Problem Set # 5

Due: May 2nd, 2011

Lecturer: Irit Dinur

In this exercise we study some analysis of Boolean functions. For references one can find several online courses on this subject. Questions:

1. Given a string $x \in \{-1, 1\}^n$, let $N_{\varepsilon}(x)$ be the distribution on strings in $\{-1, 1\}^n$ obtained by flipping each coordinate of x independently with probability ε . Define an operator Ttaking a function $f : \{-1, 1\}^n \to \{-1, 1\}$ to a new function $g = Tf : \{-1, 1\}^n \to \{-1, 1\}$ by

$$\forall x \in \{-1, 1\}^n, \quad g(x) = E_{y \sim NS_{\varepsilon}(x)} f(y).$$

- (a) Prove that for every function f, $E_x[f(x)] = E_x[Tf(x)]$.
- (b) Prove that if f is Boolean then for each x, $|Tf(x)| \leq 1$.
- (c) Express the Fourier coefficients of g = Tf as a function of those of f.
- 2. We define the influence of the *i*'th variable on a function $f: \{0,1\}^n \to \{0,1\}$ to be

$$Inf_{i}(f) := Pr_{x \in \{0,1\}^{n}}[f(x) \neq f(x \oplus e_{i})].$$

The total influence of a function is the sum of all influences, $I(f) = \sum_{i=1}^{n} I_i(f)$. Compute the influences and the total influence of the following functions:

- (a) dictator: $f(x_1, ..., x_n) = x_1$.
- (b) junta: $f(x_1, ..., x_n) = x_1 AND x_2$.
- (c) parity: $f(x_1, \ldots, x_n) = x_1 \oplus x_2 \oplus \cdots \oplus x_n$
- (d) majority: $f(x_1, ..., x_n) = 1$ iff $x_1 + x_2 \cdots + x_n > n/2$ (an approximate computation is ok).
- 3. Prove the following formula for I(f):

$$I(f) = \sum_{S \subseteq [n]} |S| \, \widehat{f}(S)^2$$

(hint: consider the Fourier expansion of the function $f_i(x) = f(x) \oplus f(x \oplus e_i)$.)