Problem Set \# 2

Due: May 14th, 2009
Lecturer: Irit Dinur

General Instructions:

- Please submit the exercise in the mailbox of Or Meir.
- Try to solve each problem first without consulting references. If you need references, please indicate clearly which reference you used.
- Team work: Allowed, but please limit yourself to groups of at most 3. Each person must submit the entire exercise.

Questions:

1. (Review, not to be handed in:) Let K be a field, and $F \supset K$ a finite extension field. Show that there is a K-linear mapping φ from F to K^{n} for some n. Fix any $a \in F$ and let $m_{a}: F \rightarrow F$ be defined by $m_{a}(x)=a \cdot x$ where multiplication is in F. Prove that m_{a} is a K-linear mapping.
2. Decoding from errors and erasures.
(a) Prove that given a generator matrix of an $[n, k, d]$ code, there is a polynomial time algorithm that decodes from $e<d$ erasures.
(b) Show how to decode any Reed-Solomon code simultaneously from s erasures and e errors, as long as $s+2 e<d$.
3. Tensors of codes. Given codes C_{1} and C_{2} with encoding functions $E_{1}:\{0,1\}^{k_{1}} \rightarrow\{0,1\}^{n_{1}}$ and $E_{2}:\{0,1\}^{k_{2}} \rightarrow\{0,1\}^{n_{2}}$. Define an encoding function $E_{1} \otimes E_{2}:\{0,1\}^{k_{1} k_{2}} \rightarrow\{0,1\}^{n_{1} n_{2}}$ as follows: View a message m as a k_{1} by k_{2} matrix. Encode the columns of m individually using the function E_{1} to get an $n_{1} \times k_{2}$ matrix m_{0}. Now encode the rows of m_{0} individually using E_{2} to get an $n_{1} \times n_{2}$ matrix that is the final encoding under $E_{1} \otimes E_{2}$ of m. Let $C_{1} \otimes C_{2}$ be the code associated with $E_{1} \otimes E_{2}$.
(a) What is the rate and distance of the new code, as a function of the parameters of C_{1}, C_{2}.
(b) Assume C_{1}, C_{2} are linear codes. Prove that the codewords of $C_{1} \otimes C_{2}$ are exactly $n_{1} \times n_{2}$ matrices whose rows are codewords of C_{2} and whose columns are codewords of C_{1}.
(c) Suppose C_{1}, C_{2} are Hadamard codes. Prove that $C_{1} \otimes C_{2}$ is a Hadamard code. (oops, wrong!)
4. Reed Muller Codes. The following code family is an extension of the Reed Solomon codes, that has smaller alphabet size. Let \mathbb{F}_{q} be a field, and let $S \subset \mathbb{F}_{q}$. Given a message $\left(m_{i j}\right)_{0 \leq 1, j,<\sqrt{k}}$, define a bivariate polynomial $P_{m}(X, Y):=\sum_{i, j} m_{i j} X^{i} Y^{j}$. The encoding of m is defined to be $\left(P_{m}(\alpha, \beta)\right)_{\alpha, \beta \in S} \in \mathbb{F}_{q}^{|S|^{2}}$.
(a) The definition of tensor products of codes from question 3 can be extended to work over large alphabets in a natural way. Prove that the code described above is $C \otimes C$ for C an appropriate Reed Solomon code.
(b) What are the rate and distance of the code defined above.
(c) Extend the definition of Reed Muller codes to m-variate polynomials, such that the resulting code equals $C^{\otimes m}$ for a Reed-Solomon code C (where $C^{\otimes m}$ denotes $C \otimes \cdots \otimes C, m$ times).
(d) Another (important) variant of Reed Muller codes, is defined by interpreting the message symbols as coefficients of a polynomial in m variables of total degree at most d. (The total degree is the maximum, over monomials, of the sum of individual degrees in the monomial). The encoding is simply the evaluation of that polynomial on all of \mathbb{F}_{q}^{m}. Prove that $k=\binom{d+m}{d}$. Prove (by induction) that the relative distance of this code is at least $1-d / q$ (aka the SchwartzZippel Lemma).
(e) Can either of these variants be asymptotically good for a constant size alphabet q ? (Recall that a code is asymptotically good if it has non-vanishing rate and distance).
5. We discussed the following scheme for constructing codes. To encode k bits, find the smallest m such that the message length is $k \leq m \cdot 2^{m-1}$. Exhaustively search for a good [$2 m, m, \delta m$] linear code for some predefined positive $\delta>0$. The code will be the concatenation of a Reed-Solomon code over alphabet 2^{m} and rate $1 / 2$ with the linear code above.
(a) Show that the obtained code family is asymptotically good. What is the running time of the above procedure in terms of the input length k ?
(b) Describe a polynomial-time variant of the above scheme, obtained by two levels of concatenation (polynomial time means that the encoding of a message can be computed in deterministic polynomial time). Analyze the rate and distance of your scheme.
(c) Describe another polynomial time variant of the above seheme, obtained by replacing the Reed-Solomon code by a bivariate Reed-Muller code. Analyze the rate and distance of your seheme.
