Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

D. Gourevitch

Weizmann Institute of Science

Joint with Avraham Aizenbud and Siddhartha Sahi

http://www.wisdom.weizmann.ac.il/~dimagur

프 🖌 🛪 프 🕨

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → のへの

Definition

$$P_n = \left\{ \begin{pmatrix} * & \cdots & * & * \\ \vdots & \ddots & \vdots & \vdots \\ * & \cdots & * & * \\ 0 & \cdots & 0 & 1 \end{pmatrix} \right\} \subset G_n := GL_n(F)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Definition

$$P_n = \left\{ \begin{pmatrix} * & \cdots & * & * \\ \vdots & \ddots & \vdots & \vdots \\ * & \cdots & * & * \\ 0 & \cdots & 0 & 1 \end{pmatrix} \right\} \subset G_n := GL_n(F)$$

Theorem

The category $\mathcal{M}(P_n)$ of smooth P_n representations is equivalent to the category of G_{n-1} equivariant sheaves on $F^{n-1} =: V_n$

Definition

$$P_n = \left\{ \begin{pmatrix} * & \cdots & * & * \\ \vdots & \ddots & \vdots & \vdots \\ * & \cdots & * & * \\ 0 & \cdots & 0 & 1 \end{pmatrix} \right\} \subset G_n := GL_n(F)$$

Theorem

The category $\mathcal{M}(P_n)$ of smooth P_n representations is equivalent to the category of G_{n-1} equivariant sheaves on $F^{n-1} =: V_n$

Proof.

$$\mathcal{M}(P_n) = \mathcal{M}(\mathcal{H}(P_n)) = \mathcal{M}(\mathcal{H}(G_{n-1} \ltimes V_n)) =$$

= $\mathcal{M}(\mathcal{H}(G_{n-1}) \otimes \mathcal{H}(V_n)) \cong \mathcal{M}(\mathcal{H}(G_{n-1}) \otimes \mathcal{S}(V_n))$

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

イロン イロン イヨン イヨン

We have a short exact sequence

$$0
ightarrow \mathcal{M}(P_{n-1})
ightarrow \mathcal{M}(P_n)
ightarrow \mathcal{M}(G_{n-1})
ightarrow 0$$

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

イロト イポト イヨト イヨト

э

We have a short exact sequence

$$0
ightarrow \mathcal{M}(P_{n-1})
ightarrow \mathcal{M}(P_n)
ightarrow \mathcal{M}(G_{n-1})
ightarrow 0$$

Definition

• $\Phi: \mathcal{M}(P_n) \to \mathcal{M}(P_{n-1})$ – the restriction

We have a short exact sequence

$$0
ightarrow \mathcal{M}(P_{n-1})
ightarrow \mathcal{M}(P_n)
ightarrow \mathcal{M}(G_{n-1})
ightarrow 0$$

Definition

•
$$\Phi : \mathcal{M}(P_n) \to \mathcal{M}(P_{n-1})$$
 – the restriction
 $\Phi(\pi) = \pi_{V_n,\psi} = \pi/{\{\psi(a)w - \pi(a)w : a \in V_n\}}$

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

・ロト ・聞 と ・ ヨ と ・ ヨ と ・

э

We have a short exact sequence

$$0
ightarrow \mathcal{M}(P_{n-1})
ightarrow \mathcal{M}(P_n)
ightarrow \mathcal{M}(G_{n-1})
ightarrow 0$$

Definition

•
$$\Phi: \mathcal{M}(P_n) \to \mathcal{M}(P_{n-1})$$
 – the restriction
 $\Phi(\pi) = \pi_{V_n,\psi} = \pi/\{\psi(a)w - \pi(a)w : a \in V_n\}$

• $\Psi : \mathcal{M}(P_n) \to \mathcal{M}(G_{n-1})$ – the fiber

We have a short exact sequence

$$0
ightarrow \mathcal{M}(P_{n-1})
ightarrow \mathcal{M}(P_n)
ightarrow \mathcal{M}(G_{n-1})
ightarrow 0$$

Definition

•
$$\Phi : \mathcal{M}(P_n) \to \mathcal{M}(P_{n-1})$$
 – the restriction
 $\Phi(\pi) = \pi_{V_n,\psi} = \pi/\{\psi(a)w - \pi(a)w : a \in V_n\}$

•
$$\Psi: \mathcal{M}(P_n) o \mathcal{M}(G_{n-1})$$
 – the fiber
 $\Psi(\pi) = \pi_{V_n} = \pi/\{v - \pi(a)v : a \in V_n\}$

・ロト ・聞 ト ・ ヨト ・ ヨト

э

We have a short exact sequence

$$0
ightarrow \mathcal{M}(P_{n-1})
ightarrow \mathcal{M}(P_n)
ightarrow \mathcal{M}(G_{n-1})
ightarrow 0$$

