PCPs and HDX - Lecture 4

November 29, 2016

In the previous lecture we described the Rubinfeld-Sudan low degree test. We described it as a system of constraints on functions \(f : \mathbb{F}^m \rightarrow \mathbb{F} \). Today we will prove that this system of constraints is expanding with constant expansion. This is just another way of saying that if the low degree test succeeds with probability \(1 - \varepsilon \) then the function must be \(1 - O(\varepsilon) \) close to a low degree function.

1 Low Degree Test

Let \(f : \mathbb{F}^m \rightarrow \mathbb{F} \) be a function. We will consider the following low degree test, introduced by Rubinfeld and Sudan. Let us describe it as a randomized procedure

1. Choose a random line by choosing \(x \in \mathbb{F}^m \) and \(h \in \mathbb{F}^m \) (if \(h = 0 \) this line is trivial, but we keep going).

2. Compute via interpolation the unique function \(p_{x,h} : \mathbb{F} \rightarrow \mathbb{F} \) of degree at most \(d \) for which \(p(t) = f(x + th) \) for all \(t = 1, \ldots, d + 1 \). Accept iff \(p(0) = f(x) \).

Fact 1.1. There are constants \(\alpha_0, \ldots, \alpha_{d+1} \in \mathbb{F} - \{0\} \) such that for each \(x, h \), \(p_{x,h}(0) = f(x) \) iff \(\sum_i \alpha_i f(x + ih) = 0 \).

The test naturally defines a constraint system \((\mathbb{F}^m, LDT_{\mathbb{F},d,m}, \mathbb{F})\) that has a constraint for each choice of \(x, h \). The constraint looks at \(f(x_0), \ldots, f(x_{d+1}) \) and accepts iff \(\sum_i \alpha_i f(x_i) = 0 \). This correspondence is general: every randomized testing procedure can be equivalently viewed as a system of constraints.

We have mentioned that the set of functions for which the test succeeds with probability 1 (equivalently, that satisfy all of the constraints) is the set of functions of degree at most \(d \), as long as \(d < q/2 \).

\[\text{SAT}(LDT_{\mathbb{F},d,m}) = \{ f : \mathbb{F}^m \rightarrow \mathbb{F} \mid f \text{ has degree at most } d \} \]

We have mentioned that this is not always true when \(d > q/2 \) although clearly the \(\supseteq \) direction always holds. The more challenging part is to prove soundness.

Theorem 1.2. For every finite field \(\mathbb{F} \) of size \(q \) and integer \(1 \leq d < q/2 \) and every \(m \geq 2 \), we have

\[\gamma(LDT_{\mathbb{F},d,m}) \geq 1/2(d + 2)^2 =: \gamma. \]

In other words, if \(f : \mathbb{F}^m \rightarrow \mathbb{F} \) is \(\delta \)-far from any degree \(d \) low degree function, then the test will reject with probability at least \(\delta/2(d + 2)^2 \).
2 Proof of theorem

Fix \(f : \mathbb{F}^m \rightarrow \mathbb{F} \) and let \(\varepsilon = \text{rej}(f) \). If \(\varepsilon > 1/2(d + 2)^2 \) then \(\delta \leq 1 \leq \varepsilon/\gamma \). So assume \(\varepsilon < 1/2(d + 2)^2 \). We will show that in this case,

\[
\text{dist}(f, \text{SAT(LDT)}) \leq 2\varepsilon < \varepsilon/\gamma.
\]

Majority decoding. For each \(y \in \mathbb{F}^m \), we let \(g(y) \) be the value that would satisfy the maximal number of constraints that look at \(y \). I.e., we look at all possible \(h \in \mathbb{F}^m \) tuples, and define a function \(g : \mathbb{F}^m \rightarrow \mathbb{F} \) to be

\[
g(x) = \text{popular}_h[p_{x,h}(0)]
\]

breaking the ties arbitrarily.

First observe that \(\text{dist}(f,g) \leq 2\varepsilon \). Indeed, foreach \(x \) where \(f(x) \neq g(x) \) half of the constraints with involving \(x \) and a random \(h \) are unsatisfied. So this can happen at most \(2\varepsilon \) fraction of \(x \)'s.

We next proceed in a way similar to the proof that the linearity testing constraints are expanding. The two key claims will be

Claim 2.1. For all \(y \in \mathbb{F}^m \), \(\Pr_{h_1,h_2}[p_{y,h_1}(0) = g(y)] \geq 1 - 2(d + 1)\delta \).

Claim 2.2. \(g \in \text{SAT(LDT)} \) i.e. for every \(x,h \), \(g \) satisfies the interpolation constraint associated with \(x,h \). Namely, \(g \) is a low degree polynomial.

Since \(g \) is close to \(f \) the theorem follows. We now proceed with proving these two claims.

Proof of Claim 2.1. : We will show that for all \(y \in \mathbb{F}^m \),

\[
\Pr_{h_1,h_2}[p_{y,h_1}(0) = p_{y,h_2}(0)] \geq 1 - 2(d + 1)\delta.
\]

(1)

Note that this is enough to prove the claim. To see this, let \(\beta_{y,a} = \Pr_{h}[p_{y,h}(0) = a] \) for \(a \in \mathbb{F} \). Then (1) implies

\[
1 - 2(d + 1)\delta \leq \sum_{a \in \mathbb{F}} (\beta_{y,a})^2 \leq \sum_{a \in \mathbb{F}} \beta_{y,a} \cdot \max_a \beta_{y,a} = 1 \cdot \Pr_{h}[p_{y,h}(0) = g(y)].
\]

where the last equality is because \(g(y) \) was defined to be the most popular value.

