Derivatives for representations of $G L(n, \mathbb{R})$ and $G L(n, \mathbb{C})$

D. Gourevitch

Weizmann Institute of Science

Joint with Avraham Aizenbud and Siddhartha Sahi
http://www.wisdom.weizmann.ac.il/~dimagur

The p-adic case

The p－adic case

Definition

$$
P_{n}=\left\{\left(\begin{array}{cccc}
* & \cdots & * & * \\
\vdots & \ddots & \vdots & \vdots \\
* & \cdots & * & * \\
0 & \cdots & 0 & 1
\end{array}\right)\right\} \subset G_{n}:=G L_{n}(F)
$$

The p-adic case

Definition

$$
P_{n}=\left\{\left(\begin{array}{cccc}
* & \cdots & * & * \\
\vdots & \ddots & \vdots & \vdots \\
* & \cdots & * & * \\
0 & \cdots & 0 & 1
\end{array}\right)\right\} \subset G_{n}:=G L_{n}(F)
$$

Theorem

The category $\mathcal{M}\left(P_{n}\right)$ of smooth P_{n} representations is equivalent to the category of G_{n-1} equivariant sheaves on $F^{n-1}=: V_{n}$

The p-adic case

Definition

$$
P_{n}=\left\{\left(\begin{array}{cccc}
* & \cdots & * & * \\
\vdots & \ddots & \vdots & \vdots \\
* & \cdots & * & * \\
0 & \cdots & 0 & 1
\end{array}\right)\right\} \subset G_{n}:=G L_{n}(F)
$$

Theorem

The category $\mathcal{M}\left(P_{n}\right)$ of smooth P_{n} representations is equivalent to the category of G_{n-1} equivariant sheaves on $F^{n-1}=: V_{n}$

Proof.

$$
\begin{aligned}
\mathcal{M}\left(P_{n}\right)= & \mathcal{M}\left(\mathcal{H}\left(P_{n}\right)\right)=\mathcal{M}\left(\mathcal{H}\left(G_{n-1} \ltimes V_{n}\right)\right)= \\
& =\mathcal{M}\left(\mathcal{H}\left(G_{n-1}\right) \otimes \mathcal{H}\left(V_{n}\right)\right) \cong \mathcal{M}\left(\mathcal{H}\left(G_{n-1}\right) \otimes \mathcal{S}\left(V_{n}\right)\right)
\end{aligned}
$$

The p-adic case

The p-adic case

Corollary

We have a short exact sequence

$$
0 \rightarrow \mathcal{M}\left(P_{n-1}\right) \rightarrow \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right) \rightarrow 0
$$

The p-adic case

Corollary

We have a short exact sequence

$$
0 \rightarrow \mathcal{M}\left(P_{n-1}\right) \rightarrow \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right) \rightarrow 0
$$

Definition

- $\Phi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(P_{n-1}\right)$ - the restriction

The p-adic case

Corollary

We have a short exact sequence

$$
0 \rightarrow \mathcal{M}\left(P_{n-1}\right) \rightarrow \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right) \rightarrow 0
$$

Definition

- $\Phi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(P_{n-1}\right)$ - the restriction

$$
\Phi(\pi)=\pi V_{n, \psi}=\pi /\left\{\psi(a) w-\pi(a) w: a \in V_{n}\right\}
$$

The p-adic case

Corollary

We have a short exact sequence

$$
0 \rightarrow \mathcal{M}\left(P_{n-1}\right) \rightarrow \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right) \rightarrow 0
$$

Definition

- $\Phi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(P_{n-1}\right)$ - the restriction $\Phi(\pi)=\pi_{V_{n}, \psi}=\pi /\left\{\psi(a) w-\pi(a) w: a \in V_{n}\right\}$
- $\Psi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right)$ - the fiber

The p-adic case

Corollary

We have a short exact sequence

$$
0 \rightarrow \mathcal{M}\left(P_{n-1}\right) \rightarrow \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right) \rightarrow 0
$$

Definition

- $\Phi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(P_{n-1}\right)$ - the restriction

$$
\Phi(\pi)=\pi V_{n, \psi}=\pi /\left\{\psi(a) w-\pi(a) w: a \in V_{n}\right\}
$$