Definition

•
$$\Phi: \mathcal{M}(P_n) \to \mathcal{M}(P_{n-1})$$
 - the restriction
 $\Phi(\pi) = \pi_{V_n,\psi} = \pi/\{\psi(a)w - \pi(a)w : a \in V_n\}$
• $\Psi: \mathcal{M}(P_n) \to \mathcal{M}(G_{n-1})$ - the fiber

$$\Psi(\pi) = \pi_{V_n} = \pi/\{v - \pi(a)v : a \in V_n\}$$

•
$$D^k = \Psi \circ \Phi^{k-1}$$

・ロン・西方・ ・ ヨン・ ヨン・

э

Let *G* be a real reductive group

(日) (문) (문) (문) (문)

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra

Let *G* be a real reductive group, g be its complexified Lie algebra and *K* be its maximal compact subgroup.

Let *G* be a real reductive group, \mathfrak{g} be its complexified Lie algebra and *K* be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K) -module is a \mathfrak{g} -module π with a locally finite action of K such the two actions are compatible.

Let *G* be a real reductive group, \mathfrak{g} be its complexified Lie algebra and *K* be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K) -module is a \mathfrak{g} -module π with a locally finite action of K such the two actions are compatible.

<ロト <四ト <注入 <注下 <注下 <

A finitely generated (g, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Let *G* be a real reductive group, \mathfrak{g} be its complexified Lie algebra and *K* be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K) -module is a \mathfrak{g} -module π with a locally finite action of K such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K) -module. Then the following properties of π are equivalent.

Let *G* be a real reductive group, \mathfrak{g} be its complexified Lie algebra and *K* be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K) -module is a \mathfrak{g} -module π with a locally finite action of K such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K) -module. Then the following properties of π are equivalent.

• π is admissible.

Let *G* be a real reductive group, \mathfrak{g} be its complexified Lie algebra and *K* be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K) -module is a \mathfrak{g} -module π with a locally finite action of K such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K) -module. Then the following properties of π are equivalent.

- π is admissible.
- π has finite length.

Let *G* be a real reductive group, \mathfrak{g} be its complexified Lie algebra and *K* be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K) -module is a \mathfrak{g} -module π with a locally finite action of K such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K) -module. Then the following properties of π are equivalent.

- π is admissible.
- π has finite length.
- π is $Z_G(\mathcal{U}(\mathfrak{g}))$ -finite.

Let *G* be a real reductive group, \mathfrak{g} be its complexified Lie algebra and *K* be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K) -module is a \mathfrak{g} -module π with a locally finite action of K such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K) -module. Then the following properties of π are equivalent.

- π is admissible.
- π has finite length.
- π is $Z_G(\mathcal{U}(\mathfrak{g}))$ -finite.
- π is finitely generated over \mathfrak{n} .

The category of smooth admissible representations

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

> < 三 > < 三 >

The category of smooth admissible representations

Definition

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of *G* of moderate growth

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of *G* of moderate growth and by $\mathcal{M}_{HC}(G)$ the category of admissible Harish-Chandra modules.

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of G of moderate growth and by $\mathcal{M}_{HC}(G)$ the category of admissible Harish-Chandra modules. We denote by $HC : \mathcal{M}_{\infty}(G) \to \mathcal{M}_{HC}(G)$ the functor of K-finite vectors.

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of G of moderate growth and by $\mathcal{M}_{HC}(G)$ the category of admissible Harish-Chandra modules. We denote by $HC : \mathcal{M}_{\infty}(G) \to \mathcal{M}_{HC}(G)$ the functor of K-finite vectors.

Theorem (Casselman-Wallach)

The functor $HC : \mathcal{M}_{\infty}(G) \to \mathcal{M}_{HC}(G)$ is an equivalence of categories.

・ロト ・回 ト ・ ヨト ・ ヨトー

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

5 0 Q C

Definition

Define a functor
$$\Phi : \mathcal{M}(\mathfrak{p}_n) \to \mathcal{M}(\mathfrak{p}_{n-1})$$
 by $\Phi(\pi) := \pi_{\mathfrak{v}_n, \psi} \otimes |det|^{-1/2}$.

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

Define a functor
$$\Phi : \mathcal{M}(\mathfrak{p}_n) \to \mathcal{M}(\mathfrak{p}_{n-1})$$
 by $\Phi(\pi) := \pi_{\mathfrak{p}_n, \psi} \otimes |det|^{-1/2}$.

