
PCPs and HDX - Lecture 2

November 15, 2016

In the previous lecture we stated the PCP theorem and related it to a generalized notion
of expansion. In the first part of the course we will be constructing PCPs and constraint
expanders. Today’s construction is known as the linearity testing construction. We will continue
the “expansion” point of view, for a general system of constraints, and construct an explicit
expanding system of constraints.

1 Expansion of a constraint system

Let V be a finite set. A constraint is specified by a tuple (v1, . . . , vq) and a predicate ϕ : Σq →
{0, 1}. We think of the constraint as restricting the set of functions f : V → Σ by telling us
which values on v1, . . . , vq are valid. Formally, a function f : V → Σ satisfies the constraint
((v1, . . . , vq), ϕ) iff ϕ(f(v1), . . . , f(vq)) = 1. The constraint is called q-local and we are interested
in the case where q � n, so a constraint looks at very few values of the function.

In the previous lecture we studied two systems of constraints, one corresponding to 3-
Coloring and the other corresponding to graph expansion. The constraints in those systems
were always on pairs of variables, i.e. they were 2-local, which makes it easy to draw them on a
graph with vertices and edges. Many well-studied systems of local constraints have higher local-
ity. For example 3sat is the a system of constraints that are 3-local over alphabet Σ = {0, 1},
and each constraint over three variables allows seven of the eight possible assignments to the
variables.

Today we will discuss another system with locality 3. Once we go above 2 the graph of
constraints turns into a hypergraph, and the language of high dimensional graphs becomes
relevant.

Definitions. Given a system C of constraints, we define SAT (C) to be the set of functions
f : V → Σ that satisfy every constraint in C. For every f : V → Σ we can define the distance
of f from SAT (C) as

dist(f, SAT (C)) = min
g∈SAT (C)

dist(f, g)

where dist(f, g) is the fraction of entries on which f, g differ. The fraction of constraints rejecting
f is

rejC(f) = Pr
c∈C

[c rejects f]

Clearly
f ∈ SAT (C) ⇔ dist(f,SAT(C)) = 0 ⇔ rej(f) = 0

When f 6∈ SAT (C) then both dist(f,SAT(C)) > 0 and rej(f) > 0. We are interested in the
ratio between the two, minimized over all f 6∈ SAT (C),

γ(C) = min
f 6∈SAT (C)

rejC(f)

dist(f, SAT (C))
.

1

We are interested in constructing and studying systems of constraints that are expanding.
We saw that every expander graph can be viewed as an expanding system of equality constraints.
However, the property it defines, SAT(G), consists of only the constant functions, so it is not
very interesting. Today we will construct our first system of constraints that is non-trivial. This
is a first step towards constructing a PCP.

2 Hadamard Code and BLR Linearity Testing

Let V = {0, 1}n, and Σ = {0, 1}. We will consider all Boolean functions, f : V → {0, 1}, that
satisfy linearity constraints.

Blum, Luby, and Rubinfeld (BLR) suggested the following set of linearity constraints. For
each x, y ∈ V we will have a constraint checking that

f(x) + f(y) = f(x+ y)

Let BLRn be the set of all constraints above, where n is the parameter for the dimension of
the space V = {0, 1}n. It is easy to see that the set of functions that satisfy all of the constraints
is

SAT(BLRn) = {f : {0, 1}n → {0, 1} | f is a linear function}

In other words,

Claim 2.1. Let f : {0, 1}n → {0, 1}. If rej(f) = 0 then f is linear, i.e. there is some a ∈ {0, 1}n
such that for all x ∈ {0, 1}n, f(x) =

∑
i aixi mod 2.

The reason for the name Hadamard code is because the Hadamard encoding is the name
for the encoding that sends a message ~a = (a1, . . . , an) ∈ {0, 1} to the linear function whose
coefficients are a1, . . . , an. It encodes an n bit string by an 2n bit string that is the truth table
of the linear function whose coefficients are ~a. We will prove the following theorem,

Theorem 2.2. For all n, γ(BLRn) ≥ 2
9 . In other words, for every f : {0, 1}n → {0, 1},

rejBLRn
(f) ≥ 2

9 · dist(f, SAT(BLRn)).

This theorem says that the BLR constraints are expanding. Usually it is viewed as saying
that they provide a local test for whether a given function is a valid Hadamard encoding.

Proof. Since dist(f, SAT(BLRn)) ≤ 1, it is enough to prove the theorem assuming that ε =
rej(f) < 2/9. We need to prove that if ε = rej(f) is small then f is close to a linear function.
We will “correct” f by changing it into a function g and then argue that g is linear, and that it
is close to f .