- $\Psi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right)$ - the fiber

$$
\Psi(\pi)=\pi V_{n}=\pi /\left\{v-\pi(a) v: a \in V_{n}\right\}
$$

The p-adic case

Corollary

We have a short exact sequence

$$
0 \rightarrow \mathcal{M}\left(P_{n-1}\right) \rightarrow \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right) \rightarrow 0
$$

Definition

- $\Phi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(P_{n-1}\right)$ - the restriction

$$
\Phi(\pi)=\pi_{V_{n}, \psi}=\pi /\left\{\psi(a) w-\pi(a) w: a \in V_{n}\right\}
$$

- $\psi: \mathcal{M}\left(P_{n}\right) \rightarrow \mathcal{M}\left(G_{n-1}\right)$ - the fiber $\Psi(\pi)=\pi V_{n}=\pi /\left\{v-\pi(a) v: a \in V_{n}\right\}$
- $D^{k}=\Psi \circ \Phi^{k-1}$

The Harish－Chandra category

The Harish-Chandra category

Let G be a real reductive group

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K)-module. Then the following properties of π are equivalent.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K)-module. Then the following properties of π are equivalent.

- π is admissible.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K)-module. Then the following properties of π are equivalent.

- π is admissible.
- π has finite length.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K)-module. Then the following properties of π are equivalent.

- π is admissible.
- π has finite length.
- π is $Z_{G}(\mathcal{U}(\mathfrak{g}))$-finite.

The Harish-Chandra category

Let G be a real reductive group, \mathfrak{g} be its complexified Lie algebra and K be its maximal compact subgroup.

Definition

A (\mathfrak{g}, K)-module is a \mathfrak{g}-module π with a locally finite action of K such the two actions are compatible.
A finitely generated (\mathfrak{g}, K)-module is called admissible if any representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let π be a finitely generated (\mathfrak{g}, K)-module. Then the following properties of π are equivalent.

- π is admissible.
- π has finite length.
- π is $Z_{G}(\mathcal{U}(\mathfrak{g}))$-finite.
- π is finitely generated over \mathfrak{n}.

The category of smooth admissible representations

The category of smooth admissible representations

Definition

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of G of moderate growth

The category of smooth admissible representations

Definition

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of G of moderate growth and by $\mathcal{M}_{H C}(G)$ the category of admissible Harish-Chandra modules.

The category of smooth admissible representations

Definition

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of G of moderate growth and by $\mathcal{M}_{H C}(G)$ the category of admissible Harish-Chandra modules. We denote by $\mathrm{HC}: \mathcal{M}_{\infty}(G) \rightarrow \mathcal{M}_{H C}(G)$ the functor of K-finite vectors.

The category of smooth admissible representations

Definition

Denote by $\mathcal{M}_{\infty}(G)$ the category of smooth admissible Fréchet representations of G of moderate growth and by $\mathcal{M}_{H C}(G)$ the category of admissible Harish-Chandra modules.
We denote by $H C: \mathcal{M}_{\infty}(G) \rightarrow \mathcal{M}_{H C}(G)$ the functor of K-finite vectors.

Theorem (Casselman-Wallach)

The functor $H C: \mathcal{M}_{\infty}(G) \rightarrow \mathcal{M}_{H C}(G)$ is an equivalence of categories.

Definitions

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(\mathfrak{p}_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(p_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definition

For a \mathfrak{p}_{n}-module π we have 3 notions of derivative:

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(\mathfrak{p}_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definition

For a \mathfrak{p}_{n}-module π we have 3 notions of derivative:

- $E^{k}(\pi):=\Phi^{k-1}(\pi) \otimes|\operatorname{det}|^{-1 / 2}=\pi_{\mathfrak{u}_{k-1}, \psi_{k-1}} \otimes|\operatorname{det}|^{-k / 2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(\mathfrak{p}_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definition

For a \mathfrak{p}_{n}-module π we have 3 notions of derivative:

- $E^{k}(\pi):=\Phi^{k-1}(\pi) \otimes|\operatorname{det}|^{-1 / 2}=\pi_{\mathfrak{u}_{k-1}, \psi_{k-1}} \otimes|\operatorname{det}|^{-k / 2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.
- $D^{k}(\pi):==\left(E^{k}(\pi)\right)_{g e n, \mathfrak{v}_{n-k+1}}$. Here \mathfrak{v}_{n-k+1} is the nil-radical of \mathfrak{p}_{n-k+1} and $\cdot g e n, \mathfrak{v}_{n-k+1}$ denotes the generalized co-invariants.