Definition

For a p_n -module π we have 3 notions of derivative:

・ロト ・四ト ・ヨト ・ヨト

æ

Define a functor
$$\Phi : \mathcal{M}(\mathfrak{p}_n) \to \mathcal{M}(\mathfrak{p}_{n-1})$$
 by $\Phi(\pi) := \pi_{\mathfrak{p}_n, \psi} \otimes |det|^{-1/2}$.

Definition

For a p_n -module π we have 3 notions of derivative:

•
$$E^k(\pi) := \Phi^{k-1}(\pi) \otimes |det|^{-1/2} = \pi_{\mathfrak{u}_{k-1},\psi_{k-1}} \otimes |det|^{-k/2}$$
.
Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.

・ロト ・日下・ ・ ヨト・

문▶ 문

Define a functor
$$\Phi : \mathcal{M}(\mathfrak{p}_n) \to \mathcal{M}(\mathfrak{p}_{n-1})$$
 by $\Phi(\pi) := \pi_{\mathfrak{p}_n, \psi} \otimes |det|^{-1/2}$.

Definition

For a p_n -module π we have 3 notions of derivative:

- $E^k(\pi) := \Phi^{k-1}(\pi) \otimes |det|^{-1/2} = \pi_{\mathfrak{u}_{k-1},\psi_{k-1}} \otimes |det|^{-k/2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.
- D^k(π) :== (E^k(π))_{gen,v_{n-k+1}}. Here v_{n-k+1} is the nil-radical of p_{n-k+1} and ·_{gen,v_{n-k+1}} denotes the generalized co-invariants.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Define a functor
$$\Phi : \mathcal{M}(\mathfrak{p}_n) \to \mathcal{M}(\mathfrak{p}_{n-1})$$
 by $\Phi(\pi) := \pi_{\mathfrak{p}_n, \psi} \otimes |det|^{-1/2}$.

Definition

For a p_n -module π we have 3 notions of derivative:

- $E^k(\pi) := \Phi^{k-1}(\pi) \otimes |det|^{-1/2} = \pi_{\mathfrak{u}_{k-1},\psi_{k-1}} \otimes |det|^{-k/2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.
- D^k(π) :== (E^k(π))_{gen,v_{n-k+1}}. Here v_{n-k+1} is the nil-radical of p_{n-k+1} and ·_{gen,v_{n-k+1}} denotes the generalized co-invariants.

•
$$B^k(\pi) := (E^k(\pi))_{\mathfrak{v}_{n-k+1}}$$
.

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

Define a functor
$$\Phi : \mathcal{M}(\mathfrak{p}_n) \to \mathcal{M}(\mathfrak{p}_{n-1})$$
 by $\Phi(\pi) := \pi_{\mathfrak{p}_n, \psi} \otimes |det|^{-1/2}$.

Definition

For a p_n -module π we have 3 notions of derivative:

- $E^k(\pi) := \Phi^{k-1}(\pi) \otimes |det|^{-1/2} = \pi_{\mathfrak{u}_{k-1},\psi_{k-1}} \otimes |det|^{-k/2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.
- D^k(π) :== (E^k(π))_{gen,v_{n-k+1}}. Here v_{n-k+1} is the nil-radical of p_{n-k+1} and ·_{gen,v_{n-k+1}} denotes the generalized co-invariants.

•
$$B^k(\pi) := (E^k(\pi))_{\mathfrak{v}_{n-k+1}}$$

• $depth(\pi)$ – the largest part in the associated partition of π

<ロ> (四) (四) (三) (三) (三)

Associated partition

 $\mathcal{U}(\mathfrak{g}_n)$ has a filtration by the order of the tensor. Gr $(\mathcal{U}(\mathfrak{g}_n)) = \operatorname{Sym}(\mathfrak{g}_n) = \operatorname{Pol}(\mathfrak{g}_n^*).$

$$\mathcal{V}(\pi) := \operatorname{Zeroes}(\operatorname{Gr}(\operatorname{Ann}(\pi)))$$

It is known to be a union of nilpotent coadjoint orbits.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Associated partition

 $\mathcal{U}(\mathfrak{g}_n)$ has a filtration by the order of the tensor. $\operatorname{Gr}(\mathcal{U}(\mathfrak{g}_n)) = \operatorname{Sym}(\mathfrak{g}_n) = \operatorname{Pol}(\mathfrak{g}_n^*).$

$$\mathcal{V}(\pi) := \operatorname{Zeroes}(\operatorname{Gr}(\operatorname{Ann}(\pi)))$$

It is known to be a union of nilpotent coadjoint orbits.

Theorem (Joseph)

If π is irreducible then $\mathcal{V}(\pi)$ is the closure of a single orbit.

By Jordan's theorem this orbit is described by a partition of n, that we call associated partition of π .

