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In the previous lecture we described the Rubinfeld-Sudan low degree test. We described it
as a system of constraints on functions f : F™ — F. Today we will prove that this system of
constraints is expanding with constant expansion. This is just another way of saying that if the
low degree test succeeds with probability 1 — e then the function must be 1 — O(g) close to a
low degree function.

1 Low Degree Test

Let f : F™ — F be a function. We will consider the following low degree test, introduced by
Rubinfeld and Sudan. Let us describe it as a randomized procedure

1. Choose a random line by choosing x € F™ and h € F™ (if h = 0 this line is trivial, but we
keep going).

2. Compute via interpolation the unique function p, 5, : F — F of degree at most d for which
p(t) = f(z+th) forallt =1,...,d+ 1. Accept iff p(0) = f(x).

Fact 1.1. There are constants v, ..., aq41 € F—{0} such that for each x,h, py n(0) = f(x) iff
Yo oif(x +ih) =0.

The test naturally defines a constraint system (F™,LDTp g ,,,F) that has a constraint for
each choice of x,h. The constraint looks at f(xg),... f(z4+1) and accepts iff Y, o f(x;) = 0.
This correspondence is general: every randomized testing procedure can be equivalently viewed
as a system of constraints.

We have mentioned that the set of functions for which the test succeeds with probability 1
(equivalently, that satisfy all of the constraints) is the set of functions of degree at most d, as
long as d < q/2,

SAT(LDTrqm) = {f: F™ — F | f has degree at most d}.

We have mentioned that this is not always true when d > ¢/2 although clearly the D direction
always holds. The more challenging part is to prove soundness

Theorem 1.2. For every finite field F of size q and integer 1 < d < q/2 and every m > 2, we
have
Y(LDTF gm) > 1/2(d +2)* =: 7.

In other words, if f : F™ — F is §-far from any degree d low degree function, then the test will
reject with probability at least §/2(d + 2)2.



2 Proof of theorem

Fix f : F™ — F and let ¢ = rej(f). If ¢ > 1/2(d +2)? then 6 < 1 < ¢/7. So assume
e < 1/2(d + 2)?. We will show that in this case,

dist(f,SAT(LDT)) < 2¢ < ¢/7.

Majority decoding. For eachy € F™ we let g(y) be the value that would satisfy the maximal
number of constraints that look at y. L.e., we look at all possible h € F™ tuples, and define a
function g : F™ — F to be

g(x) = populary [ps 1 (0)]

breaking the ties arbitrarily.

First observe that dist(f, g) < 2e. Indeed, for each = where f(z) # g(x) half of the constraints
with involving x and a random h are unsatisfied. So this can happen at most 2¢ fraction of x’s.
We next proceed in a way similar to the proof that the linearity testing constraints are expanding.
The two key claims will be

Claim 2.1. For ally € F™, Prp[py n(0) = g(y)] > 1 —2(d + 1)4.

Claim 2.2. g € SAT(LDT) i.e. for every x, h, g satisfies the interpolation constraint associated
with x, h. Namely, g is a low degree polynomial.

Since g is close to f the theorem follows. We now proceed with proving these two claims.

Proof of Claim 2.1. : We will show that for all y € F™,

P (90 (0) = pya(0)] 2 1= 2(d+ 1) (1)

Note that this is enough to prove the claim. To see this, let £y, = Pry[py 1(0) = a] for a € F.
Then (1) implies
1-2(d+1)s < Z(ﬁy,a)Q < Z/By,a : mgxﬁy,a =1- F;lr[pyﬁ(o) =9(y)].
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where the last equality is because g(y) was defined to be the most popular value.
To prove (1), choose h1, ho € F™ and consider

zij =y+ihi+jhy  i,j=0,...,d+1.

e For each ¢ > 0 or j > 0 the corresponding line or column is a random d 4 2-tuple of points
on a line.

e The constraint that the j-th column (j > 0) must satisfy is given by >, a; f(xi;) = 0.
Similarly for each row i > 0 the constraint is by > a; f(2i;) = 0.

e By definition of py p,, for i = 0, Z;iii a; f(x0,;) = —Dy,hy (0).

e By definition of py 4, , for j =0, Zfill a;jf(xip) = —aopyn, (0).

e The probability of all constraints to be satisfied is (by union bound) at least 1 —2(d+ 1)e.



Consider the (d + 2) x (d 4 2) matrix Z with (4, 7)"" entry
Zi; =i f(mij), 4,7 €{0,...,d+1}.

Now the magic square argument kicks in: sum up all the entries in Z. If all row and column

constraints (i, j > 0) are satisfied then the sum of each row i = 1,...,d+ 1 is zero, and the sum
of each column j=1,...,d+ 1 is zero. So we are left with
d+1 d+1 d+1
0+ao- > a;f(zo;) = Y aajf(wij) = a0y aif(wig) +0
§=0 4,j=0 i=0

subtracting agag f(xo,0) from both sides and dividing by ag # 0 gives us py 4, (0) on the left and
Py,ho (0) on the right, and the desired equality. O

Proof of Claim 2.2. Fix x and h arbitrarily. We will show that

d+1

> aig(ig) =0.
i=0

Since this is an arbitrary constraint in LDT we will conclude that g € SAT(LDT). Choose
randomly hq, ho and define
Tij =T + ih +j(h1 + ihg).

Consider the (d+2) x (d+2) matrix Y that is Y; j; = oyoyj f(xi5) when j > 0 and Y; o = a;a09(2i0)
(i.e. replacing f by g on that column).

e For i € {0, 1, .. d + 1}, R; be the event that the sum of all elements from row i is zero,
d+1
ie § 0 Yij

e For j € {0,1,...,d+ 1}, C; be the event that the sum of all elements from column j is
d+1
zero, ie )y iy Y 5j = 0.

We will prove that Pr[Cy] > 0 where the probability is taken over hi, hs. Since this event is
independent of hy, ho we deduce that Cy occurs with probability 1.
For each row i € {0,1,2,...,d + 1} we apply Claim 2.1 with y = x;0, noticing that the
remaining elements in this row are distributed as in the claim. We get Pr,/[-R;] < 2(d + 1)0.
In addition, since the columns j > 0 are distributed as in the test and independently of x
and r, we have for all columns except j = 0, Pry rp ..., [~Cj] < 4. Using union bound, we

get

tata

Pr

d+1 d+1
1,72

A B A Cj] >1—2(d+1)(d+2)6 — (d+1)5 > 0.
= j=

d+1 C.

The claim now follows using the observation that the event Cy is implied by the event /\dfo1 Ry NjZy C.

/\d+1 R; implies that the sum of all entries in Y is zero whereas /\dﬂ C

implies that the sum of all elements from the submatrix (Y; ]);H% is zero. Hence, if both these

events happen then the sum of all elements from column 0 must be zero. O

To see this, the event
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