′) act by the same
scalar for any x, y′, z′ ∈ Fq. However, this implies χ(1/2xy′) = 1 for all x, y′ ∈ Fq which
contradicts χ 6= 1. Thus σ is induced from a representation τ of some proper subgroup
which includes D. If this subgroup is bigger than D we apply the same argument to show
that τ is induced from a smaller subgroup. Eventually, we get that σ = IndHD χ

′ where
χ′|Z = χ. Since H conjugates any such character χ′ to χ, we obtain σ ' ρχ.

Another option is to deduce irreducibility directly from the construction of induction,
and uniqueness will follow from the dimension count (sum of squares of dimensions).

Explicit construction of ρχ: (x, y, z) acts on F (Fq) by

(x, y, z)f(x′) = χ(z)χ(x′y)f(x′ − x).

�

Now, note that SL2(Fq) acts on H by automorphisms, and on Z it acts identically.
Thus, it maps ρχ to itself. This defines a projective representation of SL2(Fq) on F (Fq).
In fact, this representation can be lifted to an honest representation in the following way:

ρχ

(
a 0
0 a−1

)
f(x) =

(
a

p

)
f(a−1x); ρχ

(
1 0
b 1

)
f(x) = ψ

(
1

2
bx2

)
f(x);

ρχ

(
0 1
−1 0

)
f = −i

(q−1)/2

√
q

FT (f),

where q = pn, p 6= 2, and
(
a
p

)
denotes the Legandre symbol, and FT denotes the Fourier

transform.
Theorem 9.8 generalizes to representations of higher Heisenberg groups Hn := Fnq n

Fnq × Fq.
An analogous theory holds over the reals (instead of Fq), but the Weil representation

stays a projective representation and does not lift to an ”honest” representation. The
analog of Theorem 9.8 for Hn(R) is called the Stone-von-Neumann theorem.
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10. Gelfand Pairs with applications to representations of symmetric
groups

Let H < G be finite groups.

Definition 10.1. (G,H) is called a Gelfand pair if for every π ∈ Irr(G), dimπH ≤ 1.

Exercise 10.2. (G×G,∆G) is a Gelfand pair.

Theorem 10.3. The following are equivalent:

(1) (G,H) is a Gelfand pair
(2) F (G/H) is a multiplicity free representation of G.
(3) The convolution algebra F (G)H×H of functions on G that are constant on H double

cosets is commutative

Proof. For (1) ⇔ (2) note that F (G/H) = IndGH(C) and that HomH(C, π) = πH and use
Frobenius reciprocity
Now, note that for any π ∈ Irr(G), πH is a simple module of F (G)H×H . To finish the
proof it is enough to show that all simple modules are of this form. For that we will show
that

∑
π∈Irr(G)(dimπH)2 = dimF (G)H×H . For that, note that by Frobenius reciprocity

dimF (G)H×H = 〈F (G/H), F (G/H)〉G
and

F (G/H) =
⊕

π∈Irr(G)

(dimπH)π

and thus ∑
π∈Irr(G)

(dimπH)2 = 〈F (G/H), F (G/H)〉G = dimF (G)H×H .

�

Remark 10.4. This topic belongs to ”relative representation theory”, namely harmonic
analysis on G/H (while the usual representation theory is harmonic analysis on G). We
see that Gelfand property replaces Schur’s lemma for relative representation theory. This
explains why it is important.

That theorem is great, since this reduces a statement on representations that we maybe
do not know yet to an explicit statement on commutativity of algebras, that we can check
by a direct computation. However, Gelfand and (independently) Selberg invented a trick
that allows to avoid even that computation.

Lemma 10.5. Suppose we have an antiinvolution σ : G→ G (i.e. a bijection σ : G→ G
s.t. σ2 = Id and σ(gh) = σ(h)σ(g)). Suppose also that σ preserves all H double-cosets.
Then F (G)H×H is commutative and thus (G,H) is a Gelfand pair.

Proof. σ acts as identity on F (G)H×H , but changes order of multiplication. Thus, this
algebra is commutative. �

This lemma is obvious but very useful.

