
NASH MANIFOLDS AND SCHWARTZ FUNCTIONS
ON THEM

DMITRY GOUREVITCH

Abstract. These are the lecture notes for my talk on December 1,
2014 at the BIRS workshop “Motivic Integration, Orbital Integrals,
and Zeta-Functions”.

1. Semi-algebraic sets and the Seidenberg-Tarski theorem

In this section we follow [BCR].

Definition 1.1. A subset A ⊂ Rn is called a semi-algebraic set if
it can be presented as a finite union of sets defined by a finite number
of polynomial equalities and inequalities. In other words, if there exist
finitely many polynomials fij , gik ∈ R[x1, ..., xn] such that

A =
r⋃

i=1

{x ∈ Rn|fi1(x) > 0, ..., fisi
(x) > 0, gi1(x) = 0, ..., giti(x) = 0}.

Lemma 1.2. The collection of semi-algebraic sets is closed with respect
to finite unions, finite intersections and complements.

Example 1.3. The semi-algebraic subsets of R are unions of finite
number of (finite or infinite) intervals.

In fact, a semi-algebraic subset is the same as a union of connected
components of an affine real algebraic variety.

Definition 1.4. Let A ⊂ Rn and B ⊂ Rm be semi-algebraic sets. A
mapping ν : A → B is called semi-algebraic iff its graph is a semi-
algebraic subset of Rm+n.

Proposition 1.5. Let ν be a bijective semi-algebraic mapping. Then
the inverse mapping ν−1 is also semi-algebraic.

Proof. The graph of ν is obtained from the graph of ν−1 by switching
the coordinates. �

One of the main tools in the theory of semi-algebraic spaces is the
Tarski-Seidenberg principle of quantifier elimination. Here we will for-
mulate and use a special case of it. We start from the geometric for-
mulation.
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Theorem 1.6. Let A ⊂ Rn be a semi-algebraic subset and p : Rn →
Rn−1 be the standard projection. Then the image p(A) is a semi-
algebraic subset of Rn−1.

By induction and a standard graph argument we get the following
corollary.

Corollary 1.7. An image of a semi-algebraic subset of Rn under a
semi-algebraic map is semi-algebraic.

Sometimes it is more convenient to use the logical formulation of
the Tarski-Seidenberg principle. Informally it says that any set that
can be described in semi-algebraic language is semi-algebraic. We will
now give the logical formulation and immediately after that define the
logical notion used in it.

Theorem 1.8 (Tarski-Seidenberg principle, see e.g.[BCR, Proposition
2.2.4] ). Let Φ be a formula of the language L(R) of ordered fields
with parameters in R. Then there exists a quantifier - free formula Ψ
of L(R) with the same free variables x1, . . . , xn as Φ such that ∀x ∈
Rn, Φ(x) ⇔ Ψ(x).

Definition 1.9. A formula of the language of ordered fields
with parameters in R is a formula written with a finite number
of conjunctions, disjunctions, negations and universal and existential
quantifiers (∀ and ∃) on variables, starting from atomic formulas which
are formulas of the kind f(x1, . . . , xn) = 0 or g(x1, . . . , xn) > 0, where
f and g are polynomials with coefficients in R. The free variables of a
formula are those variables of the polynomials which are not quantified.
We denote the language of such formulas by L(R).

Notation 1.10. Let Φ be a formula of L(R) with free variables x1, . . . , xn.
It defines the set of all points (x1, . . . , xn) in Rn that satisfy Φ. We de-
note this set by SΦ. In short,

SΦ := {x ∈ Rn|Φ(x)}.

Corollary 1.11. Let Φ be a formula of L(R). Then SΦ is a semi-
algebraic set.

Proof. Let Ψ be a quantifier-free formula equivalent to Φ. The
set SΨ is semi-algebraic since it is a finite union of sets defined by
polynomial equalities and inequalities. Hence SΦ is also semi-algebraic
since SΦ = SΨ. �

Proposition 1.12. The logical formulation of the Seidenberg-Tarski
principle implies the geometric one.