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(\mathfrak{p}_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definition

For a \mathfrak{p}_{n}-module π we have 3 notions of derivative:

- $E^{k}(\pi):=\Phi^{k-1}(\pi) \otimes|\operatorname{det}|^{-1 / 2}=\pi_{\mathfrak{u}_{k-1}, \psi_{k-1}} \otimes|\operatorname{det}|^{-k / 2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.
- $D^{k}(\pi):==\left(E^{k}(\pi)\right)_{g e n, \mathfrak{v}_{n-k+1}}$. Here \mathfrak{v}_{n-k+1} is the nil-radical of \mathfrak{p}_{n-k+1} and $\cdot g e n, \mathfrak{v}_{n-k+1}$ denotes the generalized co-invariants.
- $B^{k}(\pi):=\left(E^{k}(\pi)\right)_{\mathfrak{v}_{n-k+1}}$.

Definitions

Definition

Define a functor $\Phi: \mathcal{M}\left(\mathfrak{p}_{n}\right) \rightarrow \mathcal{M}\left(\mathfrak{p}_{n-1}\right)$ by $\Phi(\pi):=\pi_{\mathfrak{v}_{n}, \psi} \otimes|\operatorname{det}|^{-1 / 2}$.

Definition

For a \mathfrak{p}_{n}-module π we have 3 notions of derivative:

- $E^{k}(\pi):=\Phi^{k-1}(\pi) \otimes|\operatorname{det}|^{-1 / 2}=\pi_{\mathfrak{u}_{k-1}, \psi_{k-1}} \otimes|\operatorname{det}|^{-k / 2}$. Clearly it has a structure of a \mathfrak{p}_{n-k+1} - representation.
- $D^{k}(\pi):==\left(E^{k}(\pi)\right)_{g e n, \mathfrak{v}_{n-k+1}}$. Here \mathfrak{v}_{n-k+1} is the nil-radical of \mathfrak{p}_{n-k+1} and $\cdot g e n, \mathfrak{v}_{n-k+1}$ denotes the generalized co-invariants.
- $B^{k}(\pi):=\left(E^{k}(\pi)\right)_{\mathfrak{v}_{n-k+1}}$.
- depth (π) - the largest part in the associated partition of π

Associated partition

$\mathcal{U}\left(\mathfrak{g}_{n}\right)$ has a filtration by the order of the tensor.
$\operatorname{Gr}\left(\mathcal{U}\left(\mathfrak{g}_{n}\right)\right)=\operatorname{Sym}\left(\mathfrak{g}_{n}\right)=\operatorname{Pol}\left(\mathfrak{g}_{n}^{*}\right)$.

$$
\mathcal{V}(\pi):=\operatorname{Zeroes}(\operatorname{Gr}(\operatorname{Ann}(\pi)))
$$

It is known to be a union of nilpotent coadjoint orbits.

Associated partition

$\mathcal{U}\left(\mathfrak{g}_{n}\right)$ has a filtration by the order of the tensor.
$\operatorname{Gr}\left(\mathcal{U}\left(\mathfrak{g}_{n}\right)\right)=\operatorname{Sym}\left(\mathfrak{g}_{n}\right)=\operatorname{Pol}\left(\mathfrak{g}_{n}^{*}\right)$.

$$
\mathcal{V}(\pi):=\operatorname{Zeroes}(\operatorname{Gr}(\operatorname{Ann}(\pi)))
$$

It is known to be a union of nilpotent coadjoint orbits.

