
PCPs and HDX - Lecture 3

November 22, 2016

In the previous lecture we saw the linearity testing theorem. Today we will prove a gener-
alization of the linearity testing to low degree testing. We will define locally testable codes. In
these terms we have seen the local testability of the Hadamard code, and will today see the local
testability of the Reed-Muller code.

1 Coding theory - quick glance

Coding theory began in the 1940s with works of Shannon and Hamming as a theory studying
resilient communication. Today error correcting codes are used in abundance for communication,
storage, as well as in many theoretical applications in TCS. We will see some of these in this
course.

The idea is to encode a message of k bits using a codeword of n bits so that it is resilient to up
to t bit flips. Namely, a code is a mapping E : {0, 1}k → {0, 1}n such that if dist(w,E(m)) ≤ t
then m is the unique codeword whose distance is at most t to w.

It is good to think of the codewords as points in a geometric space {0, 1}n where the distances
are Hamming distances. A code is resilient to t bit flips if every point w ∈ {0, 1}n has at most one
codeword in a Hamming ball of radius t. In this way of thinking we don’t focus on the encoding
that maps messages to codewords, but rather only about the set C ⊂ {0, 1}n of codewords.

Definition 1.1 (Distance). The distance of a code C ⊂ {0, 1}n is δ if for any pair of distinct
codewords w1 6= w2 ∈ C, dist(w1, w2) = Pri∈[n][w1(i) 6= w2(i)] ≥ δ.

How many codewords can we pack into a code with distance δ ? Consider the greedy
construction: pick a first word w1 ∈ {0, 1}n arbitrarily, and remove all of the Hamming ball
around w1 of radius up to δn. Continue by picking another point w2 arbitrarily from the
remaining space, and remove the ball around w2. Each ball has

∑δn
i=0

(
n
i

)
≈ 2H(δ)n points, so

we can continue for at least 2n/2nH(δ) = 2n(1−H(δ)).

Definition 1.2 (Rate). The rate of a code C ⊂ {0, 1}n is log2 |C|
n .

The gold standard of error correcting codes is having a code that has both constant rate and
constant distance.

Examples of error correcting codes.

• Greedy - as we have seen above, it has very good rate and distance, but no effective
algorithm for encoding nor decoding.

• Random linear code - choosing a random linear transformation turns out to give a very
good code, with good rate and distance, very simple encoding (multiply by a matrix), but
there is no known way to decode and this is actually believed to be a hard problem (used
for crypto in fact).

1

• Hadamard - this is the code that maps a message a ∈ {0, 1}k to the string s = (
∑

i aixi
mod 2)x∈{0,1}k ∈ {0, 1}2

k . The codewords are the rows of the Hadamard matrix, hence
the name. This code has distance 1/2 but the rate is pretty bad: k/2k.

2 Low degree polynomials over a finite field - the Reed-Solomon
and the Reed-Muller Codes

Fix a finite field F, e.g. for a prime q it is the field whose elements are {0, 1, . . . , q − 1} and
addition and multiplication are done modulo q. All we need to know about F is that it supports
addition with an inverse and multiplication with an inverse for all elements except 0.

Reed-Solomon Code. The codewords in the Reed-Solomon code are functions f : F → F
that can be written as polynomial functions with degree at most d, i.e.

f(x) =
d∑
i=0

aix
i,

for some coefficients ai ∈ F. A codeword is a string w ∈ F|F | whose t-th element is f(t). This is
sometimes called a points-evaluation table, and from now on we do not distinguish between the
function f and the codeword representing it.

What is the distance of this code?

Fact 2.1. If f 6= f ′ are two degree d functions then dist(f, f ′) = Prz∈F[f(z) 6= f ′(z)] ≥ 1− d
q .

The reason for this is that f − f ′ is a non-zero polynomial funcion, whose degree is at most
d, so it can only be zero on at most d out of the q points.

What is the rate? it is (d+ 1)/q because every set of d+ 1 coefficients define a valid degree
d function.

One very important property of low degree polynomials in one variable is that given the
value of f on d+ 1 points, it determines the value of f on all other points. Moreover, the value
can be obtained from the d+ 1 values via a linear combination,

Fact 2.2 (Lagrange linear interpolation). Let x1, . . . , xd+1 ∈ F be distinct and let b1, . . . , bd+1 ∈
F (not necessarily distinct). There is a unique polynomial p(x) of degree at most d for which
p(xi) = bi for all i = 1, . . . , d+ 1.

Proof. The function mj(t) =
∏
i 6=j

t−xi
xj−xi has degree d in t (we think of x1, . . . , xd+1 as coef-

ficients, and division by xj − xi should be interpreted as multiplication by (xj − xi)−1 ∈ F)
and also mj(xi) equals 0 if i 6= j and it equals 1 if i = j. Now take p(t) =

∑d+1
j=1 bj · mj(t).

Uniqueness follows because distinct degree d polynomials cannot agree on d+ 1 points.

An important feature of the above is that the interpolation is linear in the values b1, . . . , bd+1.
The Reed Solomon code has very good (optimal, in fact) rate and distance. It also has very
efficient encoding and decoding algorithms, and is used in practice. However, it is limited in
that the length of a codeword is at most |F| = q. If we want longer messages, we can move to
multivariate polynomials, which is exactly the Reed-Muller code.