Proof. Let A ⊂ Rn be a semi-algebraic subset, and pr : Rn → Rn−1 the
standard projection. Then there exists a formula Φ ∈ L(R) such that
A = SΦ. Then pr(A) = SΨ where

Ψ(y) = “∃x ∈ Rn (pr(x) = y ∧ Φ(x))”.
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Since Ψ ∈ L(R), the proposition follows now from the previous corol-
lary. �

In fact, it is not difficult to deduce the logical formulation from
the geometric one. Let us now demonstrate how to use the logical
formulation of the Seidenberg-Tarski theorem.

Corollary 1.13. The closure of a semi-algebraic set is semi-algebraic.

Proof. Let A ⊂ Rn be a semi-algebraic subset, and let A be its closure.
Then A = SΨ where

Ψ(x) = “∀(ε > 0 ∃y ∈ A |x − y|2 < (ε”.

Clearly, Ψ ∈ L(R) and hence A is semi-algebraic. �

Corollary 1.14. The derivative f ′ of any differentiable semi-algebraic
function f : R→ R is semi-algebraic.

Proof. The graph of f ′ equals SΨ, where

Ψ(x, y) = “∀(ε > 0 ∃δ > 0, s.t. ∀0 6= δ′ ∈ (−δ, δ) we have

(f(x + δ′) − f(x) − yδ′)2 < (εδ′)2”.

Clearly, Ψ ∈ L(R) and hence f ′ is semi-algebraic. �

Corollary 1.15.
(i) The composition of semi-algebraic mappings is semi-algebraic.
(ii) The R-valued semi-algebraic functions on a semi-algebraic set A
form a ring, and any nowhere vanishing semi-algebraic function is in-
vertible in this ring.
(iii) Images and preimages of semi-algebraic sets under semi-algebraic
mappings are semi-algebraic.

Proposition 1.16. [BCR, Proposition 2.4.5] Any semi-algebraic set
in Rn has a finite number of connected components.

Remark 1.17 (Loeser). Over a non-archimedean local field F (e.g.
F = Qp) one considers sets that are finite unions of finite intersections
of sets of the form

{x ∈ F n s.t. p(x) is a k-th power},

An analog of the Seidenberg - Tarski theorem holds for such sets.

2. Nash manifolds

Let us now define the category of Nash manifolds, i.e. smooth semi-
algebraic manifolds. I like this category since the Nash manifolds be-
have as tamely as algebraic varieties (e.g. posses some finiteness prop-
erties, and admit an analog of Hironaka’s desingularization theorem),
and in addition their local structure is almost as easy as that of differ-
entiable manifolds. In particular, they are locally trivial, and analogs
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of the implicit function theorem and the tubular neighborhood hold for
them. The only thing we “loose” is the partition of unity.

Nash has shown that any compact smooth manifold has a unique
structure of an affine Nash manifold. It was later shown that it also
has uncountably many structures of non-affine Nash manifold. It is
Artin-Mazur who first used the term of Nash manifold. They gave a
fundamental theorem which states that an affine Nash manifold can be
imbedded in a Euclidean space so that the image contains no singular
points of its Zariski closure.

In this section we follow [BCR, Shi].

Definition 2.1. A Nash map from an open semi-algebraic subset
U of Rn to an open semi-algebraic subset V ⊂ Rm is a smooth (i.e.
infinitely differentiable) semi-algebraic function. The ring of R-valued
Nash functions on U is denoted by N (U). A Nash diffeomorphism
is a Nash bijection whose inverse map is also Nash.

As we are going to do semi-algebraic differential geometry, we will
need a semi-algebraic version of implicit function theorem.