Theorem (Joseph)

If π is irreducible then $\mathcal{V}(\pi)$ is the closure of a single orbit.
By Jordan's theorem this orbit is described by a partition of n, that we call associated partition of π.

Examples

Examples

- $E^{1}(\pi)=\left.\pi\right|_{G_{n-1}}$,
$\operatorname{depth}(\pi)=1 \Longleftrightarrow \pi$ is f.d. $\Longleftrightarrow D^{k}(\pi)=0$ for any $k>1$.

Examples

- $E^{1}(\pi)=\left.\pi\right|_{G_{n-1}}$,

$$
\operatorname{depth}(\pi)=1 \Longleftrightarrow \pi \text { is f.d. } \Longleftrightarrow D^{k}(\pi)=0 \text { for any } k>1
$$

- $E^{n}=D^{n}=B^{n}=(\Phi)^{n-1}$ is the Whittaker functor.

$$
\operatorname{depth}(\pi)=n \Longleftrightarrow D^{n}(\pi) \neq 0
$$

Whittaker spaces

Let $N_{n}<G_{n}$ denote the subgroup of unipotent upper-triangular matrices, and define a character ψ of N_{n} to be the sum of superdiagonal elements. The Whittaker space is the space of co-equivariants

$$
W h(\pi):=\pi_{N_{n}, \exp (i \psi)}
$$

Whittaker spaces

Let $N_{n}<G_{n}$ denote the subgroup of unipotent upper-triangular matrices, and define a character ψ of N_{n} to be the sum of superdiagonal elements. The Whittaker space is the space of co-equivariants

$$
W h(\pi):=\pi_{N_{n}, \exp (i \psi)}
$$

For a partition $\lambda=\left(n_{1}, \ldots, n_{k}\right)$ of n we define ψ_{λ} to be the sum of all superdiagonal elements except the ones in rows $n-n_{1}, n-n_{1}-n_{2}, \ldots, n_{k}$.

$$
W h_{\lambda}(\pi):=\pi_{N_{n}, \exp \left(i \psi_{\lambda}\right)}
$$

Whittaker spaces

Let $N_{n}<G_{n}$ denote the subgroup of unipotent upper-triangular matrices, and define a character ψ of N_{n} to be the sum of superdiagonal elements. The Whittaker space is the space of co-equivariants

$$
W h(\pi):=\pi_{N_{n}, \exp (i \psi)}
$$

For a partition $\lambda=\left(n_{1}, \ldots, n_{k}\right)$ of n we define ψ_{λ} to be the sum of all superdiagonal elements except the ones in rows $n-n_{1}, n-n_{1}-n_{2}, \ldots, n_{k}$.

$$
W h_{\lambda}(\pi):=\pi_{N_{n}, \exp \left(i \psi_{\lambda}\right)}
$$

Then

$$
W h_{\lambda}(\pi)=B^{n_{k}}\left(B^{n_{k-1}}\left(\ldots\left(B^{n_{1}}(\pi)\right)\right)\right)
$$

Theorem（Aizenbud－G．－Sahi）

Theorem (Aizenbud - G. - Sahi)
Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

Theorem (Aizenbud - G. - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.

Theorem (Aizenbud - G. - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.

Theorem (Aizenbud - G. - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D^{d}(\pi)=E^{d}(\pi)$.

Theorem (Aizenbud - G. - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D^{d}(\pi)=E^{d}(\pi)$.
- $\left.D^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.

Theorem (Aizenbud - G. - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D^{d}(\pi)=E^{d}(\pi)$.
- $\left.D^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- Let $n=n_{1}+\ldots+n_{d}$

Theorem (Aizenbud - G. - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D^{d}(\pi)=E^{d}(\pi)$.
- $\left.D^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$.

Theorem (Aizenbud - G. - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D^{d}(\pi)=E^{d}(\pi)$.
- $\left.D^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$. Let $\pi=\chi_{1} \times \ldots \times \chi_{d} \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the corresponding degenerate principal series representation.