Exercise 10.6. Prove that (Sn+1, Sn) and (Sn+2, Sn × S2) are Gelfand pairs.
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One can formulate a stronger property.

Definition 10.7. (G,H) is called a strong Gelfand pair if for every π ∈ Irr(G) and
τ ∈ Irr(H), 〈π|H , τ〉 ≤ 1.

Theorem 10.8. The following are equivalent:

(1) (G,H) is a strong Gelfand pair
(2) (G×H,∆H) is a Gelfand pair.
(3) For any τ ∈ Irr(H), IndGH(τ) is a multiplicity free representation of G.
(4) The convolution algebra F (G)Ad(H) of functions on G that are constant on H-

conjugacy classes is commutative

Proof. For (1) ⇔ (2) note that every irreducible representation of G × H has the form
HomC(π, τ) where π ∈ Irr(G) and τ ∈ Irr(H). Note also that F (G × H)∆H×∆H '
F (G)Ad(H). The rest now follows from Theorem 10.3. �

This theorem gives the following version of Gelfand - Selberg trick for strong Gelfand
pairs:

Lemma 10.9. Suppose we have an antiinvolution σ : G→ G (i.e. a bijection σ : G→ G
s.t. σ2 = Id and σ(gh) = σ(h)σ(g)). Suppose also that σ preserves all H-conjugacy
classes, i.e. that σ preserves H and ∀g ∈ G ∃h ∈ H s.t. σ(g) = hgh−1. Then F (G)Ad(H)

is commutative and thus (G,H) is a strong Gelfand pair.

Now we see that (Sn+1, Sn) is actually a strong Gelfand pair. We use this in the
following way. Take π ∈ Irr(Sn). Then π|Sn−1 is multiplicity free and thus has a canonical
decomposition to a direct sum of irreducible subrepresentations. Take each of those
subrepresentations, restrict it to Sn−2 and so on. At the end, we get a decomposition of
π to a direct sum of lines, i.e. a canonical bases up to multiplication by constants. It is
very nice to have a canonical basis. We will use this basis to compute the dimensions of
irreducible representations.

Recall that the irreducible representations of Sn are classified by partitions of n. For
every partition λ = (n1, ..., nk) we defined a set Xλ = Sn/(Sn1 × ... × Snk

) and represen-
tations Tλ := F (Xλ) = IndSn

(Sn1×...×Snk
)C and T ′λ = signTλ. We showed that 〈Tλ, T ′λ∗〉 = 1

and defined Uλ to be the unique irreducible representation that they have in common.

Theorem 10.10. Let λ be a partition of n and ν be a partition of n − 1. Then
〈Uλ|Sn−1 , Uν〉 = 1 if ν can be obtained from λ by decreasing one part by one, and is
zero otherwise.

To prove this theorem, let us do some combinatorics. Introduce a partial ordering
on partitions by λ ≤ µ iff

∑j
i=1 λi ≤

∑j
i=1 µi ∀1 ≤ j ≤ n. Now, from a partition

ν = (n1, ..., nk) of n − 1 we construct two partitions of n: νl := (n1, ..., nk, 1) and νr :=
(n1 + 1, ..., nk). Note that ν can be obtained from λ by decreasing one part by one if and
only if νl ≤ λ ≤ νr. Note also that (νr)∗ = (ν∗)l.

Lemma 10.11.

IndSn
Sn−1

(Tν) = Tνl and IndSn
Sn−1

(T ′ν∗) = T ′(νr)∗
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Proof. Tν = Ind
Sn−1

(Sn1×...×Snk
)C and thus IndSn

Sn−1
(Tν) = IndSn

(Sn1×...×Snk
×S1)C = Tνl . The

second statement follows from this since (νr)∗ = (ν∗)l. �

The proof of the theorem is based on the following combinatorial exercise, which gen-
eralizes Theorem 5.5.

