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2. Lecture 2. Betti cohomology, etale

cohomology and l-adic cohomology.

2.1. Etale cohomology. Let X be an algebraic vari-
ety over an algebraically closed field L. In 1940-th A. Weil
conjectured that in some cases one can define in purely

algebraic terms the cohomology groups H⇤(X,A) that
have good functorial properties and in case when L = C
would coincide with the groups H⇤(Xan, A).

This program has been realized by A. Grothendieck.
Namely, given a finite abelian group A such that the size
#(A) is prime to the p = char(L) he defined the etale
cohomology groups Het(X,A) that have all the desired
properties.
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2.2. l-adic cohomology. Using this construction Grothendieck
defined a family of cohomology theories for such varieties.
Namely , for every prime number l prime to char(L) he
defined l-adic cohomology functors

H⇤(X,Zl) := limH⇤(X,Z/lkZ)
H(X,Zl) := Ql ⌦Zl

H⇤(X,Zl)
H⇤(X, Q̄l) := Q̄l ⌦Ql

H⇤(X,Ql).

In fact Grothendieck and his group has done much
more.

Constructible sheaves, Six functors etc.
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2.3. Cohomology of elliptic curves. I will use these
cohomology theories and their properties without proofs.
But in order to show what are the di�culties and limita-
tions of these theories I will consider a special case where
all these theories could be described much more explicitly.

Example 2.3.1. Consider an elliptic curve E over an alge-
braically closed field L. The set E(L) of L-points of E
has a natural structure of an abelian group.

For every natural number n consider the multiplica-
tion morphism [n] : E ! E. This morphism is epimor-
phic, and we denote by E(n) ⇢ E(L) the kernel of this
morphism.

2.3.2. Consider the case when L = C. In this case we
have an analytic realization Ean of our curve as Ean =
C/⇤, where ⇤ is some lattice in C. From this realization
can easily describe all topological invariants of the space
Ean.

Claim. (i) H1(Ean,Z) = ⇤, H1(Ean,Z) = ⇤⇤

(ii) E(1) = Q/Z ⌦ ⇤ and for every n we have

E(n) = 1
n⇤/⇤ ⇡ (Z/nZ)2
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All information about the lattice ⇤ that we can ex-
tract from the algebraic curve E is encoded into the group
E(1). It allows to reconstruct many objects related to
the group ⇤ = H1(Ean,Z), but not ⇤ itself. Here are
some of constructions.

(i) Let l be a prime number. Consider the Zl-module
Tl(E) := Mor(Ql/Zl, E(1). Then it is equal to the l-
adic completion of the lattice ⇤, i.e. to the Zl-module
Zl ⌦ ⇤.

(ii) The Ql-module Tl
0 = Ql ⌦Z ⇤ can be described as

the group of continuous morphisms
Morcon(Ql, E(L)) = Morcon(Ql, E(1)), where E(L)

is considered with discrete topology.
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2.3.3. From Lefschetz principle we can see that we can
prove similar results for any algebraically closed field L of
characteristic 0. Namely, we claim that

(i) E(n) ⇡ (Z/nZ)2
(ii) The Zl module Tl(E) : Mor(Ql/Zl, E(L) is iso-

morphic to Zl
2

(iii) The module Tl
0(E) = Morcon(Ql, E(L)) is iso-

morphic to Ql
2.

In case when L is an algebraically closed field of char-
acteristic p > 0 the same results hold provided n and l are
prime to p. They are not correct if this does not hold.

This explains what are limitations of these cohomol-
ogy theories and why they behave badly if l equals to the
characteristic of L.
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2.4. Action of Galois groups. Main advantage o the
theories defined by purely algebraic constructions is that
they produce representations of Galois groups. Namely,
suppose we are given a field K. Fix an algebraic clo-
sure L = K̄ and denote by � the Galois group � =
Gal(L?K) = AutK(L).

Suppose we are given an algebraic variety Y defined
over K. Let us denote by X = YL the variety over L
obtained from Y by extension of scalars. Then the Galois
group � acts on the scheme (variety) X and this induces
the action of � on all cohomology spaces associated to X
– Het(X,A), H(X,Zl), H(X,Ql. Thus, starting from the
variety Y we produce families of representations of the
group �. We usually will denote these representations by
⇢ or ⇢l.
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Remarks. 1. This construction gives a way to construct
interesting families of Galois representations. In fact, this
gives a powerful tool to study Galois groups – they are
some of the most important characters in Number Theory.