Theorem (Aizenbud - G. - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D^{d}(\pi)=E^{d}(\pi)$.
- $\left.D^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$. Let $\pi=\chi_{1} \times \ldots \times \chi_{d} \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the corresponding degenerate principal series representation. Then $\operatorname{depth}(\pi)=d$ and

$$
E^{d}(\pi)=D^{d}(\pi)=\left.B^{d}(\pi) \cong\left(\chi_{1}\right)\right|_{G_{n_{1}-1}} \times \ldots \times\left.\left(\chi_{d}\right)\right|_{G_{n_{d}-1}}
$$

Theorem (Aizenbud - G. - Sahi)

Let $\mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the subcategory of representations of depth $\leq d$. Then

- D^{d} defines a functor $\mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$.
- The functor $D^{d}: \mathcal{M}_{\infty}^{d}\left(G_{n}\right) \rightarrow \mathcal{M}_{\infty}\left(G_{n-d}\right)$ is exact.
- For any $\pi \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right), D^{d}(\pi)=E^{d}(\pi)$.
- $\left.D^{k}\right|_{\mathcal{M}_{\infty}^{d}\left(G_{n}\right)}=0$ for any $k>d$.
- Let $n=n_{1}+\ldots+n_{d}$ and let χ_{i} be characters of $G_{n_{i}}$. Let $\pi=\chi_{1} \times \ldots \times \chi_{d} \in \mathcal{M}_{\infty}^{d}\left(G_{n}\right)$ denote the corresponding degenerate principal series representation. Then $\operatorname{depth}(\pi)=d$ and

$$
E^{d}(\pi)=D^{d}(\pi)=\left.B^{d}(\pi) \cong\left(\chi_{1}\right)\right|_{G_{n_{1}-1}} \times \ldots \times\left.\left(\chi_{d}\right)\right|_{G_{n_{d}-1}}
$$

- For a unitarizable representation π

$$
E^{d}(\pi)=D^{d}(\pi)=B^{d}(\pi)=A(\pi)
$$

Steps in the proof

Steps in the proof

(1) We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$

Steps in the proof

(1) We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$
(2) We deduce $\left.D^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.E^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.

Steps in the proof

(1) We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$
(2) We deduce $\left.D^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.E^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.
(3) We deduce
$\left.E^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=\left.D^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=\left.B^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=0$ for any $k>d$.

Steps in the proof

(1) We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$
(3) We deduce $\left.D^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.E^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.
(3) We deduce
$\left.E^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=\left.D^{k}\right|_{\mathcal{M}_{H c, d}\left(G_{n}\right)}=\left.B^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=0$ for any $k>d$.
(9) We prove exactness of E^{i} and Hausdorffness of $E^{i}(\pi)$ in the smooth category

Steps in the proof

(1) We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{H c, d}(G)$
(3) We deduce $\left.D^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.E^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.
(3) We deduce
$\left.E^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=\left.D^{k}\right|_{\mathcal{M}_{H c, d}\left(G_{n}\right)}=\left.B^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=0$ for any $k>d$.
(9) We prove exactness of E^{i} and Hausdorffness of $E^{i}(\pi)$ in the smooth category
(0) Using the Hausdorffness we deduce 1-3 in the smooth category

Steps in the proof

(1) We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{H c, d}(G)$
(3) We deduce $\left.D^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.E^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.
(3) We deduce
$\left.E^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=\left.D^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=\left.B^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=0$ for any $k>d$.
(9) We prove exactness of E^{i} and Hausdorffness of $E^{i}(\pi)$ in the smooth category
(0) Using the Hausdorffness we deduce 1-3 in the smooth category
(0) Using the exactness we prove the product formula in the smooth category

Steps in the proof

(1) We prove admissibility of $E^{d}(\pi)$ in the HC-category $\mathcal{M}_{H C, d}(G)$
(3) We deduce $\left.D^{d}\right|_{\mathcal{M}_{H C, d}(G)}=\left.E^{d}\right|_{\mathcal{M}_{d}\left(G_{n}\right)}$.
(3) We deduce

$$
\begin{aligned}
& \left.E^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=\left.D^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=\left.B^{k}\right|_{\mathcal{M}_{H C, d}\left(G_{n}\right)}=0 \text { for any } \\
& k>d .
\end{aligned}
$$

