Problem Set \# 3

Due: July 9th, 2009
Lecturer: Irit Dinur

General Instructions:

- Please submit the exercise in the mailbox of Or Meir.
- Try to solve each problem first without consulting references. If you need references, please indicate clearly which reference you used.
- Team work: Allowed, but please limit yourself to groups of at most 3. Each person must submit the entire exercise.

Questions:

1. Distance amplification. Here is another nice application of expanders for constructing codes. A bipartite graph G is a (γ, δ)-weak expander if every set of size at least δn has at least $\gamma \delta n$ neighbors.
(a) Given an $(n, k, \delta n)$ binary code C, and a (c, c)-regular (γ, δ)-weak expander $G=([n],[n], E)$, we can construct an $(n, k / c, d)_{2^{c}}$ code C^{\prime} by first encoding k bits via C and then placing the symbols on the left hand side of G and reading them off from the right. Give a formal definition of C^{\prime}, and show that the alphabet and rate are as claimed.
(b) Prove that the distance of C^{\prime} is $d \geq \gamma \delta n$.

Remark: Although always $\gamma \leq c$ it is possible to have $\gamma \delta=1-O(1 / c)$ which gives a relative distance $\rightarrow 1$ as c grows (and with it the alphabet size of C^{\prime}).
2. Expanders from codes. We have seen how to construct codes from expanders. In this exercise we will see the reverse direction. This will be done by constructing a graph with small secondlargest eigenvalue (in absolute value), which implies it is a good expander, although we have not seen this in class.
For a group G and a set of group elements $S=\left\{s_{1}, \ldots, s_{n}\right\}$ the Cayley graph $C G[G, S]$ has a vertex per element $x \in G$ and an edge (x, y) if $x y^{-1} \in S$ or $y x^{-1} \in S$.
Let C be an $[n, k, d]$-code generated by an n-by- k matrix B whose rows are b_{1}, \ldots, b_{n}. Consider the additive group \mathbb{F}_{2}^{k} generated by $S=\left\{b_{1}, \ldots, b_{n}\right\}$, and let us analyze the graph $H=C G\left[\mathbb{F}_{2}^{k}, S\right]$.
(a) A character of a group G is a function $\chi: G \rightarrow \mathbb{C}$ such that $\chi(x y)=\chi(x) \chi(y)$. Let H^{\prime} be some Cayley graph on G, and let A be its adjacency matrix. Prove that each character of G gives rise to an eigenvector of A, i.e. to a vector χ such that $A \chi=\lambda \chi$.
(b) Prove that $\chi_{a}: \mathbb{F}_{2}^{k} \rightarrow \mathbb{C}$ defined by $\chi(x)=(-1)^{x \cdot a}$ for $x, a \in \mathbb{F}_{2}^{k}$ is a character of \mathbb{F}_{2}^{k}. Use this to find all eigenvalues of the graph $H=C G\left[\mathbb{F}_{2}^{k}, S\right]$ defined above.
(c) Deduce that if C is a code whose pairwise distances are always between $\left(\frac{1}{2}-\varepsilon\right) n$ and $\left(\frac{1}{2}+\varepsilon\right) n$ then the second largest eigenvalue of H is at most $2 \varepsilon n$.
Remark: Codes C with such distance bounds are called ε-biased codes, and can be obtained by concatenating a Reed-Solomon code with a Hadamard code.
3. Johnson bound for large alphabets:
(a) Let $m \leq t \leq n$ and ℓ be integers such that $t>\sqrt{m n}$. Consider a bipartite graph with n vertices on the left and ℓ vertices on the right with all right degrees equal to t, and the property that for any two different vertices on the right, the intersection of their neighbor sets is of size at most m (i.e., it contains no $K_{m+1,2}$). Show that

$$
\ell \leq \frac{n(t-m)}{t^{2}-m n}
$$

Hint: bound in two different ways the number of paths $\left(v_{1}, v_{2}, v_{3}\right)$ in which v_{1}, v_{3} are vertices on the right and v_{2} is on the left. You will probably want to use that for any $a_{1}, \ldots, a_{n} \geq 0$, $\sum a_{i}^{2} \geq\left(\sum a_{i}\right)^{2} / n$ which can be proven using the Cauchy-Schwartz inequality.
(b) Deduce that any $(n, k, d)_{q}$ code is $\left(e, O\left(n^{2}\right)\right)$-list-decodable for any $e<n-\sqrt{n(n-d)}$.
(c) Show that if we only assume $t>0.99 \sqrt{m n}$ in (3b) then ℓ can be exponential in n. What does this imply for the Johnson bound? Hint: take, say, $m=n / 4$ and use a probabilistic argument.
4. Agreement: Let q be a prime power and let $f: F_{q} \rightarrow F_{q}$ be some arbitrary function. Show that the number of polynomials $p \in F_{q}[x]$ of degree at most $q / 9$ that agree with f on at least $0.34 q$ elements of F_{q} is bounded by a constant.