Theorem 2.2 (Implicit Function Theorem for Nash manifolds, see
e.g. [BCR, Corollary 2.9.8]). Let (x0, y0) ∈ Rn+p, and let f1, ..., fp be
semi-algebraic smooth functions on an open neighborhood of (x0, y0),

such that fj(x
0, y0) = 0 for j = 1, .., p and the matrix [

∂fj

∂yi
(x0, y0)] is

invertible. Then there exist open semi-algebraic neighborhoods U (resp.
V) of x0 (resp. y0) in Rn (resp. Rp) and a Nash mapping φ, such that
φ(x0) = y0 and f1(x, y) = ... = fp(x, y) = 0 ⇔ y = φ(x) for every
(x, y) ∈ U × V.

Definition 2.3. A Nash submanifold of Rn is a semi-algebraic sub-
set of Rn which is a smooth submanifold.

By the implicit function theorem it is easy to see that this definition
is equivalent to the following one, given in [BCR]:

Definition 2.4. A semi-algebraic subset M of Rn is said to be a Nash
submanifold of Rn of dimension d if, for every point x of M , there
exists a Nash diffeomorphism φ from an open semi-algebraic neighbor-
hood Ω of the origin in Rn onto an open semi-algebraic neighborhood
Ω′ of x in Rn such that φ(0) = x and φ(Rd × {0} ∩ Ω) = M ∩ Ω′.

Definition 2.5. A Nash map from a Nash submanifold M of Rm to
a Nash submanifold N of Rn is a semi-algebraic smooth map.

Any open semi-algebraic subset of a Nash submanifold of Rn is also
a Nash submanifold of Rn.

Theorem 2.6 ([BCR, §2]). Let M ⊂ Rn be a Nash submanifold. Then
it has the same dimension as its Zarisky closure.
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Unfortunately, open semi-algebraic sets in Rn do not form a topology,
but only a restricted topology. That is, the collection of open semi-
algebraic sets is closed only under finite intersections and unions but
not under infinite unions. For this reason we will consider only finite
covers.

We will use this restricted topology to “glue” affine Nash manifolds
and define Nash manifolds exactly in the same way as algebraic varieties
are glued from affine algebraic varieties.

Definition 2.7. A R-space is a pair (M,OM) where M is a restricted
topological space and OM a sheaf of R-algebras over M which is a
subsheaf of the sheaf R[M ] of real-valued functions on M .

A morphism between R-spaces (M,OM ) and (N,ON ) is a con-
tinuous map f : M → N , such that the induced morphism of sheaves
f ∗ : f ∗(R[N ]) → R[M ] maps ON to OM .

Example 2.8. Take for M a Nash submanifold of Rn, and for
◦

S(M)
the family of all open subsets of M which are semi-algebraic in Rn. For
any open (semi-algebraic) subset U of M we take as OM (U) the algebra
N (U) of Nash functions U → R.

Definition 2.9. An affine Nash manifold is an R-space which is
isomorphic to an R-space of a closed Nash submanifold of Rn. A mor-
phism between two affine Nash manifolds is a morphism of R-spaces
between them.

Example 2.10. Any real nonsingular affine algebraic variety has a
natural structure of an affine Nash manifold.

Remark 2.11. Let M ⊂ Rm and N ⊂ Rn be Nash submanifolds. Then
a Nash map between them is the same as a morphism of affine Nash
manifolds between them.

Let f : M → N be a Nash map. Since an inverse of a semi-algebraic
map is semi-algebraic, f is a diffeomorphism if and only if it is an
isomorphism of affine Nash manifolds. Therefore we will call such f a
Nash diffeomorphism.

In [Shi] there is another but equivalent definition of affine Nash man-
ifold.

Definition 2.12. An affine C∞ Nash manifold is an R-space over
R which is isomorphic to an R-space of a Nash submanifold of Rn.

The equivalence of the definitions follows from the following theorem,
which immediately follows from [BCR, Theorem 8.4.6] and Proposition
1.16.