Exercise 10.12.
〈Tα, T ′β∗〉 = |{λ : α ≤ λ ≤ β}

In particular, if 〈Tα, T ′β∗〉 > 0 then α ≤ β∗.

Proof of Theorem 10.10. Let λ be a partition of n and ν be a partition of n − 1. First,
suppose that 〈Uλ|Sn−1 , Uν〉 6= 0, and thus is 1 since (Sn, Sn−1) is a strong Gelfand pair.

Then 〈Uλ, IndSn
Sn−1

Uν〉 6= 0. By Lemma 10.11 this implies Uλ ⊂ Tνl and Uλ ⊂ T ′(νr)∗ . By

Exercise 10.12, this implies that νl ≤ λ ≤ νr.
To prove the implication in the other direction, note that Exercise 10.12 is the counting

argument that shows that if νl ≤ λ ≤ νr then Uλ ⊂ Tνl and Uλ ⊂ T ′(νr)∗ and thus

〈Uλ|Sn−1 , Uν〉 6= 0. �

Corollary 10.13. dimUλ = the number of ways to ”erase” the ”boxes” in λ one by one
so that in each step we have a (non-increasing) partition.

Note that this number also equals the number of ”special” Young diagrams, i.e. the
number of ways to write the numbers 1, ..., n in the rows of λ such that each row and
column will have decreasing order. This number happens to be

n!
∏

i<j(li − lj)
l1!...lk!

, where li = ni + k − i, i = 1, ..., k.

11. Brauer Induction Theorem

Fix a finite group G.

Definition 11.1. Let C(G) ⊂ F (G) denote the subalgebra of conjugation-invariant func-
tions, and R(G) ⊂ C(G) denote the subring generated by characters of representations.

For a subgroup E ⊂ G denote by IndGE : C(E) → C(G) the linear map adjoint to
restriction ResGE : C(G)→ C(E) (see §7).

Note that for τ ∈ Rep(E) we have IndGE(χτ ) = χIndG
E τ
. Note also that χπ⊕τ = χπ + χτ

and χπ⊗τ = χπ · χτ . Thus one can view R(G) as the ring generated by the semi-ring of
all representations of G.

Exercise 11.2. (1) R(G) is generated (over Z) by characters of irreducible represen-
tations

(2) For any f ∈ R(G), there exists representations π and τ such that f = χπ − χτ .

Definition 11.3. Let p be a prime number. A finite group E is called p-elementary if
E = Cm × S, where Cm is a cyclic group of order m prime to p, and S is a p-group. E
is called elementary if it is p-elementary for some p.

Our goal in this section is to prove
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Theorem 11.4 (Brauer Induction Theorem). The (additive) group R(G) is spanned by
functions of the form IndGE(χ), where E ⊂ G is an elementary subgroup and χ is a one-
dimensional representation of E.

We will now make several reductions. First of all, define

I(G) :=
∑

elementary E

IndGE(R(E)) ⊂ R(G).

Lemma 11.5. The subset I(G) is an ideal and if 1 ∈ I(G) then Theorem 11.4 holds.

Proof. To see that I(G) is an ideal let π ∈ Rep(G) and σ, ρ ∈ Rep(E). Then

IndGE(σ ⊕ ρ) = IndGE(σ)⊕ IndGE(ρ) and π ⊗ IndGE(σ) = IndGE(π|E ⊗ σ).

Now, if 1 ∈ I(G) then I(G) = R(G). On the other hand, every elementary E is
nilpotent, thus (by Theorem 9.5), every representation of E is induced from a character
of some subgroup E ′ ⊂ E. Thus R(G) is spanned by functions of the form IndGE′ χ. �

Definition 11.6. A character system Q is a correspondence which assigns to every finite
group H a subring Q(H) of the algebra C(H) such that for any pair H < H ′ we have

IndH
′

H (Q(H)) ⊂ Q(H ′), ResH
′

H (Q(H ′)) ⊂ Q(H).

Example 11.7. (i) Q(H) = R(H).
(ii) Q(H) = C(H).

(iii) Q(H) = CZ(H), the subring of integer-valued functions.