(9) We prove exactness of E^{i} and Hausdorffness of $E^{i}(\pi)$ in the smooth category
© Using the Hausdorffness we deduce 1-3 in the smooth category
(- Using the exactness we prove the product formula in the smooth category
(- We deduce from the product formula that for a unitarizable representation π

$$
E^{d}(\pi)=D^{d}(\pi)=B^{d}(\pi)=A(\pi)
$$

Adduced representation

From Mackey theory, since $P_{n}=G_{n-1} \ltimes V_{n}$:

Theorem

$\forall \tau \in \widehat{P_{n}}$, either
(1) $\exists \tau^{\prime} \in \widehat{P_{n}}$ s.t. $\tau \simeq \operatorname{Ind} d_{P_{n-1} \ltimes V_{n}}^{P_{n}}\left(\tau^{\prime} \otimes \psi\right)$ or
(2) $\left.\tau\right|_{G_{n-1}} \in \widehat{G_{n-1}}$

Adduced representation

From Mackey theory, since $P_{n}=G_{n-1} \ltimes V_{n}$:

Theorem

$\forall \tau \in \widehat{P_{n}}$, either
(1) $\exists \tau^{\prime} \in \widehat{P_{n}}$ s.t. $\tau \simeq \operatorname{Ind} P_{P_{n-1} \ltimes V_{n}}^{P_{n}}\left(\tau^{\prime} \otimes \psi\right)$ or
(2) $\left.\tau\right|_{G_{n-1}} \in \widehat{G_{n-1}}$

In case 1 we can use the theorem again and again, until we drop to case 2 and obtain some $A \tau \in \widehat{G_{n-d}}$.

Adduced representation

From Mackey theory, since $P_{n}=G_{n-1} \ltimes V_{n}$:

Theorem

$\forall \tau \in \widehat{P_{n}}$, either
(1) $\exists \tau^{\prime} \in \widehat{P_{n}}$ s.t. $\tau \simeq \operatorname{Ind} P_{P_{n-1} \ltimes V_{n}}^{P_{n}}\left(\tau^{\prime} \otimes \psi\right)$ or
(2) $\left.\tau\right|_{G_{n-1}} \in \widehat{G_{n-1}}$

In case 1 we can use the theorem again and again, until we drop to case 2 and obtain some $A \tau \in \widehat{G_{n-d}}$.

Theorem (Baruch, Bernstein, Sahi)
$\forall \pi \in \widehat{G_{n}},\left.\pi\right|_{P_{n}} \in \widehat{P_{n}}$
We define $A \pi:=A\left(\left.\pi\right|_{P_{n}}\right)$.

Applications

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations.

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations. Let $\lambda=\left(I_{1}, \ldots, I_{k}\right)$ be the associated partition of τ, and $\mu=\left(m_{1}, \ldots, m_{d}\right)=\lambda^{t}$. Then \exists characters χ_{i} of $G_{m_{i}}$ such that

$$
\tau \longleftarrow \chi_{1} \times \cdots \times \chi_{d} .
$$

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations. Let $\lambda=\left(I_{1}, \ldots, I_{k}\right)$ be the associated partition of τ, and $\mu=\left(m_{1}, \ldots, m_{d}\right)=\lambda^{t}$. Then \exists characters χ_{i} of $G_{m_{i}}$ such that

$$
\tau \longleftarrow \chi_{1} \times \cdots \times \chi_{d} .
$$

Thus

$$
\begin{array}{r}
W h_{\left(l_{1}, \ldots, l_{k}\right)}(\tau)=B^{l_{k}}\left(\cdots\left(B^{l_{1}}(\tau)\right) \cdots\right) \leftarrow E^{I_{k}}\left(\cdots\left(E^{\Lambda_{1}}(\tau)\right) \cdots\right) \\
\\
\leftarrow E^{\ell_{k}}\left(\cdots\left(E^{\Lambda_{1}}\left(\chi_{1} \times \cdots \times \chi_{d}\right)\right) \cdots\right)
\end{array}
$$