Theorem 2.13. Any affine C∞ Nash manifold is Nash diffeomorphic
to a union of finite number of connected components of a real nonsin-
gular affine algebraic variety.
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The book [Shi] usually uses the notion of affine Cω Nash manifold
instead of affine C∞ Nash manifold, that we called here just Nash
manifold. The two notions are equivalent by the theorem of Malgrange
(see [Mal] or [Shi, Corollary I.5.7]) and hence equivalent to what we
call just affine Nash manifold. In other words, any Nash manifold
has a natural structure of a real analytic manifold and any Nash map
between Nash manifolds is analytic.

One also considers Cr-Nash manifolds for any 0 ≤ r < ∞. These
satisfy all the properties listed here, and in addition partition of unity.

Definition 2.14. A Nash manifold is an R-space (M,NM) which
has a finite cover (Mi) by open sets Mi such that the R-spaces (Mi,NM |Mi

)
are isomorphic to R-spaces of affine Nash manifolds.

A morphism between Nash manifolds is a morphism of R-
spaces between them. Such morphisms are called Nash maps, and iso-
morphisms are called Nash diffeomorphisms.

By Proposition 1.16, any Nash manifold is a union of a finite number
of connected components. Any semi-algebraic set can be stratified by
Nash manifolds.

Any Nash manifold has a natural structure of a smooth manifold.
Any real nonsingular algebraic variety has a natural structure of a Nash
manifold.

It is well-known that the real projective space RPn is affine, see e.g.
[BCR, Theorem 3.4.4]. Since any number of polynomial equations over
R have the same set of solutions as a single equation (which is the sum
of squares of the left hand sides), we get that any quasiprojective Nash
manifold is affine.

Remark 2.15. Note that the additive group of real numbers and and
the multiplicative group of positive real numbers are isomorphic as Lie
groups and as Nash manifolds, but are not isomorphic as Nash groups.
Recently, the structure theory of (almost) linear Nash groups was de-
veloped in [Sun].

The following theorem is a version of Hironaka’s theorem for Nash
manifolds.

Theorem 2.16 ([Shi, Corollary I.5.11]). Let M be an affine Nash man-
ifold. Then there exists a compact affine nonsingular algebraic variety
N and a closed algebraic subvariety Z of N , which is empty if M is
compact, such that Z has only normal crossings in N and M is Nash
diffeomorphic to a union of connected components of N − Z.

It implies that Nash manifolds are locally trivial.

Theorem 2.17 ([Shi, Theorem I.5.12]). Any Nash manifold has a finite
cover by open submanifolds Nash diffeomorphic to Rn.



NASH MANIFOLDS AND SCHWARTZ FUNCTIONS ON THEM 7

Theorem 2.18 ([AG10, Theorem 2.4.3]). Let M and N be Nash man-
ifolds and ν : M → N be a surjective submersive Nash map. Then
locally (in the restricted topology) it has a Nash section, i.e. there ex-

ists a finite open cover N =
k⋃

i=1

Ui such that ν has a Nash section on

each Ui.

This implies that any etale Nash map is a local diffeomorphism.
In our work on Schwartz functions we frequently use the following

Theorem 2.19. (Nash Tubular Neighborhood). Let Z ⊂ M ⊂ Rn be
closed affine Nash submanifolds. Equip M with the Riemannian metric
induced from Rn. Then Z has a Nash tubular neighborhood.

3. Schwartz functions on Nash manifolds

The Fréchet space S(Rn) of Schwartz functions on Rn was defined
by Laurant Schwartz to be the space of all smooth functions such that
they and all their derivatives decay faster than 1/|x|n for all n. In other
words, S(Rn) is the space of all f ∈ C∞ such that |df | is bounded for
every differential operator d with polynomial coefficients. This defini-
tion makes sense verbatim on any smooth affine algebraic variety and
was extended in [dCl] to affine Nash manifolds, and in [AG08] (using
some ideas from unpublished notes of Casselman) to arbitrary Nash
manifolds. One can also define Schwartz sections of Nash bundles.