Notation 11.8. Let n be the order of G, and µn ⊂ F be the group of n-th roots of 1. Let
Λ denote the subring of F generated by µn. Define a character system RΛ by

RΛ(H) := Λ ·R(H) ⊂ C(H).

Denote also
IΛ(G) :=

∑
elementary E

IndGE(RΛ(E)) ⊂ RΛ(G).

Lemma 11.9. If 1 ∈ IΛ(G) then Theorem 11.4 holds.

For the proof we will need the following exercise.

Exercise 11.10. There exists a homomorphism of groups ν : Λ→ Z with ν(1) = 1.

Proof of Lemma 11.9. Let ν be as in the exercise. Notice that for any group H there
exists a unique morphism of groups νH : RΛ(H)→ R(H) such that ν(λr) = ν(λ)r, ∀λ ∈
Λ, r ∈ R(H). This is true since R(H) has a basis ρ1, . . . , ρr of irreps, which stays a basis in
C(H). Clearly the system of morphisms νH is compatible with restriction and induction.
In particular, ν(IΛ(G)) ⊂ I(G). Thus, if 1 ∈ IΛ(G) then 1 ∈ I(G) and Theorem 11.4
holds by Lemma 11.5. �

Consider the character system Q(H) = RΛ(H) ∩ CZ(H) and define

J :=
∑

elementary E

IndGE(Q(E)) ⊂ IΛ(G).

By Lemma 11.9 it is enough to show that 1 ∈ J . To prove this we will use the following
exercise.



SUMMARY FOR THE COURSE ”INTRODUCTION TO REPRESENTATION THEORY”, FALL 201521

Exercise 11.11. Let L ' Zr be a lattice, and A < B < L be subgroups. Suppose that
A+ pNL = B + pNL for all primes p and all positive integers N . Then A = B.

Lemma 11.12. Suppose that for every prime p there exists a function f ∈ J such that
for every g ∈ G, f(g) is prime to p. Then Theorem 11.4 holds.

Proof. Since J ⊂ IΛ(G), Lemma 11.9 implies that if 1 ∈ J then Theorem 11.4 holds. Let
A := J, L := CZ(G) and B be the subgroup of L generated by A and 1. We have to
show that A = B. Fix a prime number p and a positive integer N . Fix a function f ∈ J
such that for every g ∈ G, f(g) is prime to p. Then p|(f(g)p−1 − 1), and by induction

pN |(fpN−1(p−1) − 1). Thus 1 ∈ A+ pNL for every N and p, thus A = B and 1 ∈ J . �

From now on we fix a prime number p. To construct f as in Lemma 11.12 we will need
the following definition and (difficult) exercise.

Definition 11.13. An element g ∈ G is called p-regular if ord(g) is prime to p and
p-singular if ord(g) is a power of p.

Exercise 11.14 (Jordan decomposition). Every element of G can be uniquely written as
g = grgs = gsgr, where gr is p-regular and gs is p-singular.

Note that the uniqueness of Jordan decomposition implies that the maps g 7→ gr and
g 7→ gs are compatible with morphisms of groups. In particular, they map conjugacy
classes into conjugacy classes.

Lemma 11.15. Suppose that for any p-regular element a ∈ G there exists a function
fa ∈ J such that for any x ∈ G with xr conjugate to a, fa(x) is prime to p, and for any
x ∈ G with xr not conjugate to a, fa(x) is 0. Then there exists a function f ∈ J such
that for every g ∈ G, f(g) is prime to p.

Proof. Take f to be the sum of the functions fa, when a runs over a system of represen-
tatives of p-regular conjugacy classes. �

Now fix a p-regular a ∈ G, set m := ord(a) and let D be the cyclic subgroup generated
by a. Denote by Z(a) the centralizer of a, fix a p-Sylov subgroup S of Z(a) and set
E = D×S ⊂ Z(a). It is easy to see that E is an elementary subgroup and the projection
pr : E → D coincides with the map x 7→ xr. Define a function ϕ ∈ C(E) by

ϕ(x) = 0 if pr(x) 6= a and ϕ(x) = m if pr(x) = a.

