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2. LECTURE 2. Betti cohomology, etale
cohomology and /-adic cohomology.

2.1. Etale cohomology. Let X be an algebraic vari-
ety over an algebraically closed field L. In 1940-th A. Weil
conjectured that in some cases one can define in purely
algebraic terms the cohomology groups H*(X, A) that
have good functorial properties and in case when L = C
would coincide with the groups H*(Xg,, A).

This program has been realized by A. Grothendieck.
Namely, given a finite abelian group A such that the size
#(A) is prime to the p = char(L) he defined the etale
cohomology groups He: (X, A) that have all the desired
properties.
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2.2. [-adic cohomology. Using this construction Grothendieck
defined a family of cohomology theories for such varieties.
Namely , for every prime number [ prime to char(L) he

defined [-adic cohomology functors

H*(X,7Zy) = lim H*(X,Z/1*7)

HX,Z)) = Qy @, H*(X, Z,)

HY(X,Q) == Q ®g, H (X, Q).

In fact Grothendieck and his group has done much

more.

Constructible sheaves, Six functors etc.
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2.3. Cohomology of elliptic curves. [ will use these
cohomology theories and their properties without proofs.
But in order to show what are the difficulties and limita-
tions of these theories I will consider a special case where
all these theories could be described much more explicitly.

Example 2.3.1. Consider an elliptic curve £ over an alge-
braically closed field L. The set E(L) of L-points of E
has a natural structure of an abelian group.

For every natural number n consider the multiplica-
tion morphism [n] : £ — E. This morphism is epimor-
phic, and we denote by E(n) C E(L) the kernel of this
morphism.

2.3.2. Consider the case when L = C. In this case we
have an analytic realization E,, of our curve as E,, =
C/A, where A is some lattice in C. From this realization

can easily describe all topological invariants of the space
Eun.

Claim. (i) H|(E.,,Z) = A\, H'(E,,,Z) = \*
(i) E(o) = Q/Z @ A and for every n we have
E(n) = 1A/A\ =~ (Z/nZ)?

T n
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All information about the lattice A that we can ex-
tract from the algebraic curve E is encoded into the group
E(00). It allows to reconstruct many objects related to
the group A = Hi(E,,,7Z), but not A itself. Here are
some of constructions.

(i) Let I be a prime number. Consider the Z;-module
TiI(E) == Mor(Q;/Z;, E(cc). Then it is equal to the [-
adic completion of the lattice A, i.e. to the Z;-module
Zg R A.

(ii) The Qrmodule T} = Q; ®7 A can be described as
the group of continuous morphisms

Moreon(Qq, E(L)) = Mor..,(Q, E(c0)), where E(L)
is considered with discrete topology.
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2.3.3. From Lefschetz principle we can see that we can
prove similar results for any algebraically closed field L of
characteristic 0. Namely, we claim that

(i) E(n) =~ (Z/nZ)?

(ii) The Z; module T)(E) : Mor(Q;/Z;, E(L) is iso-
morphic to Z;

(iii) The module T)(E) = Mor.,(Q;, E(L)) is iso-
morphic to Q2.

In case when L is an algebraically closed field of char-
acteristic p > 0 the same results hold provided n and [ are
prime to p. They are not correct if this does not hold.

This explains what are limitations of these cohomol-
ogy theories and why they behave badly if [ equals to the
characteristic of L.
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2.4. Action of Galois groups. Main advantage o the
theories defined by purely algebraic constructions is that
they produce representations of Galois groups. Namely,
suppose we are given a field K. Fix an algebraic clo-
sure L = K and denote by I' the Galois group I' =
Gal(L?K) = Autg(L).

Suppose we are given an algebraic variety Y defined
over K. Let us denote by X = Y7 the variety over L
obtained from Y by extension of scalars. Then the Galois
group " acts on the scheme (variety) X and this induces
the action of I' on all cohomology spaces associated to X
- H.(X,A), H(X,Z)), H( X, Q. Thus, starting from the
variety Y we produce families of representations of the
group I'. We usually will denote these representations by

p or pi.
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Remarks. 1. This construction gives a way to construct
interesting families of Galois representations. In fact, this
gives a powerful tool to study Galois groups — they are
some of the most important characters in Number Theory.