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations. Let $\lambda=\left(I_{1}, \ldots, I_{k}\right)$ be the associated partition of τ, and $\mu=\left(m_{1}, \ldots, m_{d}\right)=\lambda^{t}$. Then \exists characters χ_{i} of $G_{m_{i}}$ such that

$$
\tau \longleftarrow \chi_{1} \times \cdots \times \chi_{d} .
$$

Thus

$$
\begin{aligned}
& W h_{\left(l_{1}, \ldots, l_{k}\right)}(\tau)=B^{I_{k}}\left(\cdots\left(B^{l_{1}}(\tau)\right) \cdots\right) \leftarrow E^{I_{k}}\left(\cdots\left(E^{\Lambda_{1}}(\tau)\right) \cdots\right) \\
& \leftarrow E^{I_{k}}\left(\cdots\left(E^{I_{1}}\left(\chi_{1} \times \cdots \times \chi_{d}\right)\right) \cdots\right)
\end{aligned}
$$

- Computation of adduced representations of Speh complementary series

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations. Let $\lambda=\left(l_{1}, \ldots, I_{k}\right)$ be the associated partition of τ, and $\mu=\left(m_{1}, \ldots, m_{d}\right)=\lambda^{t}$. Then \exists characters χ_{i} of $G_{m_{i}}$ such that

$$
\tau \longleftarrow \chi_{1} \times \cdots \times \chi_{d} .
$$

Thus

$$
\begin{array}{r}
W h_{\left(l_{1}, \ldots, l_{k}\right)}(\tau)=B^{l_{k}}\left(\cdots\left(B^{l_{1}}(\tau)\right) \cdots\right) \leftarrow E^{I_{k}}\left(\cdots\left(E^{\Lambda_{1}}(\tau)\right) \cdots\right) \\
\\
\leftarrow E^{\ell_{k}}\left(\cdots\left(E^{\Lambda_{1}}\left(\chi_{1} \times \cdots \times \chi_{d}\right)\right) \cdots\right)
\end{array}
$$

- Computation of adduced representations of Speh complementary series
$\chi_{1} \times \chi_{2} \times \chi_{3} \times \chi_{4} \rightarrow \Delta_{4 m}$

Applications

- Uniqueness of degenerate Whittaker functionals for unitary representations. Let $\lambda=\left(I_{1}, \ldots, I_{k}\right)$ be the associated partition of τ, and $\mu=\left(m_{1}, \ldots, m_{d}\right)=\lambda^{t}$. Then \exists characters χ_{i} of $G_{m_{i}}$ such that

$$
\tau \longleftarrow \chi_{1} \times \cdots \times \chi_{d} .
$$

Thus

$$
\begin{aligned}
& W h_{\left(l_{1}, \ldots, l_{k}\right)}(\tau)=B^{I_{k}}\left(\cdots\left(B^{l_{1}}(\tau)\right) \cdots\right) \leftarrow E^{I_{k}}\left(\cdots\left(E^{I_{1}}(\tau)\right) \cdots\right) \\
& \leftarrow E^{I_{k}}\left(\cdots\left(E^{I_{1}}\left(\chi_{1} \times \cdots \times \chi_{d}\right)\right) \cdots\right)
\end{aligned}
$$

- Computation of adduced representations of Speh complementary series

$$
\begin{aligned}
\chi_{1} \times \chi_{2} & \times \chi_{3} \times \chi_{4} \rightarrow \Delta_{4 m} \\
\Delta_{4 m-4} & \left.\leftarrow \chi_{1}\right|_{G_{m-1}} \times\left.\chi_{2}\right|_{G_{m-1}} \times \chi_{3}\left|G_{m-1} \times \chi_{4}\right|_{G_{m-1}}= \\
& =E^{4}\left(\chi_{1} \times \chi_{2} \times \chi_{3} \times \chi_{4}\right) \rightarrow E^{4}\left(\Delta_{4 m}\right) \rightarrow A\left(\Delta_{4 m}\right)
\end{aligned}
$$

