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In the previous lecture we described the Rubinfeld-Sudan low degree test. We described it
as a system of constraints on functions f : Fm → F. Today we will prove that this system of
constraints is expanding with constant expansion. This is just another way of saying that if the
low degree test succeeds with probability 1 − ε then the function must be 1 − O(ε) close to a
low degree function.

1 Low Degree Test

Let f : Fm → F be a function. We will consider the following low degree test, introduced by
Rubinfeld and Sudan. Let us describe it as a randomized procedure

1. Choose a random line by choosing x ∈ Fm and h ∈ Fm (if h = 0 this line is trivial, but we
keep going).

2. Compute via interpolation the unique function px,h : F→ F of degree at most d for which
p(t) = f(x+ th) for all t = 1, . . . , d+ 1. Accept iff p(0) = f(x).

Fact 1.1. There are constants α0, . . . , αd+1 ∈ F−{0} such that for each x, h, px,h(0) = f(x) iff∑
i αif(x+ ih) = 0.

The test naturally defines a constraint system (Fm,LDTF,d,m,F) that has a constraint for
each choice of x, h. The constraint looks at f(x0), . . . f(xd+1) and accepts iff

∑
i αif(xi) = 0.

This correspondence is general: every randomized testing procedure can be equivalently viewed
as a system of constraints.

We have mentioned that the set of functions for which the test succeeds with probability 1
(equivalently, that satisfy all of the constraints) is the set of functions of degree at most d, as
long as d < q/2,

SAT(LDTF,d,m) = {f : Fm → F | f has degree at most d}.

We have mentioned that this is not always true when d > q/2 although clearly the ⊇ direction
always holds. The more challenging part is to prove soundness

Theorem 1.2. For every finite field F of size q and integer 1 ≤ d < q/2 and every m ≥ 2, we
have

γ(LDTF,d,m) ≥ 1/2(d+ 2)2 =: γ.

In other words, if f : Fm → F is δ-far from any degree d low degree function, then the test will
reject with probability at least δ/2(d+ 2)2.

1



2 Proof of theorem

Fix f : Fm → F and let ε = rej(f). If ε > 1/2(d + 2)2 then δ ≤ 1 ≤ ε/γ. So assume
ε < 1/2(d+ 2)2. We will show that in this case,

dist(f,SAT(LDT)) ≤ 2ε < ε/γ.

Majority decoding. For each y ∈ Fm, we let g(y) be the value that would satisfy the maximal
number of constraints that look at y. I.e., we look at all possible h ∈ Fm tuples, and define a
function g : Fm → F to be

g(x) = popularh[px,h(0)]

breaking the ties arbitrarily.
First observe that dist(f, g) ≤ 2ε. Indeed, for each x where f(x) 6= g(x) half of the constraints

with involving x and a random h are unsatisfied. So this can happen at most 2ε fraction of x’s.
We next proceed in a way similar to the proof that the linearity testing constraints are expanding.
The two key claims will be

Claim 2.1. For all y ∈ Fm, Prh[py,h(0) = g(y)] ≥ 1− 2(d+ 1)δ.

Claim 2.2. g ∈ SAT(LDT) i.e. for every x, h, g satisfies the interpolation constraint associated
with x, h. Namely, g is a low degree polynomial.

Since g is close to f the theorem follows. We now proceed with proving these two claims.

Proof of Claim 2.1. : We will show that for all y ∈ Fm,

Pr
h1,h2

[py,h1(0) = py,h2(0)] ≥ 1− 2(d+ 1)δ. (1)

Note that this is enough to prove the claim. To see this, let βy,a = Prh[py,h(0) = a] for a ∈ F.
Then (1) implies

1− 2(d+ 1)δ ≤
∑
a∈F

(βy,a)
2 ≤

∑
a∈F

βy,a ·max
a

βy,a = 1 · Pr
h
[py,h(0) = g(y)].

where the last equality is because g(y) was defined to be the most popular value.
To prove (1), choose h1, h2 ∈ Fm and consider

xij = y + ih1 + jh2 i, j = 0, . . . , d+ 1.

• For each i > 0 or j > 0 the corresponding line or column is a random d+2-tuple of points
on a line.

• The constraint that the j-th column (j > 0) must satisfy is given by
∑

i αif(xij) = 0.
Similarly for each row i > 0 the constraint is by

∑
j αjf(xij) = 0.

• By definition of py,h2 , for i = 0,
∑d+1

j=1 αjf(x0,j) = −α0py,h2(0).

• By definition of py,h1 , for j = 0,
∑d+1

i=1 αjf(xi,0) = −α0py,h1(0).

• The probability of all constraints to be satisfied is (by union bound) at least 1− 2(d+1)ε.
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Consider the (d+ 2)× (d+ 2) matrix Z with (i, j)th entry

Zi,j = αiαjf(xij), i, j ∈ {0, . . . , d+ 1}.

Now the magic square argument kicks in: sum up all the entries in Z. If all row and column
constraints (i, j > 0) are satisfied then the sum of each row i = 1, . . . , d+1 is zero, and the sum
of each column j = 1, . . . , d+ 1 is zero. So we are left with

0 + α0 ·
d+1∑
j=0

αjf(x0,j) =
d+1∑
i,j=0

αiαjf(xi,j) = α0

d+1∑
i=0

αif(xi,0) + 0

subtracting α0α0f(x0,0) from both sides and dividing by α0 6= 0 gives us py,h1(0) on the left and
py,h2(0) on the right, and the desired equality.

Proof of Claim 2.2. Fix x and h arbitrarily. We will show that

d+1∑
i=0

αig(xi,0) = 0.

Since this is an arbitrary constraint in LDT we will conclude that g ∈ SAT(LDT). Choose
randomly h1, h2 and define

xij = x+ ih+ j(h1 + ih2).

Consider the (d+2)×(d+2)matrix Y that is Yi,j = αiαjf(xij) when j > 0 and Yi,0 = αiα0g(xi,0)
(i.e. replacing f by g on that column).

• For i ∈ {0, 1, . . . , d+ 1}, Ri be the event that the sum of all elements from row i is zero,
i.e
∑d+1

j=0 Yi,j = 0.

• For j ∈ {0, 1, . . . , d + 1}, Cj be the event that the sum of all elements from column j is
zero, i.e

∑d+1
i=0 Yi,j = 0.

We will prove that Pr[C0] > 0 where the probability is taken over h1, h2. Since this event is
independent of h1, h2 we deduce that C0 occurs with probability 1.

For each row i ∈ {0, 1, 2, . . . , d + 1} we apply Claim 2.1 with y = xi,0, noticing that the
remaining elements in this row are distributed as in the claim. We get Prr′ [¬Ri] ≤ 2(d+ 1)δ.

In addition, since the columns j > 0 are distributed as in the test and independently of x
and r, we have for all columns except j = 0, Prr1,r2,t1,...,td+1

[¬Cj ] ≤ δ. Using union bound, we
get

Pr
r1,r2

[
d+1
∧
i=0

Ri
d+1
∧
j=1

Cj

]
≥ 1− 2(d+ 1)(d+ 2)δ − (d+ 1)δ > 0.

The claim now follows using the observation that the event C0 is implied by the event ∧d+1
i=0 Ri ∧d+1

j=1 Cj .
To see this, the event ∧d+1

i=0 Ri implies that the sum of all entries in Y is zero whereas ∧d+1
j=1 Cj

implies that the sum of all elements from the submatrix (Yi,j)
d+1
j=1 is zero. Hence, if both these

events happen then the sum of all elements from column 0 must be zero.
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