2. Starting with the variety Y we constructed the
whole series of representations (⇢l,�, Hi(X,Ql). If you
look at their construction, even in the simple case when
Y is an elliptic curve defined over K, you do not see any
direct relations between these representations.

On the other hand one feels that in some sense this
is the same representation – in slightly di↵erent disguises.
One can suspect that in fact there exists some representa-
tion ⇢ in vector space over Q that produces these repre-
sentations (at least for almost primes l).

This suggestion is probably not correct as stated. How-
ever, I personally think that there exists some “small” ob-
ject ⇢ that allows to reconstruct these representations ⇢l
for almost all l.
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2.4.1. Case of p-adic fields. Let K be a number field.
Consider its non-Archimedean valuation p and denote by
Kp the completin of K with respect to this valuation.

Here we can think about the case when K = Q, Kp =
Qp.

It is known that the absolute Galois group �p can be
naturally embedded into � (this

Let as before L = K̄ and � = Gal)L/K). Consider
the family of representations ⇢l of the type describe above.

In order to study a representation ⇢ of the global Galois
group � it is usually useful to first study its restriction to a
local Galois group �p. So, let us consider a representation
⇢l restricted to the local Galois subgroup �p.

We will see that in case when l is not equal to the
residual characteristic p of the field Kp the structure of
any continuous representation of the Galois group �p is
relatively simple. Thus the most di�cult and interesting
case is when l = p. This is exactly the subject of the
p-adic Hodge theory.
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2.5. Structure of the local Galois group and its

representations. In this course we will mostly deal with
local Galois groups.

Let us fix a p-adic field K that is a finite extension
of the field Qp. W fix a discrete valuation v : K !
Qbigcup1 normalized by condition v(p) = 1. We denote
byO = OK the ring of integers, OK = {x 2 K|v(x) � 0}.
Let p = p+K; = {x 2 OK|v(x) > 0} be the maximal ideal
of K and k = OK/p the finite residue field.

Fix the algebraic closure L/K and denote by Gam
the Galois group Gal(L/K. We extend the valuation v
to the field L (this is not a discrete valuation). Using the
valuation v we define the ring of integers OL ⇢ L – this is
the integral closure of the ring OK in L.

The ring OL is a local ring and the residue quotient
field l = OL/pL is an algebraic closure of the residue field
k.

From this construction we see that there is a canonical
morphism p : Gal(L/K) ! Gal)l/k). It is known that
this morphism is epimorphic.

The group Gal(l/k) is isomorphic to the group (̂Z). In
fact this isomorphism is canonical since this group has the
distinguished element – Frobenius morphism – FR = Frq,
where q := #(k). This element plays a central role in the
theory.



22

The kernel of the morphism p : Gal(L/K) ! Gal(l/k)
is called the inertia group of K. We denote this sub-
group by IK .

Definition. A representation ⇢ of the group Gal(L/K)
is called unramified if it is trivial on the inertia subgroup
IK .

An unramified representation (⇢, V ) can be considered
as a representation of the quotient group Gal(l/k). In
particular it defines an automorphism Fr : V ! V equal
to ⇢(Frq).

Let Y be a smooth projective variety defined over the
field K. We say that Y has a good reduction if it
can be realized over the ring OK in such a way that the
quotient variety Ȳ over the field k is again smooth and
projective.
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Theorem 2.6. Suppose that a variety Y over the field

K has good reduction. Fix a prime number l di↵erent
from the characteristic p of the field k.

Then the representation (⇢l, Gal(L/K), H⇤(X,Ql))
of the group Gal(L/K) is unramified.

Moreover, there exists a canonical isomorphism of

vector spaces H⇤(X,Ql) and H⇤(X̄.Ql) compatible with

the action of the Galois group Gal(L/K).

In case when when Y = E is an elliptic curve this
follows from the statement the the reduction map E(n) !
Ē(n) is bijective for any n prime to p.










