
Let K be a p-adic field. Fix its algebraic closure \bar{K} and denote by C its completion in norm topology.

Denote by $K_\infty \subset K$ the field extension of K by all roots of 1 of degrees p^n, and denote by L the completion of K_∞ in C.

We denote $G = \text{Gal}(\bar{K}/K)$ and consider the closed subgroup $H = \text{Gal}(\bar{K}/K_\infty) \subset G$. We denote by Γ the quotient group $\Gamma = \text{Gal}(K_\infty/K) = G/H$.

9.1. Generalities on descent. Consider, more generally, the situation where a topological group G acts on a topological field C. Let H be a closed normal subgroup of G, $\Gamma = G/H$, $K = C^G$, $L = C^H$.

Let $\text{Rep}(G, C)$ denote the category of finite dimensional C-vector spaces with continuous semi-linear action of the group G. Similarly consider the category $\text{Rep}(\Gamma, L)$.

We say that there is a descent from C to L if these categories are naturally equivalent.
In general case, consider the pair of adjoint functors
\[R : \text{Rep}(G, C) \rightarrow \text{Rep} \Gamma, L \] and
\[I : \text{rep}([\text{gam}, L] \rightarrow \text{Rep}(G, C) \]
given by
\[R(V) = V^H, \quad I(W) = C \otimes_L W. \]

We have canonical morphisms of functors \(i : \text{Id} \rightarrow R \cdot I \)
and \(j : I \cdot R \rightarrow \text{Id} \).

Functor \(I \) clearly preserves the dimension. We will see
that always \(\dim(R(V)) \leq \dim(V) \).

Proposition 9.1.1. The following conditions are equivalent

(i) Functors \(I \) and \(R \) are mutually inverse equivalences of categories

(ii) Functor \(R \) preserves dimensions.

Indeed, functor \(R \) is left exact. If it preserves the dimension then it is exact and conservative.

Consider the adjunction morphism \(j : I \cdot R \rightarrow \text{Id} \). I claim it is an isomorphism.

Since the functor \(R \) is conservative it is enough to show
that its composition with the functor \(R \), i.e. morphism of functors \(R \cdot I \cdot R \rightarrow R \) is an isomorphism.

However, we know that the composition \(R \rightarrow R \cdot I \cdot R \rightarrow R \) is an identity morphism and looking at dimensions we see that the morphism \(R \cdot I \cdot R \rightarrow R \) is an isomorphism.

We have seen that not always we have a descent. Here is some criterion for the descent.

Claim. Suppose that for every \(d \) the cohomology group
\[H^1_{\text{cont}}(H, \text{GL}(d, C)) \] is trivial. Then there is a descent from \(C \) to \(L \).

Now let us come back to situation when \(H = \text{Gal}(\bar{K}/K_\infty) \)
and show that in this case we have a descent. This result is due to Tate and Sen. It reduces the study of the cat-
egory $\text{Rep}(G, C)$ to the study of much simpler category $\text{Rep}(\Gamma, L)$. It is much simpler since the groups Γ is almost isomorphic to \mathbb{Z}_p.

Remark on the proof of this result in the paper by Brion and Conrad.

Let us recall some things from cohomology theory.

9.1.2. Cohomology. 1. Discrete groups. $H^0(G, A), H^1(G, A)$.

If A is a commutative group we can also define $H^i(G, A)$.

One of definitions to use cochain complex $0 \to C^0 \to C^1 \to \ldots$ where C^i is the group of functions from G^i to A.

Theorem 9.2. Let M/L be a finite Galois extension of fields with the Galois group $G = \text{Gal}(M/L)$. Then

(i) $H^i(G, M^+) = 0$ for all $i > 0$.

(ii) $H^1(G, GL(d, M)) = 1$ (Hilbert 90)

9.2.1. Continuous cohomology. The same definition with continuous functions.
Let us discuss different levels of acyclicity. Suppose we have a complex $aA \to B \to C$ with morphisms d, d'. We say that it is acyclic at place B if it satisfies the following condition

Acyclicity 0. $\text{Ker} d' = \text{Im} d$.

Now suppose that our groups are equipped with metrics and differentials d, d' are continuous (i.e. bounded) morphisms. Then we can impose some stronger conditions

Acyclicity 1. There exists a constant $C > 0$ such that if $b \in B$ is a cycle then there exists an $a \in A$ such that $da = b$ and $\|A\| \leq C\|b\|$.

In fact, it is better to consider slightly stronger condition

Acyclicity 2. There exists a constant $C > 0$ such that for any $b \in B$ we can find an element $a \in A$ such that $H\|a\| \leq C\|b\|$ and $\|b - da\| \leq C\|d'b\|.$
Consider the situation as before. Let a profinite group H continuously act on the field $C = C_K$. Let us set $L = C^H$.

Theorem 9.3. Suppose that the complex defining the continuous cohomology is strongly acyclic, i.e., it satisfies the condition Acyclicity 2 at C^1. Then $H^1(H, \text{GL}(d, C) = 1)$.

\[H^1(\pi, \text{GL}(d, c)) = 0 \quad \text{for } c \in \text{Mat}(d, C). \]

Let c be a cycle in $H^1(H, \text{GL}(d, C))$ central.