Lemma 11.16. The function ϕ lies in Q(E).

Proof. First of all, ϕ takes integer values. Also, we can write it in the form ϕ =∑
χ χ(a−1)χ′, where the sum is taken over all characters χ of the group D and χ′ is

the character of E defined by χ′ = χ(pr(x)). Since the coefficients χ(a−1) lie in Λ we see
that ϕ ∈ RΛ(E), and thus ϕ ∈ Q(E). �

Proposition 11.17. The induction fa := IndGE(ϕ) satisfies the conditions of Lemma
11.15.

Theorem 11.4 follows now from Lemma 11.16, Proposition 11.17, Lemma 11.15 and
Lemma 11.12.
For the proof of Proposition 11.17 we will need one more exercise.
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Exercise 11.18. Let Y be a finite set, t be a p-regular element in the group Sym(Y ) of
bijections of Y onto itself, and X be the set of fixed points of t. Then p divides |Y | − |X|.

Proof of Proposition 11.17. Let ϕ! denote the extension of ϕ to G by 0. Then by the
definition of IndGE : C(E)→ C(G) we have

(1) fa(x) =
∑
g∈G/E

ϕ!(g
−1xg).

Let x ∈ G. If xr is not conjugate to a then all the terms in the sum are 0 by definition
of ϕ. Assume now that xr is conjugate to a. Conjugating x we can assume xr = a. It
is clear that in the sum (1) above, non-zero contribution is given only by terms g with
(g−1xg)r = a. Since (g−1xg)r = g−1xrg = g−1ag, this implies g ∈ Z(a). Thus

(2) fa(x) =
∑

g∈Z(a)/E

ϕ!(g
−1xg).

Denote Y := Z(a)/E, X := {g ∈ Y | g−1xsg ∈ S}, where xs is the singular part of x.
From (2) we have fa(x) = m|X|. It is left to show that |X| is prime to p. Note that an
element g ∈ Y belongs to X iff xsg ∈ gE. In other words, X is the fixed point set of the
left action of xs on Y . Since |Y | is prime to p, we get that so is |X|, by Exercise 11.18. �

12. Representations of topological groups - basic notions

Definition 12.1. A topological group is a topological space which is also a group such
that the multiplication map G×G→ G and the inversion map G→ G are continuous.

We will consider only locally compact Hausdorff topological groups. Mostly just com-
pact groups.

Examples of compact groups:

(1) A finite group with discrete topology.
(2) A circle. More generally: SO(n,R) or O(n,R).

Examples of non-compact groups: R, C, SL(2,R), GL(n,R), GL(n,C).

Definition 12.2. A continuous representation of G is a linear representation of G in
a Banach space B over C such that the natural map G × V → V is continuous. A
morphism of continuous representation is a bounded operator between the corresponding
Banach spaces that commutes with the group action.

Example 12.3. The regular representation of any compact group K in the Banach space
C(K) of continuous functions on K with the maximum norm.

We can also consider a representation in square-integrable functions, but for that we
need a measure.

Theorem 12.4 (Haar). There exists a unique measure on G which is invariant under
left shifts.

This measure is called the Haar measure and denoted by dg.

Corollary 12.5. (1) There exists a character ∆G of G, called the modular character,
such that Rgdg = ∆G(g)dg, where Rg denotes the right shift.
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(2) If G is compact, ∆G is trivial.

Now we can define another regular representation: L2(G).

Definition 12.6. A representation is called irreducible if it has no continuous subrepre-
sentations. In other words, every G-invariant subspace is closed.

Schur’s lemmas still hold for continuous representations, with the same proofs.

Definition 12.7. A unitary representation is a representation of G in a Hilbert space H
with G-invariant scalar product. A representation is called unitarizable if it is isomorphic
to a unitary representation.

As in the finite group case, we have:

Lemma 12.8. Unitary representations are completely reducible.

From now on, let K be a compact group.

