Problem Set \# 1

Due: December 15th, 2009

General Instructions:

- Please submit the exercise in class, or in Irit's mailbox (Ziskind 2nd floor).
- Try to solve each problem first without consulting references. If you need references, please indicate clearly which reference you used.
- Team work: Allowed, but please limit yourself to groups of at most 3.

Problems:

1. Let $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$. Prove that

$$
\|f\|_{U^{2}}^{4}=2^{-n} \sum_{S}|\hat{f}(S)|^{4}
$$

2. Let $f:\{0,1\}^{n} \rightarrow\{ \pm 1\}$ be a random function. Prove that with high probability

$$
\forall S|\hat{f}(S)|=O\left(n 2^{-n / 2}\right)
$$

3. Use questions 1,2 to deduce that for a random function $\|f\|_{U^{2}} \approx 2^{-n / 4}$.
4. (*) What is $\|f\|_{U^{k}}$ for a random function f ? (i.e. find upper and lower bounds)
5. Let $f, g:\{0,1\}^{n} \rightarrow\{ \pm 1\}$ and define $h:\{0,1\}^{2 n} \rightarrow\{ \pm 1\}$ by

$$
h\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right) g\left(y_{1}, \ldots, y_{n}\right)
$$

Prove that

$$
\|h\|_{U^{k}}=\|f\|_{U^{k}} \cdot\|g\|_{U^{k}}
$$

