
PCPs and HDX - Homework 2

Due: January 3, 2017

Instructions: You are welcome to work and submit your solutions in pairs. We prefer that you
please type your solutions using LaTex. Please email your solution to inbal.livni@weizmann.ac.il.

1 Graphs and eigenvalues

Let G be a d-regular graph. The Normalized Adjacency Matrix of a graph G, denoted A, is an
n × n matrix that for each edge uv contains the number of edges in G between vertex u and
vertex v, divided by d. Since the graph is d-regular, the sum of each row and column in A is 1.
By definition the matrix A is symmetric and therefore has an orthonormal basis of eigenvectors
v0, . . . , vn−1 with eigenvalues λ0, . . . , λn−1 such that for all i we have Avi = λivi. Without loss
of generality we assume the eigenvalues are sorted in descending order λ0 ≥ λ1 ≥ · · · ≥ λn−1.

The eigenvalues of A are called the spectrum of the graph G. The spectrum of a graph
contains a lot of information regarding the graph. The next exercise confirms some examples of
observations that demonstrate this connection between the spectrum of a d-regular graph and
its properties. Prove the following statements:

1. λ0 = 1

2. The graph is connected iff λ0 > λ1

3. The graph is bipartite iff |λ0| = |λn−1|

The graph’s second largest eigenvalue is defined to be λ(G) = max(|λ1|, |λn−1|) and is related
to the expansion parameter of the graph.

4. Let G be the complete graph on n vertices. Find the eigenvalues of A. What is λ(A)?

2 Expander graphs and mixing

A graph is called a λ-expander if λ(G) ≤ λ.

2.1 Spectral gap and mixing: the expander mixing lemma

We will prove that for every S, T ⊆ V :

|E(S, T )− d|S||T |
n
| ≤ λd

√
|S||T |

where E(S, T ) is the number of edges between S and T and where λ = max(|λ1|, |λn−1|). This
is called the expander mixing lemma, and is important because it shows that the behavior of
an expander graph is like a random graph: the number of edges you expect to cross from S to
T if the graph were random is roughly the number of edges that you see, up to an error that is
controlled by the second eigenvalue. Prove the following steps,
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1. Let 1S ,1T be the characteristic vectors of the subsets S and T (i.e. 1S ∈ RV is a vector
with ones for all v ∈ S and zeros elsewhere). Show that 1

d · E(S, T ) = 1SA1T .

2. Express 1S =
∑

i αivi,1T =
∑

i βivi in terms of the basis of eigenvectors v0, . . . , vn−1.
Compute α0, β0 in terms of |S|, |T |.

3. Expand 1SA1T in this basis. Deduce that

|1
d
· E(S, T )− |S||T |

n
| ≤ |

n−1∑
i=1

λiαiβi|

4. Use Cauchy Schwartz inequality
∑

i αiβi ≤
√∑

i(αi)
2 ·

∑
i(βi)

2 = ‖1S‖ · ‖1T ‖ to prove
the lemma.

2.2 Spectral gap and edge expansion

In this exercise we prove the “easy direction” of the Alon-Milman-Cheeger inequality that relates
the edge expansion of a graph to its spectral gap. This is the important direction for us, because
it shows that if a graph has spectral gap at least γ, then it’s edge expansion is at least γ.

The edge expansion of a graph is usually defined as

φ(G) = inf
S 6=φ,V

E(S, V \ S)
d
n · |S| · |V \ S|

Recall from the first lecture that we defined

γ(G) = inf
f :V→{0,1}, f 6={0,1}

rejG(f)

dist(f, {0,1})

Prove that
γ(G)/2 ≤ φ(G) ≤ γ(G).

Let f : V → R.

1. Prove that if f = 1S for some set S ⊂ V then

〈f, (I −A)f〉 = 1

d
· E(S, V \ S)

where 〈f, g〉 =
∑

v∈V f(v)g(v).

2. Prove, by decomposing f according to the eigenvectors of A that

sup
f∈X0

〈f,Af〉
〈f, f〉

= λ1

where X0 = {f 6= 0 | f ⊥ 1}

3. Prove that 1 − λ1 ≤ φ(G). This is called the “easy direction” of Cheeger’s inequality. It
is also the useful direction, because it shows how the eigenvalue gap can be used to lower
bound the edge expansion of a graph.
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