Lemma 12.9. For any representation (π,B) of K we have a natural projection B → BK

- by averaging.

Lemma 12.10. Any representation of K in a Hilbert space is unitarizable. In particular,
every finite-dimensional representation is unitarizable.

However, C(K) is not unitarizable.
All the statements about finite-dimensional representations of finite groups that we had

carry over to the compact case, except, of course, those involving the order of the group.
Note that every finite-dimensional vector space has a unique structure of a Hilbert space.

13. The Peter-Weyl theorem and its corollaries

Let Irrf (K) denote the set of finite-dimensional irreducible representations. We will
later show that these are all the irreducible representations.

The analog of the statement about the decomposition of the regular representation is
the Peter-Weyl theorem.

Theorem 13.1 (Peter-Weyl).

L2(K) '
⊕̂

σ∈Irrf (K)
End(σ)

The map in one direction is defined by matrix coefficients: Mρ,A(g) = Tr(Aρ(g−1)).
The action map, in the other direction, is defined only on C(K):

ρ(f)v :=

∫
G

f(g)ρ(g)vdg

To define the action map, we do not need ρ to be finite-dimensional. I am not sure we
will have time to prove this theorem.

In particular, characters of non-isomorphic irreducible representations are orthogonal.

Corollary 13.2.
⊕

σ∈Irrf (K) End(σ) is dense in C(K).

This follows from the Stone-Weierstrass theorem:
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Theorem 13.3 (Stone-Weierstrass). Let C be a compact (Hausdorff) topological space
and A < C(C) be a subalgebra with 1 that separates points and is closed under complex
conjugation. Then A is dense in C(C).

This implies the previous corollary since matrix coefficients form an algebra: sum is
given by direct sum, and product by tensor product.

Definition 13.4. Let (π,B) be a continuous representation of K and ρ be an irreducible
finite-dimensional representation. Define a Banach space Mρ(π) := HomG(ρ, π) and a
continuous representation πρ := ρ ⊗ HomG(ρ, π). Note that πρ has a natural embedding
to π.

The πρ could be zero.
From the last Corollary we obtain

Corollary 13.5.
⊕

ρ∈Irrf (K) πρ is dense in π.

Proof. We can assume that π is generated by one vector. Now, approximate the delta-
function by continuous functions, and act on them on this vector. �

Corollary 13.6. All irreducible representations of K are finite-dimensional.

Corollary 13.7. We have a natural projection π → πρ, given by π(χρ).

Thus, we have
⊕

ρ∈Irr(K) πρ ⊂ π ⊂
∏

ρ∈Irr(K) πρ. This implies

Corollary 13.8. If (π,H) is a unitary representation then π =
⊕̂

ρ∈Irr(K)πρ.

However, for Banach space representations we do not have such a decomposition, even
for C(S1).

One can define induction IndGH(π) in a similar to the finite group case: consider H-
equivariant continuous functions from G to π. If π is unitary, one can also consider a
”unitary induction”: square-integrable functions from G to π. This will be a unitary
representation. The proper notion of equivariant sheaf is missing in general, but Mackey
theory holds for unitary inductions of unitary representations.

If G/H is not compact, one can also consider a ”small induction”: continuous functions
from G to π with compact support modulo H. This case is quite difficult to study, so
people prefer to consider co-compact subgroups, for example the subgroup of upper-
triangular matrices in GL(n,R).

If H is compact, one has a nice theory of Gelfand pairs. If not, one can also say
something, but it becomes very delicate. I have several results in this case.

14. Harmonic analysis on the sphere and an application to integral
geometry

Note that Sn is transitive under SO(n) and the stabilizer of a point is SO(n − 1).
Harmonic analysis on Sn means the study of L2(Sn) as a representation of SO(n). We
will find its decomposition to irreducible representations and use it to prove the following
theorem.

Theorem 14.1. Every convex central-symmetric body in Rn is uniquely determined by
the areas of its projections on all hyperplanes.
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This theorem is equivalent to the following one:

Theorem 14.2. Every convex central-symmetric body in Rn is uniquely determined by
the areas of its intersections with all hyperplanes (passing through the origin).