Admissibility

Admissibility

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}

Admissibility

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}

Admissibility

We need - $E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}
We use

Admissibility

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}
We use

- Annihilator variety $-\mathcal{V}(\pi)$

Admissibility

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}
We use

- Annihilator variety $-\mathcal{V}(\pi)$
- Associated variety $-\operatorname{AV}(\pi)$

Admissibility

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}
We use

- Annihilator variety $-\mathcal{V}(\pi)$
- Associated variety - $A V(\pi)$
- $A V(\pi) \subset \mathcal{V}(\pi)$

Admissibility

We need $-E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d}
We know - $E^{d}(\pi)$ is finitely generated over \mathfrak{n}_{n-d+1}
We use

- Annihilator variety $-\mathcal{V}(\pi)$
- Associated variety - $A V(\pi)$
- $A V(\pi) \subset \mathcal{V}(\pi)$
$\operatorname{depth}(\pi)=d \Rightarrow$ constrains on $\mathcal{V}_{\mathfrak{g}}(\pi) \Rightarrow$

$$
\Rightarrow A V_{\mathfrak{n}_{n-d+1}}\left(E^{d}(\pi)\right) \subset \mathfrak{n}_{n-d}^{*} \Rightarrow E^{d}(\pi) \text { is f.g. over } \mathfrak{n}_{n-d}
$$

Exactness and Hausdorffness

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language
- Strategy 2 - [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit.

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language
- Strategy 2 - [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit. Problems

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language
- Strategy 2 - [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit. Problems
(1) Unlike $[\mathrm{CHM}]$ there are ∞ orbits

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language
- Strategy 2 - [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit. Problems
(1) Unlike $[\mathrm{CHM}]$ there are ∞ orbits
(2) Unlike $[\mathrm{CHM}]$ there are bad orbits

Exactness and Hausdorffness

- Strategy $1-\Phi$ is equivalent to a restriction functor \Rightarrow has to be exact
Problem - we do not have the language
- Strategy 2 - [CHM] method: reduction to acyclicity of principal series and proof orbit by orbit. Problems
(1) Unlike [CHM] there are ∞ orbits
(2) Unlike [CHM] there are bad orbits

Solution - to introduce a class of "good" \mathfrak{p}_{n} representations

Good \mathfrak{p}_{n} representations

Good \mathfrak{p}_{n} representations

Example

$$
\mathcal{S}\left(P_{n} / Q\right)
$$

Good \mathfrak{p}_{n} representations

Example

$$
\mathcal{S}\left(P_{n} / Q\right)
$$

Key Lemma

- $L^{i} \Phi\left(\mathcal{S}\left(P_{n} / Q\right)\right)=0$ for $i>0$

Good \mathfrak{p}_{n} representations

Example

$$
\mathcal{S}\left(P_{n} / Q\right)
$$

Key Lemma

- $L^{i} \Phi\left(\mathcal{S}\left(P_{n} / Q\right)\right)=0$ for $i>0$
- $\Phi\left(\mathcal{S}\left(P_{n} / Q\right)\right)=\mathcal{S}\left(Z_{0}\right)$ for suitable $Z_{0} \subset Z:=P_{n} /\left(Q V_{n}\right)$

The product formula

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

- Not true for E^{k}, D^{k}

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

- Not true for E^{k}, D^{k}
- might be true for B^{k} but without exactness we can't prove it.

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

- Not true for E^{k}, D^{k}
- might be true for B^{k} but without exactness we can't prove it.
- we do not have appropriate language of ∞ dimensional bundles.

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

- Not true for E^{k}, D^{k}
- might be true for B^{k} but without exactness we can't prove it.
- we do not have appropriate language of ∞ dimensional bundles.

Compromise - prove it only for the highest derivatives and only for characters.

The product formula

The BZ product formula:

$$
D^{k}(\pi \times \tau) \sim \sum D^{\prime}(\pi) \times D^{k-1}(\tau)
$$

Problems

- Not true for E^{k}, D^{k}
- might be true for B^{k} but without exactness we can't prove it.
- we do not have appropriate language of ∞ dimensional bundles.

Compromise - prove it only for the highest derivatives and only for characters.
Method - exactness, key lemma, induction