2. Starting with the variety Y we constructed the
whole series of representations (p;, ', H/(X, Q). If you
look at their construction, even in the simple case when
Y is an elliptic curve defined over K, you do not see any
direct relations between these representations.

On the other hand one feels that in some sense this
is the same representation — in slightly different disguises.
One can suspect that in fact there exists some representa-
tion p in vector space over @Q that produces these repre-
sentations (at least for almost primes [).

This suggestion is probably not correct as stated. How-
ever, I personally think that there exists some “small” ob-
ject p that allows to reconstruct these representations p;
for almost all /.
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2.4.1. Case of p-adic fields. Let K be a number field.
Consider its non-Archimedean valuation p and denote by
K, the completin of K with respect to this valuation.

Here we can think about the case when K = Q, K, =
Q,
It is known that the absolute Galois group I'y can be
naturally embedded into I' (this

Let as before L = K and I' = Gal)L/K). Consider
the family of representations p; of the type describe above.

In order to study a representation p of the global Galois
group I"it is usually useful to first study its restriction to a
local Galois group I'y. So, let us consider a representation
p; restricted to the local Galois subgroup I',.

We will see that in case when [ is not equal to the
residual characteristic p of the field K, the structure of
any continuous representation of the Galois group I’y is
relatively simple. Thus the most difficult and interesting
case is when [ = p. This is exactly the subject of the
p-adic Hodge theory.
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2.5. Structure of the local Galois group and its
representations. In this course we will mostly deal with
local Galois groups.

Let us fix a p-adic field K that is a finite extension
of the field Q,. W fix a discrete valuation v : K —
Qbigcupoo normalized by condition v(p) = 1. We denote
by O = Og the ring of integers, O = {x € K|v(z) > 0}.
Letp = p  K; = {x € Og|v(x) > 0} be the maximal ideal
of K and k = O /p the finite residue field.

Fix the algebraic closure L/K and denote by Gam
the Galois group Gal(L/K. We extend the valuation v
to the field L (this is not a discrete valuation). Using the
valuation v we define the ring of integers Oy C L — this is
the integral closure of the ring Ok in L.

The ring Oy, is a local ring and the residue quotient

field [ = Op/py is an algebraic closure of the residue field
k.

From this construction we see that there is a canonical
morphism p : Gal(L/K) — Gal)l/k). It is known that
this morphism is epimorphic. A

The group Gal(l/k) is isomorphic to the group (Z). In
fact this isomorphism is canonical since this group has the
distinguished element — Frobenius morphism — F'R = F'ry,
where q := #(k). This element plays a central role in the

theory.
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The kernel of the morphism p : Gal(L/K) — Gal(l/k)
is called the inertia group of K. We denote this sub-

group by Ix.

Definition. A representation p of the group Gal(L/K)
is called unramified if it is trivial on the inertia subgroup

Ix.

An unramified representation (p, V') can be considered
as a representation of the quotient group Gal(l/k). In
particular it defines an automorphism F'r : V — V equal
to p(F'ry).

Let Y be a smooth projective variety defined over the
field K. We say that Y has a good reduction if it
can be realized over the ring O in such a way that the
quotient variety Y over the field k is again smooth and
projective.
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Theorem 2.6. Suppose that a variety Y over the field
K has good reduction. Fix a prime number [ different
from the characteristic p of the field k.

Then the representation (p;, Gal(L/K), H*(X,Q))
of the group Gal(L/K) is unramified.

Moreover, there exists a canonical isomorphism of
vector spaces H*(X,Q;) and H*(X.Q;) compatible with
the action of the Galois group Gal(L/K).

In case when when Y = FE is an elliptic curve this
follows from the statement the the reduction map E(n) —
E(n) is bijective for any n prime to p.
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