Let us show their equivalence.

Definition 14.3. Call two convex central-symmetric bodies K,K ′ ⊂ Rn dual if

sup
y∈K′
〈x, y〉 ≤ 1⇔ x ∈ K,

where 〈x, y〉 denotes the standard scalar product in Rn. Note this condition is equivalent
to the condition

sup
x∈K
〈x, y〉 ≤ 1⇔ y ∈ K ′.

The equivalence now follows from the following exercise.

Exercise 14.4. Let Rn−1 ⊂ Rn be a hyperplane and p denote the projection to Rn−1.
Show that if K is dual to K ′ in Rn then Rn−1 ∩K is dual to p(K ′) in Rn−1.

Let us now prove Theorem 14.2. For simplicity, take n = 3 and denote S := S2 ⊂ R3.
For any convex central-symmetric body K, define a function fK on S by fK(x) = 1/2r2

x,
where r is the length of the segment which is the intersection of K with the line passing
through the origin and x. Note that fK is an even function which completely determines
K.

Exercise 14.5. Let P ⊂ R3 be a plane. Then

Area(K ∩ P ) =

∫
S∩P

fK(x)dx

Thus, Theorem 14.2 follows from the statement that an even function on the sphere is
uniquely determined by its integrals on all the big circles. Denote by L+(S) the subrep-
resentation consisting of even functions, and by J the morphism L2(S) → L2

+(S) given
by

Jf(x) :=

∫
Cx

f(y)dy,

where Cx denotes the big circle with epicenter in x. By Peter-Weyl theorem and Schur’s
lemmas, we know that L+(S) is a direct sum or irreducible representations and J is scalar
on each summand. Let us find this decomposition.

Denote by Pn the space of all functions on S that are restrictions of polynomials of
degree n in R3.

Exercise 14.6. Pn ⊂ Pn+2 and dimPn = (n+ 1)(n+ 2)/2.

Let Hn denote the orthogonal complement to Pn−2 in Pn (under the natural scalar
product in L2(S)).

Remark 14.7. One can identify Hn with the space of homogeneous harmonic polynomials
of degree n in R3. Harmonic means that the vanish under the Laplace operator ∆ =
∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
. Thus, the functions in Hn are called ’spherical harmonics’.

However, we will not use this identification.
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Lemma 14.8.

L2(S) =
⊕̂∞

n=0
Hn, L2

+(S) =
⊕̂∞

n=0
H2n

Proof. Clearly, Hn are invariant, orthogonal and their sum is the union of all Pn. This
union separates points of S, thus, by the Stone-Weierstrass theorem, is dense in C(S) and
thus in L2(S). Clearly, Hn ⊂ L+(S) if and only if n is even. �

Let us now show that Hn is irreducible. Let SO(2) ⊂ SO(3) denote the subgroup of
rotations with respect to the z axis and identify S = SO(3)/SO(2).

Exercise 14.9. Show that dim(Pn)SO(2) = [n/2] + 1

Hint. Show that (Pn)SO(2) is spanned by zn, zn−2(x2 + y2), ..., zn−2[n/2](x2 + y2)[n/2]. �

Now, note that by Frobenius reciprocity every irreducible subrepresentation of L2(S)
has an SO(2)-invariant vector. This proves

Lemma 14.10. Hn are irreducible.

This finishes the harmonic analysis problem. To prove the integral geometry theorem,
it is left to compute the eigenvalues of J . For this we can pick any function in each Hn

that is convenient to us. We choose the SO(2)-invariant function, which is also called the
n-th Legandre polynomial:

Ln(z) =
dn

dzn
((z2 − 1)n).

Exercise 14.11. Ln ∈ Hn.