イロト イポト イヨト イヨト

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

・ロト ・四ト ・ヨト ・ヨト

æ

•
$$E^1(\pi) = \pi|_{G_{n-1}}$$
,

$$depth(\pi) = 1 \iff \pi \text{ is f.d.} \iff D^k(\pi) = 0 \text{ for any } k > 1.$$

・ロト ・四ト ・ヨト ・ヨト

æ

$$depth(\pi) = n \iff D^n(\pi) \neq 0$$

< ロ > < 回 > < 回 > < 回 > 、

5 0 Q C

Let $N_n < G_n$ denote the subgroup of unipotent upper-triangular matrices, and define a character ψ of N_n to be the sum of superdiagonal elements. The Whittaker space is the space of co-equivariants

$$Wh(\pi) := \pi_{N_n, \exp(i\psi)}$$

Let $N_n < G_n$ denote the subgroup of unipotent upper-triangular matrices, and define a character ψ of N_n to be the sum of superdiagonal elements. The Whittaker space is the space of co-equivariants

$$Wh(\pi) := \pi_{N_n, \exp(i\psi)}$$

For a partition $\lambda = (n_1, ..., n_k)$ of *n* we define ψ_{λ} to be the sum of all superdiagonal elements except the ones in rows $n - n_1, n - n_1 - n_2, ..., n_k$.

$$Wh_{\lambda}(\pi) := \pi_{N_n, \exp(i\psi_{\lambda})}$$

ヘロト 人間 ト ヘヨト ヘヨト

Let $N_n < G_n$ denote the subgroup of unipotent upper-triangular matrices, and define a character ψ of N_n to be the sum of superdiagonal elements. The Whittaker space is the space of co-equivariants

$$Wh(\pi) := \pi_{N_n, \exp(i\psi)}$$

For a partition $\lambda = (n_1, ..., n_k)$ of *n* we define ψ_{λ} to be the sum of all superdiagonal elements except the ones in rows $n - n_1, n - n_1 - n_2, ..., n_k$.

$$Wh_{\lambda}(\pi) := \pi_{N_n, \exp(i\psi_{\lambda})}$$

Then

$$Wh_{\lambda}(\pi) = B^{n_k}(B^{n_{k-1}}(...(B^{n_1}(\pi))))$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\mathcal{M}^d_{\infty}(G_n)$ denote the subcategory of representations of depth $\leq d$. Then

• D^d defines a functor $\mathcal{M}^d_{\infty}(G_n) \to \mathcal{M}_{\infty}(G_{n-d})$.

- D^d defines a functor $\mathcal{M}^d_{\infty}(G_n) \to \mathcal{M}_{\infty}(G_{n-d})$.
- The functor $D^d : \mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$ is exact.

- D^d defines a functor $\mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$.
- The functor $D^d : \mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$ is exact.
- For any $\pi \in \mathcal{M}^d_\infty(G_n), \ D^d(\pi) = E^d(\pi).$

- D^d defines a functor $\mathcal{M}^d_{\infty}(G_n) \to \mathcal{M}_{\infty}(G_{n-d})$.
- The functor $D^d : \mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$ is exact.
- For any $\pi \in \mathcal{M}^d_\infty(G_n), D^d(\pi) = E^d(\pi).$

•
$$D^k|_{\mathcal{M}^d_{\infty}(G_n)} = 0$$
 for any $k > d$.

- D^d defines a functor $\mathcal{M}^d_{\infty}(G_n) \to \mathcal{M}_{\infty}(G_{n-d})$.
- The functor $D^d : \mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$ is exact.
- For any $\pi \in \mathcal{M}^d_\infty(G_n), \ D^d(\pi) = E^d(\pi).$
- $D^k|_{\mathcal{M}^d_{\infty}(G_n)} = 0$ for any k > d.

• Let
$$n = n_1 + ... + n_d$$

Let $\mathcal{M}^d_{\infty}(G_n)$ denote the subcategory of representations of depth $\leq d$. Then

- D^d defines a functor $\mathcal{M}^d_{\infty}(G_n) \to \mathcal{M}_{\infty}(G_{n-d})$.
- The functor $D^d : \mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$ is exact.
- For any $\pi \in \mathcal{M}^d_\infty(G_n), D^d(\pi) = E^d(\pi).$

•
$$D^k|_{\mathcal{M}^d_\infty(G_n)} = 0$$
 for any $k > d$.

• Let $n = n_1 + ... + n_d$ and let χ_i be characters of G_{n_i} .

Let $\mathcal{M}^d_{\infty}(G_n)$ denote the subcategory of representations of depth $\leq d$. Then

- D^d defines a functor $\mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$.
- The functor $D^d : \mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$ is exact.
- For any $\pi \in \mathcal{M}^d_\infty(G_n), D^d(\pi) = E^d(\pi).$

•
$$D^k|_{\mathcal{M}^d_\infty(G_n)} = 0$$
 for any $k > d$.