As Schwartz functions cannot be restricted to open subsets, but can
be continued by 0 from open subsets, they form a cosheaf rather than
a sheaf.

Let M be a Nash manifold, E be a Nash bundle over M and let
S(M,E) denote the space of Schwartz sections of E.

The following two theorems summarize some results from [dCl, AG08,
AG10, AG13].

Theorem 3.1. Let U ⊂ M be an open (Nash) submanifold and N ⊂ M
be a closed (Nash) submanifold. Then

(1) S(Rn) = Classical Schwartz functions on Rn.
(2) For compact M , S(M,E) = smooth global sections of E.
(3) The restriction maps S(M,E) onto S(Z,E|Z).
(4) S(U,E) := S(U,E|U ) =

{ξ ∈ S(M,E)|ξ vanishes with all its derivatives on M − U}.

(5) Partition of unity: Let (Ui)
n
i=1 be a finite cover by open Nash

submanifolds. Then there exist smooth functions α1, ..., αn such

that supp(αi) ⊂ Ui,
n∑

i=1

αi = 1 and for any g ∈ S(M,E), αig ∈

S(Ui, E).
(6) S(M,E) = S(M)S(M,E).
(7) S(M,E) is a nuclear Fréchet space.

http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkMKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkMKrVjlG&keytype=ref
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(8) For any Nash manifold M ′ we have S(M×M ′) = S(M)⊗̂S(M ′).

Theorem 3.2. Let N ⊂ M be a closed submanifold. Denote

SN(M)i := {φ ∈ S(M) s.t. φ is 0 on N with firsti − 1 derivatives}.

Let CNN
M denote the conormal bundle to N in M . Then

S(M)i/S(M)i+1 ∼= S(N,Symi+1(CNN
M ))(1)

S(M \ N) ∼= lim
←

S(M)i/S(M)i+1.(2)

This theorem is helpful when analyzing the space of tempered dis-
tributions on M supported on N , i.e. the space of continuous linear
functionals on S(M) that vanish on the space S(M \ N) consisting of
Schwartz functions on the complement to N . This question appears in
the analysis of equivariant distributions, that appear frequently in rep-
resentation theory - as characters, relative characters, invariant func-
tionals or orbital integrals. We frequently use this theorem when we
have a natural stratification of M since it allows to reduce the analysis
of equivariant distributions from M to single strata.

Let us finish with a theorem related to Igusa and orbital integrals.

Theorem 3.3 ([AG09], Theorem B.2.4). Let φ : M → N be a Nash
submersion of Nash manifolds. Let E be a Nash bundle over N . Fix
Nash measures μ on M and ν on N .

Then
(i) there exists a unique continuous linear map φ∗ : S(M) → S(N)
such that for any f ∈ S(N) and g ∈ S(M) we have

∫

x∈N

f(x)φ∗g(x)dν =

∫

x∈M

(f(φ(x)))g(x)dμ.

In particular, we mean that both integrals converge.
(ii) If φ is surjective then φ∗ is surjective.

In fact

φ∗g(x) =

∫

z∈φ−1(x)

g(z)dρ

for an appropriate measure ρ.

Finally, I would like to remark on a different, extrinsic, approach to
Schwartz functions, applied in [CHM] and [KS]. We can compactify our
manifold and define Schwartz functions on it as smooth functions on
the (smooth) compactification that vanish to infinite order on the com-
plement to M . If both M and the compactification are Nash manifolds
then this definition will be equivalent, by Theorem 3.1(2,4). This allows
to define Schwartz functions on non-Nash (say, subanalytic) manifolds,
but this space will depend on the compactification.

Possibly, Schwartz functions on non-smooth semi-algebraic varieties
(more precisely, C0 Nash manifolds) can be defined by restriction from
a smooth embient space. A student of mine is now working on that.

http://arxiv.org/abs/0812.5063
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