Step 1. Enough to find an open subgroup H such that $c|_H$ is trivial.

c corresponds to some open subgroup G of the $\text{GL}(d, C)$.

G is trivial.

So, I can decent to the field $K = C^G$ a finite extension of C. For finite extensions K/L, $\text{GL}(d, L)$.
c : R → C, cont.\n
choose small neighborhood \(U \) of \(0 \).
\(E_U(d, \delta) \) and take
\(\mathcal{H}_0 = p^{-1}(U) \)

choose in \(C \) ideal \(\mathcal{O}_2 \)
\(\| \omega \| > p^{-1} \delta \), \(\forall \omega \in \mathcal{O}_2 \).
\(\mathcal{O}_2 = \{ \omega / \| \omega \| \leq 1 \} \).

consider ideal
\(\overline{\mathcal{O}} \subset \mathcal{O}_2 \), \(\mathcal{D} = \{ \omega / \| \omega \| \leq \frac{1}{2} \}
\)
\(\text{Mat}(d, \mathcal{D}) \).
\(U = 1 + \text{Mat}(d, \mathcal{D}) \subset \text{GL}(d, \mathcal{O}) \).
\(\mathcal{H}_0 = p^{-1}(U) \).

also \(\mathcal{O}_2 \) is trivial in coherent.

compare \(H^1(\mathcal{O}_2, U) \) and \(H^1(\mathcal{O}_0, \mathcal{M}) \),
\(\mathcal{M} = \text{Mat}(d, \mathcal{D}) \).
\(\mathcal{P} \simeq \mathcal{V} \) \(\mathcal{M} \simeq \mathcal{V} + \mathcal{W} \).
\(c : \mathcal{H}_0 \rightarrow \mathcal{V} \), \(c_1 \) is \(\mathcal{O}_2 \) - \(\mathcal{M} \).
\(c' = d \alpha + \varepsilon \), \(\varepsilon \) - smooth. \(\alpha \in \mathcal{O} \).
\(\alpha = c \), \(\mathcal{E} \subset \mathcal{L} \leq \frac{1}{2} \| \alpha \| \).
Let us see how to prove this stronger acyclicity condition 2 in our case when L is the closure of the field K_∞.

Given a cochain $c \in C^1(H, C)$ we can approximate it by a function c' that is locally constant on H and lies in K.

Hence we can assume that there exists a subgroup H_0 of finite index in H that corresponds to a finite field extension M/L such that our cocycle reduces to a cocycle $c' \in C^1(H', M)$, where $H' = H/H_0$ is a finite group.

We should just check that for all these finite groups we can choose the same constant C in condition Acyclicity 2.

This would follow from the following theorem due to Tate.

Theorem 9.4. For any finite extension M/L we have $tr(\mathcal{O}_M)$ contains the maximal ideal \mathfrak{m} of the ring \mathcal{O}_L.

We will prove this later.
Now let us recall how to prove the acyclicity of the cohomology $H^1(Gal(M/L), M)$.

Reminder from cohomology theory. Let (C, d) be a complex of abelian groups.

Homotopy is an operator $D : C \rightarrow C$ of degree -1. Such homotopy induces an endomorphism ν_D of the complex C via $\nu_D = dD + Dd$.

Morphism ν_D induces zero morphism on cohomologies. Thus, if this morphism is identity (or is invertible) this would guaranty acyclicity. In fact this is the standard way to prove acyclicity.

Let M/L be a finite Galois extension. Let us recall how to prove that $H^i(G, M) = 0$ for $i > 0$. Choose an element $m \in M$ such that $tr(m) = 1$. Such an element defines a homotopy $D = D_m$. On 1 cochains it is given by $\sum c_ig_i \mapsto \sum c_ig_i(m)$. It is clear that $\nu_D = Id$ that implies acyclicity.

Now come back to our situation. Let $L \subset C$ as before, $M \subset C$ a finite Galois extension of L.

By Tate theorem we can choose an element $m \in M$...
such that $m = 1$ and $||m|| < 2$. Then the corresponding homotopy D_m has norm ≤ 2 and hence Acyclicity 2 condition holds with the constant $c = 2$.

\[H^1(G, GL(d, \mathbb{C})) = C^1 \text{ for all } \]

\[\text{Dense } \text{Rep} (G, \mathbb{C}) = \text{Rep} (G, \mathbb{C}). \]

Is not reduced to

\[\text{Var}(K) \neq \text{Var}(K') \neq \text{Rep}(K') \]

Obstruction is given by sen operator D_s.

Interesting to consider W-vector space over \mathbb{C} and $D_s: V \to V$.

\[\Phi: \text{End}(V, W) \to \text{Rep}(W, W) \]

\[\text{Leaves} \text{W defines Cartan}

\[\mathfrak{g} \text{ - Comparison between product fields and field in char p.} \]

\[\text{K - algebraic volunter fixed, be newvalue fixed, then} \]

\[K \text{ trans similar to } K \]