 Let n = n₁ + ... + n_d and let χ_i be characters of G_{n_i}. Let π = χ₁ × ... × χ_d ∈ M^d_∞(G_n) denote the corresponding degenerate principal series representation.

< □ > < □ > < □ > < □ > < □ > < □ >

Let $\mathcal{M}^d_{\infty}(G_n)$ denote the subcategory of representations of depth $\leq d$. Then

- D^d defines a functor $\mathcal{M}^d_{\infty}(G_n) \to \mathcal{M}_{\infty}(G_{n-d})$.
- The functor $D^d : \mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$ is exact.
- For any $\pi \in \mathcal{M}^d_\infty(G_n), D^d(\pi) = E^d(\pi).$

•
$$D^k|_{\mathcal{M}^d_\infty(G_n)} = 0$$
 for any $k > d$.

Let n = n₁ + ... + n_d and let χ_i be characters of G_{n_i}. Let π = χ₁ × ... × χ_d ∈ M^d_∞(G_n) denote the corresponding degenerate principal series representation. Then depth(π) = d and E^d(π) = D^d(π) = B^d(π) ≅ (χ₁)|<sub>G_{n₁-1} × ... × (χ_d)|<sub>G_{n_d-1}
</sub></sub>

Let $\mathcal{M}^d_{\infty}(G_n)$ denote the subcategory of representations of depth $\leq d$. Then

- D^d defines a functor $\mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$.
- The functor $D^d : \mathcal{M}^d_\infty(G_n) \to \mathcal{M}_\infty(G_{n-d})$ is exact.
- For any $\pi \in \mathcal{M}^d_\infty(G_n), D^d(\pi) = E^d(\pi).$

•
$$D^k|_{\mathcal{M}^d_\infty(G_n)} = 0$$
 for any $k > d$.

• Let $n = n_1 + ... + n_d$ and let χ_i be characters of G_{n_i} . Let $\pi = \chi_1 \times ... \times \chi_d \in \mathcal{M}^d_{\infty}(G_n)$ denote the corresponding degenerate principal series representation. Then $depth(\pi) = d$ and $E^d(\pi) = D^d(\pi) = B^d(\pi) \cong (\chi_1)|_{G_{n_1-1}} \times ... \times (\chi_d)|_{G_{n_d-1}}$

• For a unitarizable representation π

$$E^d(\pi) = D^d(\pi) = B^d(\pi) = A(\pi)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

イロン イロン イヨン イヨン

• We prove admissibility of $E^{d}(\pi)$ in the HC-category – $\mathcal{M}_{HC,d}(G)$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

- We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{HC,d}(G)$
- $e We deduce D^d|_{\mathcal{M}_{HC,d}(G)} = E^d|_{\mathcal{M}_d(G_n)}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

- We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{HC,d}(G)$
- $e We deduce D^d|_{\mathcal{M}_{HC,d}(G)} = E^d|_{\mathcal{M}_d(G_n)}.$
- We deduce $E^k|_{\mathcal{M}_{HC,d}(G_n)} = D^k|_{\mathcal{M}_{HC,d}(G_n)} = B^k|_{\mathcal{M}_{HC,d}(G_n)} = 0$ for any k > d.

- We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{HC,d}(G)$
- $e We deduce D^d|_{\mathcal{M}_{HC,d}(G)} = E^d|_{\mathcal{M}_d(G_n)}.$
- We deduce $E^{k}|_{\mathcal{M}_{HC,d}(G_{n})} = D^{k}|_{\mathcal{M}_{HC,d}(G_{n})} = B^{k}|_{\mathcal{M}_{HC,d}(G_{n})} = 0 \text{ for any } k > d.$
- We prove exactness of E^i and Hausdorffness of $E^i(\pi)$ in the smooth category

・ 同 ト ・ ヨ ト ・ ヨ ト …

- We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{HC,d}(G)$
- $e We deduce D^d|_{\mathcal{M}_{HC,d}(G)} = E^d|_{\mathcal{M}_d(G_n)}.$
- 3 We deduce $E^k|_{\mathcal{M}_{HC,d}(G_n)} = D^k|_{\mathcal{M}_{HC,d}(G_n)} = B^k|_{\mathcal{M}_{HC,d}(G_n)} = 0$ for any k > d.
- We prove exactness of E^i and Hausdorffness of $E^i(\pi)$ in the smooth category
- Using the Hausdorffness we deduce 1-3 in the smooth category