To prove (1), choose \(h_1,h_2 \in \mathbb{F}^m \) and consider

\[
x_{ij} = y + ih_1 + jh_2 \quad i, j = 0, \ldots, d + 1.
\]

- For each \(i > 0 \) or \(j > 0 \) the corresponding line or column is a random \(d + 2 \)-tuple of points on a line.

- The constraint that the \(j \)-th column \((j > 0) \) must satisfy is given by \(\sum_i \alpha_i f(x_{ij}) = 0 \). Similarly for each row \(i > 0 \) the constraint is by \(\sum_j \alpha_j f(x_{ij}) = 0 \).

- By definition of \(p_{y,h_2} \), for \(i = 0 \), \(\sum_{j=1}^{d+1} \alpha_j f(x_{0,j}) = -\alpha_0 p_{y,h_1}(0) \).

- By definition of \(p_{y,h_1} \), for \(j = 0 \), \(\sum_{i=1}^{d+1} \alpha_j f(x_{i,0}) = -\alpha_0 p_{y,h_1}(0) \).

- The probability of all constraints to be satisfied is (by union bound) at least \(1 - 2(d + 1)\varepsilon \).
Consider the \((d+2) \times (d+2)\) matrix \(Z\) with \((i,j)\)th entry
\[
Z_{i,j} = \alpha_i \alpha_j f(x_{ij}), \quad i,j \in \{0, \ldots, d+1\}.
\]

Now the magic square argument kicks in: sum up all the entries in \(Z\). If all row and column constraints \((i,j) > 0\) are satisfied then the sum of each row \(i = 1, \ldots, d+1\) is zero, and the sum of each column \(j = 1, \ldots, d+1\) is zero. So we are left with
\[
0 + \alpha_0 \sum_{j=0}^{d+1} \alpha_j f(x_{0,j}) = \sum_{i,j=0}^{d+1} \alpha_i \alpha_j f(x_{i,j}) = \alpha_0 \sum_{i=0}^{d+1} \alpha_i f(x_{i,0}) + 0
\]
subtracting \(\alpha_0 \alpha_0 f(x_{0,0})\) from both sides and dividing by \(\alpha_0 \neq 0\) gives us \(p_{y,h_1}(0)\) on the left and \(p_{y,h_2}(0)\) on the right, and the desired equality.

\[\square\]

Proof of Claim 2.2. Fix \(x\) and \(h\) arbitrarily. We will show that
\[
\sum_{i=0}^{d+1} \alpha_i g(x_{i,0}) = 0.
\]

Since this is an arbitrary constraint in \(\text{LDT}\) we will conclude that \(g \in \text{SAT}(\text{LDT})\). Choose randomly \(h_1, h_2\) and define
\[
ix_{ij} = x + ih + j(h_1 + ih_2).
\]

Consider the \((d+2) \times (d+2)\) matrix \(Y\) that is \(Y_{i,j} = \alpha_i \alpha_j f(x_{ij})\) when \(j > 0\) and \(Y_{i,0} = \alpha_i \alpha_0 g(x_{i,0})\) (i.e. replacing \(f\) by \(g\) on that column).

- For \(i \in \{0, 1, \ldots, d+1\}\), \(R_i\) be the event that the sum of all elements from row \(i\) is zero, i.e \(\sum_{j=0}^{d+1} Y_{i,j} = 0\).
- For \(j \in \{0, 1, \ldots, d+1\}\), \(C_j\) be the event that the sum of all elements from column \(j\) is zero, i.e \(\sum_{i=0}^{d+1} Y_{i,j} = 0\).

We will prove that \(\Pr[R_0] > 0\) where the probability is taken over \(h_1, h_2\). Since this event is independent of \(h_1, h_2\) we deduce that \(C_0\) occurs with probability 1.

For each row \(i \in \{0, 1, 2, \ldots, d+1\}\) we apply Claim 2.1 with \(y = x_{i,0}\), noticing that the remaining elements in this row are distributed as in the claim. We get \(\Pr_{x}[\neg R_i] \leq 2(d+1)\delta\).

In addition, since the columns \(j > 0\) are distributed as in the test and independently of \(x\) and \(r\), we have for all columns except \(j = 0\), \(\Pr_{r_1, r_2, t_1, \ldots, t_{d+1}}[\neg C_j] \leq \delta\). Using union bound, we get
\[
\Pr_{r_1, r_2} \left[\bigwedge_{i=0}^{d+1} R_i \land \bigwedge_{j=1}^{d+1} C_j \right] \geq 1 - 2(d+1)(d+2)\delta - (d+1)\delta > 0.
\]

The claim now follows using the observation that the event \(C_0\) is implied by the event \(\land_{i=0}^{d+1} R_i \land_{j=1}^{d+1} C_j\). To see this, the event \(\land_{i=0}^{d+1} R_i\) implies that the sum of all entries in \(Y\) is zero whereas \(\land_{j=1}^{d+1} C_j\) implies that the sum of all elements from the submatrix \((Y_{i,j})_{j=1}^{d+1}\) is zero. Hence, if both these events happen then the sum of all elements from column 0 must be zero.

\[\square\]