Hint. Show that for any SO(2)-invariant function f on S we have
∫
S
f(x)dx =

∫ 1

−1
f(z)dz,

deduce that 〈f1, f2〉 =
∫ 1

−1
f1(z)f2(z)dz and use integration by parts to show that Ln(z)

is orthogonal to all polynomials in z of degree smaller than n. �

Now, let λn be the eigenvalue of J on Hn. Applying J to Ln and substituting (0, 0, 1)
we get λnLn(1) = 2πLn(0). The values Ln(1) and Ln(0) are easy to compute:

Ln(1) = − dn

dzn
((z − 1)n(z + 1)n)|z=1 = n!2n,

L2k+1(0) = 0, L2k(0) = (2k)!

(
2k

k

)
.

Thus,

λ2k+1 = 0 and λ2k = 2π
(2k − 1)!!

(2k + 1)!!
.

This gives an explicit formula for the inverse of J on L+(S) and proves Theorem 14.2.

Remark 14.12. Theorem 14.2 and the proof we discussed generalizes to higher dimen-
sions. However, for S2 ⊂ R3 there is one special property: every irreducible representation
of SO(3) is isomorphic to one of the Hn. Thus we have a classification of all irreducible
representations of SO(3). Also, we get that L2(S2) includes each irreducible represen-
tation exactly one time (unlike L2(SO(3)) which includes each π dim π times). Such
representations are called ”models”.
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15. Proof of the Peter-Weyl theorem

Recall that the theorem states

L2(K) '
⊕̂

ρ∈Irrf (K)
End(ρ)

The map in one direction is defined by matrix coefficients: Mρ,A(g) = Tr(Aρ(g−1)).
The action map, in the other direction, is defined only on C(K):

ρ(f)v :=

∫
G

f(g)ρ(g)vdg

Let (ρ, V ) be a finite-dimensional continuous irreducible representation of K and let Cρ ⊂
L2(K) denote the image of the matrix coefficients map Mρ : End(V )→ C(K). Note that
End(V ) is an irreducible representation of K×K, thus Mρ has no kernel and thus defines
an isomorphism End(V ) ' Cρ. Note also that as a representation of K, Cρ is isotypic of
type ρ and thus Cρ and Cσ are orthogonal for ρ � σ. It is left to show that

⊕
ρ∈Irrf (K) Cρ

is dense in L2(K). We do that in several steps.

Lemma 15.1. Every subrepresentation of W ⊂ L2(K) isomorphic to ρ lies inside Cρ.

Proof. We can suppose that all the functions in W have value at 1 ∈ G. Thus, we have
a functional δ1 ∈ W ∗. Consider f ⊗ δ1 ∈ End(W ) ' End(ρ) and note that f = Mf⊗δ1 ∈
Cρ. �

Lemma 15.2. Every non-zero subspace of L ⊂ L2(K) which is invariant under K ×K
has a non-zero finite-dimensional subspace which is invariant under the left action of K.

This is the hardest lemma in the proof, and it uses spectral theory for compact self-
adjoint operators on Hilbert spaces.

Proof. Consider the right action of K on C(K). Since the left and the right actions
commute, this defines an intertwining operator R(f) : C(K)→ C(K) for any f ∈ C(G).
This operator is compact (since it is given by a compact kernel). The adjoint operator is

R(f ∗) where f ∗(g) = f(g−1). Now, for any v ∈ L we can find f ∈ C(K) such that f = f ∗

and R(f)v 6= 0. Then R(f) is compact and self-adjoint and thus L can be decomposed
to a completed direct sum of eigenspaces of R(f), and all eigenspaces except the kernel
are finite-dimensional. Since R(f) is non-zero, there exists a non-zero finite-dimensional
eigenspace. It is invariant under the left action of K, since this action commutes with
R(f). �

Those two lemmas imply that
⊕

ρ∈Irrf (K) Cρ is dense in L2(K). Indeed, suppose it is

not dense. Then it has a non-zero orthogonal complement L′. By Lemma 15.2, L′ has
a finite-dimensional subrepresentation W . Then W has a subrepresentation (ρ, V ) for
some ρ ∈ Irrf (K). By Lemma 15.1, V ⊂ Cρ, but by definition V is orthogonal to Cρ -
contradiction. �
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