2

Reed-Muller Code. The codewords of this code are (points-evaluation-tables of) functions
f : Fm → F that can be written as multivariate polynomial functions of degree at most d,

f(x1, . . . , xm) =
∑
S

aSx
S

where aS ∈ F are coefficients, S = (d1, . . . , dm) and xS denotes xd11 x
d2
2 · · ·xdmm , and aS = 0

whenever
∑

i di > d.
One can prove (this is by easy induction onm) that the distance here too is 1− d

q . What is the
rate? The number of distinct polynomials can be counted by looking at how many coefficients
it takes to define a polynomial whose degree is at most d. There is a monomial xd11 x

d2
2 · · ·xdmm

as long as
∑

i di ≤ d. The number of such tuples (d1, . . . , dm) is
(
m+d
d

)
. For smallish m this is

on the order of dm (think of m = 2, 3 for example). The length of the codewords is qm, so the
relative rate is roughly (d/q)m.

One very important feature of low degree multi-variate polynomials is that their restriction
to any affine line is a univariate function of degree d.

Affine lines. A line in Fm is defined by two distinct points x 6= y ∈ Fm,

`x,y = {x+ t(y − x) | t ∈ F} ⊂ Fm

Every line has exactly |F| points, and there is a unique line passing between every pair of distinct
points. We can also think of the line s a function parameterized by t, `x,y(t) = x+ t(y − x).

Fact 2.3. Let f : Fm → F be a degree d function, and let `x,y be an arbitrary line. Then the
restriction of f to the line is a univariate function f ◦ `x,y : F→ F whose degree is at most d.

This simple fact is very important : it means that even though f is defined on a huge space
of Fm, there are many collections of |F| points (all lines), where there are non-trivial relations
between the values of every codeword of the RM code. Namely, every low degree function must
look low degree even on tiny windows that are the affine lines!

3 Locally Testable Codes

A Locally Testable Code (LTC) is an error correcting code that is also locally testable. Let us
define this in terms of constraint systems.

Definition 3.1 (LTC). A constraint system (V,C,Σ) defines a code whose codewords are

C := SAT(C) = {f : V→ Σ | f satisfies every constraint in C}

We say that this code is an LTC with ` queries and strong soundness γ > 0 if the constraints in
C are at most `-local, and if the constraint system has expansion γ(C) ≥ γ. Explicitly,

• (Completeness:) If f : V → Σ satisfies all of the constraints in C then it is in the code.

• (Strong soundness:) If f : V → Σ has distance at least δ from SAT(C), then at least γ · δ
fraction of the constraints in C reject.

The second item is called in the literature strong soundness, or strong robust soundness.
There is a weaker notion of soundness that we will not discuss here.

We have seen in the previous lecture that the BLR constraint system ({0, 1}n,BLRn, {0, 1})
is an expanding constraint system, and that SAT(BLRn) is exactly the set of functions f :
{0, 1}n → {0, 1} that are linear, i.e. the codewords of the Hadamard code. This means that

3

Theorem 3.2 ([BLR90]). The Hadamard code is locally testable with 3 queries and strong
soundness ≥ 2/9.

We will begin to prove today that

Theorem 3.3 ([RS92]). The RM code is locally testable with d+2 queries and strong soundness
1/poly(d).

There are a number of testing results that are all called “low degree tests”. We will prove
one of them, due to Rubinfeld and Sudan. We will later prove stronger versions, in particular
implying robust soundness which is a constant independent of d. The key is to use Fact 2.3 in
order to define a system of constraints.

Let us define the test used by Rubinfeld and Sudan [RS92]. We use the language of constraint
systems which is slightly more cumbersome, and we will soon move to talking about randomized
tests. So let (Fm,LDTd,m,F) be a system of constraints with a constraint for every choice of
d+ 2 points that reside on a single line. The constraint reads f(z0), . . . , f(zd+1) and is satisfied
iff there exists a degree d univariate polynomial p : F → F for which p(zi) = f(zi) for every
i = 0, 1, . . . , d+ 1.

It is nice to think of this constraint system pictorially and geometrically, where we place
vertices for each of the points in Fm, and then for every d+ 2 distinct points on a line, we place
a hyperedge together with a predicate (this is the constraint). One sees that on each line there
are all possible

(
q

d+2

)
hyperedges.

The following claim is essentially true because of interpolation,

Claim 3.4. The code SAT(LDTd,m) is exactly the Reed-Muller code with dimension m and
degree d, as long as d ≤ q/2 (if F is a prime field then d+ 2 < |F| is sufficient, see [FS13]).

It is interesting that when F is a non-prime field then the above claim fails when the degree
is larger than q/2. An example is provided in a 1995 paper of Friedl and Sudan [FS13]. Later
on a new family of codes called lifted codes were introduced in [GKS13], and shown to be a
superset of the Reed-Muller code for certain degree parameters and certain fields.

References

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. In Proc. 22nd ACM Symp. on Theory of Computing, pages 73–
83, 1990.

[FS13] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests. CoRR,
abs/1307.3975, 2013.

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from
lifting. In Innovations in Theoretical Computer Science, ITCS ’13, Berkeley, CA,
USA, January 9-12, 2013, pages 529–540, 2013.

[RS92] Ronitt Rubinfeld and Madhu Sudan. Self-testing polynomial functions efficiently and
over rational domains. In Proceedings of the Third Annual ACM/SIGACT-SIAM Sym-
posium on Discrete Algorithms, 27-29 January 1992, Orlando, Florida., pages 23–32,
1992.

4

	Coding theory - quick glance
	Low degree polynomials over a finite field - the Reed-Solomon and the Reed-Muller Codes
	Locally Testable Codes