ヘロン 人間 とくほとくほとう

- We prove admissibility of $E^d(\pi)$ in the HC-category $\mathcal{M}_{HC,d}(G)$
- $e We deduce D^d|_{\mathcal{M}_{HC,d}(G)} = E^d|_{\mathcal{M}_d(G_n)}.$
- We deduce $E^k|_{\mathcal{M}_{HC,d}(G_n)} = D^k|_{\mathcal{M}_{HC,d}(G_n)} = B^k|_{\mathcal{M}_{HC,d}(G_n)} = 0$ for any k > d.
- We prove exactness of E^i and Hausdorffness of $E^i(\pi)$ in the smooth category
- Using the Hausdorffness we deduce 1-3 in the smooth category
- Using the exactness we prove the product formula in the smooth category

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- We prove admissibility of $E^d(\pi)$ in the HC-category $\mathcal{M}_{HC,d}(G)$
- $e We deduce D^d|_{\mathcal{M}_{HC,d}(G)} = E^d|_{\mathcal{M}_d(G_n)}.$
- We deduce $E^k|_{\mathcal{M}_{HC,d}(G_n)} = D^k|_{\mathcal{M}_{HC,d}(G_n)} = B^k|_{\mathcal{M}_{HC,d}(G_n)} = 0$ for any k > d.
- We prove exactness of E^i and Hausdorffness of $E^i(\pi)$ in the smooth category
- Using the Hausdorffness we deduce 1-3 in the smooth category
- Using the exactness we prove the product formula in the smooth category
- O We deduce from the product formula that for a unitarizable representation π

$$E^d(\pi) = D^d(\pi) = B^d(\pi) = A(\pi)$$

Adduced representation

From Mackey theory, since $P_n = G_{n-1} \ltimes V_n$:

Theorem

$$\forall \tau \in \widehat{P}_n$$
, either
 $\exists \tau' \in \widehat{P}_n$ s.t. $\tau \simeq Ind_{P_{n-1} \ltimes V_n}^{P_n}(\tau' \otimes \psi)$ or
 $\exists \tau|_{G_{n-1}} \in \widehat{G_{n-1}}$

・ 一日 ・ (日) ・

э

Adduced representation

From Mackey theory, since $P_n = G_{n-1} \ltimes V_n$:

Theorem

$$\forall \tau \in \widehat{P_n}, \text{ either}$$

$$\exists \tau' \in \widehat{P_n} \text{ s.t. } \tau \simeq \text{Ind}_{P_{n-1} \ltimes V_n}^{P_n}(\tau' \otimes \psi) \text{ or}$$

$$\exists \tau|_{G_{n-1}} \in \widehat{G_{n-1}}$$

In case 1 we can use the theorem again and again, until we drop to case 2 and obtain some $A_{\tau} \in \widehat{G_{n-d}}$.

イロト イポト イヨト イヨト

Adduced representation

From Mackey theory, since $P_n = G_{n-1} \ltimes V_n$:

Theorem

$$\begin{aligned} \forall \tau \in \widehat{P_n}, \text{ either} \\ \bullet \quad \exists \tau' \in \widehat{P_n} \text{ s.t. } \tau \simeq \textit{Ind}_{P_{n-1} \ltimes V_n}^{P_n}(\tau' \otimes \psi) \text{ or} \\ \bullet \quad \tau|_{G_{n-1}} \in \widehat{G_{n-1}} \end{aligned}$$

In case 1 we can use the theorem again and again, until we drop to case 2 and obtain some $A_{\tau} \in \widehat{G_{n-d}}$.

Theorem (Baruch, Bernstein, Sahi)

 $\forall \pi \in \widehat{G_n}, \ \pi|_{P_n} \in \widehat{P_n}$

We define $A\pi := A(\pi|_{P_n})$.

くロト (過) (目) (日)

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

ヘロン 人間 とくほど くほとう

き のへで

Uniqueness of degenerate Whittaker functionals for unitary representations.

・ロト ・四ト ・ヨト・

æ

• Uniqueness of degenerate Whittaker functionals for unitary representations. Let $\lambda = (l_1, ..., l_k)$ be the associated partition of τ , and $\mu = (m_1, ..., m_d) = \lambda^t$. Then \exists characters χ_i of G_{m_i} such that

$$\tau \twoheadleftarrow \chi_1 \times \cdots \times \chi_d.$$

(ロ) (同) (三) (三) (三) (○)

• Uniqueness of degenerate Whittaker functionals for unitary representations. Let $\lambda = (I_1, ..., I_k)$ be the associated partition of τ , and $\mu = (m_1, ..., m_d) = \lambda^t$. Then \exists characters χ_i of G_{m_i} such that

$$\tau \twoheadleftarrow \chi_1 \times \cdots \times \chi_d.$$

Thus

$$Wh_{(l_1,\ldots,l_k)}(\tau) = B^{l_k}(\cdots(B^{l_1}(\tau))\cdots) \leftarrow E^{l_k}(\cdots(E^{l_1}(\tau))\cdots)$$
$$\leftarrow E^{l_k}(\cdots(E^{l_1}(\chi_1 \times \cdots \times \chi_d))\cdots)$$