Majority decoding. For each x ∈ {0, 1}n let g(x) be the value for f(x) that would cause
more tests (that look at the point x to accept than to reject. I.e. define

g(x) = populary∈{0,1}n [f(y) + f(x+ y)] (1)

where popularx[f(x)] denotes the most popular value of f ranging over all x. Define the proba-
bility of the popular vote for x as

Px = Pr
y

[f(y) + f(x+ y) = g(x)]

Claim 2.3. If rej(f) < 2/9 then for all x ∈ {0, 1}n, Px > 2/3.

2

Proof. Choose y and z uniformly at random. On one hand, the probability over y that f(y) +
f(x+y) = g(x) is Px, and the probability that f(z)+f(x+z) = g(x) is also Px. The probability
that f(y)+f(x+y) = f(z)+f(x+z) is thus (Px)2 +(1−Px)2 because y and z are independent.
Switching terms around this holds iff

f(y) + f(z) = f(x+ y) + f(x+ z)

Now with probability at least 1− ε, f(y) + f(z) = f(y+ z) and similarly with probability 1− ε,
f(x+ y) + f(x+ z) = f(y+ z). So by a union bound the probability that both hold (now there
is no independence!) is at least 1− 2ε ≥ 5/9. So

P 2
x + (1− Px)2 > 5/9

and this can only hold if Px < 1/2 or Px > 2/3. The first is ruled out since Px ≥ 1/2.

Claim 2.4. The function g defined in (1) satisfies all the constraints in BLRn, hence it is
linear.

Proof. Fix x, y. By the previous claim, Px > 2/3, Py > 2/3 and Px+y > 2/3, so each of the
following three equations hold with probability above 2/3 over the choice of z:

g(x) = f(z) + f(x+ z)

g(y) = f(z) + f(y + z)

g(x+ y) = f(x+ z) + f(y + z)

(for the third equation note that choosing a random z and setting w = x+ z gives a uniformly
distributed w and then f(w) + f(w + (x + y)) = f(x + z) + f(y + z)). So there must be some
z0 for which all three equations hold simultaneously. If we sum them up we get identically zero
on the right hand side, implying that g(x) + g(y) + g(x+ y) = 0.

Finally, for every x where f 6= g we have that the test rejects on at least 2/3 of the choices
of y, so

rej(f) = Ex Pr
y

[f(x) 6= f(y) + f(x+ y)]

≥ Pr
x

[f(x) 6= g(x)] · Ex:f(x)6=g(x) Pr
y

[f(x) 6= f(y) + f(x+ y)]

= dist(f, g) · Ex:f(x)6=g(x)Px

≥ dist(f, g) · 2

3

where in the first inequality we used the formula E[A] ≥ Pr[B] ·E[A|B]. As long as rej(f) ≤ 2/9
we have shown that

rej(f) ≥ 2

3
· dist(f, g) ≥ 2

3
dist(f, SAT(BLRn))

and altogether rej(f) ≥ min(29 , dist(f,SAT(BLRn)) · 23) ≥ 2
9dist(f,SAT(BLRn)).

3

3 More constraint-expanders ?

We are interested in constructing systems of constraints that are expanding. How easy is it to
get such a system? is a random system a good choice? It is known that a random d-regular
graph is with high probability an expander. It is natural to wonder if for certain parameters,
a random system of constraints is a constraint-expander. The short answer is no: If we choose
the system of constraints C at random, then if their number is a large enough linear multiple of
n the property SAT(C) becomes empty. If we choose fewer constraints then the system turns
out to be non expanding. (To see this, think of removing a single constraint, getting C− from
C. If x ∈ SAT(C−) \ SAT(C) then it violates only a single constraint in C. It can be shown
that x could still whp be quite far from the set SAT(C)).

It is an open question to find a constraint expander C whose property SAT(C) has constant
rate and distance. These terms come from coding theory. Rate refers to log |SAT(C)|

N where N
is the length of the strings in SAT(C) (N = 2n in the case of the Hadamard code). Distance
refers to minf 6=g∈SAT(C) dist(f, g). We have seen a first construction of a non-trivial constraint
expander. The distance is a constant (it is 1

2), but the rate is log 2n/N = n/N = (logN)/N . In
the next lectures we will see constructions with higher rates.

4

	Expansion of a constraint system
	Hadamard Code and BLR Linearity Testing
	More constraint-expanders ?