(ロ) (同) (三) (三) (三) (○)

• Uniqueness of degenerate Whittaker functionals for unitary representations. Let $\lambda = (l_1, ..., l_k)$ be the associated partition of τ , and $\mu = (m_1, ..., m_d) = \lambda^t$. Then \exists characters χ_i of G_{m_i} such that

$$\tau \twoheadleftarrow \chi_1 \times \cdots \times \chi_d.$$

Thus

$$Wh_{(l_1,\ldots,l_k)}(\tau) = B^{l_k}(\cdots(B^{l_1}(\tau))\cdots) \leftarrow E^{l_k}(\cdots(E^{l_1}(\tau))\cdots)$$
$$\leftarrow E^{l_k}(\cdots(E^{l_1}(\chi_1 \times \cdots \times \chi_d))\cdots)$$

 Computation of adduced representations of Speh complementary series

ヘロン 人間 とくほ とくほ とう

э.

• Uniqueness of degenerate Whittaker functionals for unitary representations. Let $\lambda = (l_1, ..., l_k)$ be the associated partition of τ , and $\mu = (m_1, ..., m_d) = \lambda^t$. Then \exists characters χ_i of G_{m_i} such that

$$\tau \twoheadleftarrow \chi_1 \times \cdots \times \chi_d.$$

Thus

$$Wh_{(l_1,\ldots,l_k)}(\tau) = B^{l_k}(\cdots(B^{l_1}(\tau))\cdots) \leftarrow E^{l_k}(\cdots(E^{l_1}(\tau))\cdots)$$
$$\leftarrow E^{l_k}(\cdots(E^{l_1}(\chi_1 \times \cdots \times \chi_d))\cdots)$$

 Computation of adduced representations of Speh complementary series

 $\chi_1 \times \chi_2 \times \chi_3 \times \chi_4 \twoheadrightarrow \Delta_{4m}$

(ロ) (同) (三) (三) (三) (○)

 Uniqueness of degenerate Whittaker functionals for unitary representations. Let $\lambda = (l_1, ..., l_k)$ be the associated partition of τ , and $\mu = (m_1, ..., m_d) = \lambda^t$. Then \exists characters χ_i of G_{m_i} such that

$$\tau \twoheadleftarrow \chi_1 \times \cdots \times \chi_d.$$

Thus

4

$$Wh_{(l_1,\ldots,l_k)}(\tau) = B^{l_k}(\cdots(B^{l_1}(\tau))\cdots) \leftarrow E^{l_k}(\cdots(E^{l_1}(\tau))\cdots)$$
$$\leftarrow E^{l_k}(\cdots(E^{l_1}(\chi_1 \times \cdots \times \chi_d))\cdots)$$

 Computation of adduced representations of Speh complementary series

D. Gourevitch

$$\chi_1 \times \chi_2 \times \chi_3 \times \chi_4 \twoheadrightarrow \Delta_{4m}$$

$$\Delta_{4m-4} \leftarrow \chi_1|_{G_{m-1}} \times \chi_2|_{G_{m-1}} \times \chi_3|_{G_{m-1}} \times \chi_4|_{G_{m-1}} = E^4(\chi_1 \times \chi_2 \times \chi_3 \times \chi_4) \twoheadrightarrow E^4(\Delta_{4m}) \twoheadrightarrow \mathcal{A}(\Delta_{4m}) = \mathcal{O} \otimes \mathcal{O}$$
D. Gourevitch Derivatives for representations of $\mathcal{GL}(n, \mathbb{R})$ and $\mathcal{GL}(n, \mathbb{C})$

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

イロン イロン イヨン イヨン

We need – $E^d(\pi)$ is finitely generated over n_{n-d}

We need $- E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d} We know $- E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}

▲ □ ▶ ▲ □ ▶ ▲

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d} We know $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1} We use

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d} We know $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1} We use

• Annihilator variety – $\mathcal{V}(\pi)$

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d} We know $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1} We use

- Annihilator variety $\mathcal{V}(\pi)$
- Associated variety $AV(\pi)$

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d} We know $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1} We use

- Annihilator variety $\mathcal{V}(\pi)$
- Associated variety $AV(\pi)$
- $AV(\pi) \subset \mathcal{V}(\pi)$

く 同 と く ヨ と く ヨ と

1

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d} We know $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1} We use

- Annihilator variety $\mathcal{V}(\pi)$
- Associated variety $AV(\pi)$
- $AV(\pi) \subset \mathcal{V}(\pi)$

$$depth(\pi) = d \Rightarrow \text{constrains on } \mathcal{V}_{\mathfrak{g}}(\pi) \Rightarrow$$
$$\Rightarrow AV_{\mathfrak{n}_{n-d+1}}(E^{d}(\pi)) \subset \mathfrak{n}_{n-d}^{*} \Rightarrow E^{d}(\pi) \text{ is f.g. over } \mathfrak{n}_{n-d}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

・日・ ・ ヨ・ ・

≣⇒

 Strategy 1 − Φ is equivalent to a restriction functor ⇒ has to be exact

 Strategy 1 – Φ is equivalent to a restriction functor ⇒ has to be exact

Problem – we do not have the language

- Strategy 1 Φ is equivalent to a restriction functor ⇒ has to be exact
 Problem – we do not have the language
- Strategy 2 [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit.

ヘロト 人間 ト ヘヨト ヘヨト

- Strategy 1 Φ is equivalent to a restriction functor ⇒ has to be exact
 Problem – we do not have the language
- Strategy 2 [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit.
 Problems

ヘロト ヘアト ヘビト ヘビト

- Strategy 1 Φ is equivalent to a restriction functor ⇒ has to be exact
 Problem – we do not have the language
- Strategy 2 [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit.
 Problems
 - 1 Unlike [CHM] there are ∞ orbits

ヘロト ヘアト ヘビト ヘビト

- Strategy 1 Φ is equivalent to a restriction functor ⇒ has to be exact
 Problem – we do not have the language
- Strategy 2 [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit.
 Problems
 - 1 Unlike [CHM] there are ∞ orbits
 - 2 Unlike [CHM] there are bad orbits

ヘロト 人間 ト ヘヨト ヘヨト

• Strategy 1 – Φ is equivalent to a restriction functor \Rightarrow has to be exact

Problem – we do not have the language

- Strategy 2 [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit.
 Problems
 - 1 Unlike [CHM] there are ∞ orbits
 - Onlike [CHM] there are bad orbits

Solution – to introduce a class of "good" p_n representations

ヘロト 人間 ト ヘヨト ヘヨト

Good p_n representations

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

▲圖> ▲ ヨ> ▲ ヨ>

Example $\mathcal{S}(P_n/Q)$

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Example $\mathcal{S}(P_n/Q)$

Key Lemma

•
$$L^{i}\Phi(S(P_{n}/Q)) = 0$$
 for $i > 0$

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

ヘロト 人間 とくほとくほとう

₹ 990

Example

$$\mathcal{S}(P_n/Q)$$

Key Lemma

•
$$L^{i}\Phi(S(P_{n}/Q)) = 0$$
 for $i > 0$

• $\Phi(\mathcal{S}(P_n/Q)) = \mathcal{S}(Z_0)$ for suitable $Z_0 \subset Z := P_n/(QV_n)$

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

・ロト ・回ト ・ヨト ・ヨト

The BZ product formula:

$$D^k(\pi imes au) \sim \sum D^l(\pi) imes D^{k-l}(au)$$

D. Gourevitch Derivatives for representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$

・ロト ・回ト ・ヨト ・ヨト

The BZ product formula:

$$D^k(\pi imes au) \sim \sum D^l(\pi) imes D^{k-l}(au)$$

Problems

・ロト ・回ト ・ヨト ・ヨト

The BZ product formula:

$$D^k(\pi imes au) \sim \sum D^l(\pi) imes D^{k-l}(au)$$

Problems

• Not true for E^k , D^k

イロト イポト イヨト イヨト

$$D^k(\pi imes au) \sim \sum D^l(\pi) imes D^{k-l}(au)$$

Problems

- Not true for E^k , D^k
- might be true for *B^k* but without exactness we can't prove it.

3

・ 同 ト ・ 三 ト ・

$$D^k(\pi imes au) \sim \sum D^l(\pi) imes D^{k-l}(au)$$

Problems

- Not true for E^k, D^k
- might be true for *B^k* but without exactness we can't prove it.
- we do not have appropriate language of ∞ dimensional bundles.

$$D^k(\pi imes au) \sim \sum D^l(\pi) imes D^{k-l}(au)$$

Problems

- Not true for E^k, D^k
- might be true for B^k but without exactness we can't prove it.
- we do not have appropriate language of ∞ dimensional bundles.

Compromise – prove it only for the highest derivatives and only for characters.

$$D^k(\pi imes au) \sim \sum D^l(\pi) imes D^{k-l}(au)$$

Problems

- Not true for E^k, D^k
- might be true for B^k but without exactness we can't prove it.
- we do not have appropriate language of ∞ dimensional bundles.

Compromise – prove it only for the highest derivatives and only for characters.

Method - exactness, key lemma, induction